/* * Copyright(c) 2015-2017 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include "user_exp_rcv.h" #include "trace.h" #include "mmu_rb.h" struct tid_rb_node { struct mmu_rb_node mmu; unsigned long phys; struct tid_group *grp; u32 rcventry; dma_addr_t dma_addr; bool freed; unsigned npages; struct page *pages[0]; }; struct tid_pageset { u16 idx; u16 count; }; #define num_user_pages(vaddr, len) \ (1 + (((((unsigned long)(vaddr) + \ (unsigned long)(len) - 1) & PAGE_MASK) - \ ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT)) static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, struct exp_tid_set *set, struct hfi1_filedata *fd); static u32 find_phys_blocks(struct page **pages, unsigned npages, struct tid_pageset *list); static int set_rcvarray_entry(struct hfi1_filedata *fd, unsigned long vaddr, u32 rcventry, struct tid_group *grp, struct page **pages, unsigned npages); static int tid_rb_insert(void *arg, struct mmu_rb_node *node); static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, struct tid_rb_node *tnode); static void tid_rb_remove(void *arg, struct mmu_rb_node *node); static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode); static int program_rcvarray(struct hfi1_filedata *fd, unsigned long vaddr, struct tid_group *grp, struct tid_pageset *sets, unsigned start, u16 count, struct page **pages, u32 *tidlist, unsigned *tididx, unsigned *pmapped); static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo, struct tid_group **grp); static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node); static struct mmu_rb_ops tid_rb_ops = { .insert = tid_rb_insert, .remove = tid_rb_remove, .invalidate = tid_rb_invalidate }; /* * Initialize context and file private data needed for Expected * receive caching. This needs to be done after the context has * been configured with the eager/expected RcvEntry counts. */ int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd) { struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; int ret = 0; spin_lock_init(&fd->tid_lock); spin_lock_init(&fd->invalid_lock); fd->entry_to_rb = kcalloc(uctxt->expected_count, sizeof(struct rb_node *), GFP_KERNEL); if (!fd->entry_to_rb) return -ENOMEM; if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) { fd->invalid_tid_idx = 0; fd->invalid_tids = kcalloc(uctxt->expected_count, sizeof(*fd->invalid_tids), GFP_KERNEL); if (!fd->invalid_tids) { kfree(fd->entry_to_rb); fd->entry_to_rb = NULL; return -ENOMEM; } /* * Register MMU notifier callbacks. If the registration * fails, continue without TID caching for this context. */ ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops, dd->pport->hfi1_wq, &fd->handler); if (ret) { dd_dev_info(dd, "Failed MMU notifier registration %d\n", ret); ret = 0; } } /* * PSM does not have a good way to separate, count, and * effectively enforce a limit on RcvArray entries used by * subctxts (when context sharing is used) when TID caching * is enabled. To help with that, we calculate a per-process * RcvArray entry share and enforce that. * If TID caching is not in use, PSM deals with usage on its * own. In that case, we allow any subctxt to take all of the * entries. * * Make sure that we set the tid counts only after successful * init. */ spin_lock(&fd->tid_lock); if (uctxt->subctxt_cnt && fd->handler) { u16 remainder; fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt; remainder = uctxt->expected_count % uctxt->subctxt_cnt; if (remainder && fd->subctxt < remainder) fd->tid_limit++; } else { fd->tid_limit = uctxt->expected_count; } spin_unlock(&fd->tid_lock); return ret; } void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd) { struct hfi1_ctxtdata *uctxt = fd->uctxt; /* * The notifier would have been removed when the process'es mm * was freed. */ if (fd->handler) { hfi1_mmu_rb_unregister(fd->handler); } else { if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list)) unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd); if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list)) unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd); } kfree(fd->invalid_tids); fd->invalid_tids = NULL; kfree(fd->entry_to_rb); fd->entry_to_rb = NULL; } /* * RcvArray entry allocation for Expected Receives is done by the * following algorithm: * * The context keeps 3 lists of groups of RcvArray entries: * 1. List of empty groups - tid_group_list * This list is created during user context creation and * contains elements which describe sets (of 8) of empty * RcvArray entries. * 2. List of partially used groups - tid_used_list * This list contains sets of RcvArray entries which are * not completely used up. Another mapping request could * use some of all of the remaining entries. * 3. List of full groups - tid_full_list * This is the list where sets that are completely used * up go. * * An attempt to optimize the usage of RcvArray entries is * made by finding all sets of physically contiguous pages in a * user's buffer. * These physically contiguous sets are further split into * sizes supported by the receive engine of the HFI. The * resulting sets of pages are stored in struct tid_pageset, * which describes the sets as: * * .count - number of pages in this set * * .idx - starting index into struct page ** array * of this set * * From this point on, the algorithm deals with the page sets * described above. The number of pagesets is divided by the * RcvArray group size to produce the number of full groups * needed. * * Groups from the 3 lists are manipulated using the following * rules: * 1. For each set of 8 pagesets, a complete group from * tid_group_list is taken, programmed, and moved to * the tid_full_list list. * 2. For all remaining pagesets: * 2.1 If the tid_used_list is empty and the tid_group_list * is empty, stop processing pageset and return only * what has been programmed up to this point. * 2.2 If the tid_used_list is empty and the tid_group_list * is not empty, move a group from tid_group_list to * tid_used_list. * 2.3 For each group is tid_used_group, program as much as * can fit into the group. If the group becomes fully * used, move it to tid_full_list. */ int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo) { int ret = 0, need_group = 0, pinned; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets, tididx = 0, mapped, mapped_pages = 0; unsigned long vaddr = tinfo->vaddr; struct page **pages = NULL; u32 *tidlist = NULL; struct tid_pageset *pagesets = NULL; /* Get the number of pages the user buffer spans */ npages = num_user_pages(vaddr, tinfo->length); if (!npages) return -EINVAL; if (npages > uctxt->expected_count) { dd_dev_err(dd, "Expected buffer too big\n"); return -EINVAL; } /* Verify that access is OK for the user buffer */ if (!access_ok(VERIFY_WRITE, (void __user *)vaddr, npages * PAGE_SIZE)) { dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n", (void *)vaddr, npages); return -EFAULT; } pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets), GFP_KERNEL); if (!pagesets) return -ENOMEM; /* Allocate the array of struct page pointers needed for pinning */ pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); if (!pages) { ret = -ENOMEM; goto bail; } /* * Pin all the pages of the user buffer. If we can't pin all the * pages, accept the amount pinned so far and program only that. * User space knows how to deal with partially programmed buffers. */ if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) { ret = -ENOMEM; goto bail; } pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages); if (pinned <= 0) { ret = pinned; goto bail; } fd->tid_n_pinned += npages; /* Find sets of physically contiguous pages */ npagesets = find_phys_blocks(pages, pinned, pagesets); /* * We don't need to access this under a lock since tid_used is per * process and the same process cannot be in hfi1_user_exp_rcv_clear() * and hfi1_user_exp_rcv_setup() at the same time. */ spin_lock(&fd->tid_lock); if (fd->tid_used + npagesets > fd->tid_limit) pageset_count = fd->tid_limit - fd->tid_used; else pageset_count = npagesets; spin_unlock(&fd->tid_lock); if (!pageset_count) goto bail; ngroups = pageset_count / dd->rcv_entries.group_size; tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL); if (!tidlist) { ret = -ENOMEM; goto nomem; } tididx = 0; /* * From this point on, we are going to be using shared (between master * and subcontexts) context resources. We need to take the lock. */ mutex_lock(&uctxt->exp_lock); /* * The first step is to program the RcvArray entries which are complete * groups. */ while (ngroups && uctxt->tid_group_list.count) { struct tid_group *grp = tid_group_pop(&uctxt->tid_group_list); ret = program_rcvarray(fd, vaddr, grp, pagesets, pageidx, dd->rcv_entries.group_size, pages, tidlist, &tididx, &mapped); /* * If there was a failure to program the RcvArray * entries for the entire group, reset the grp fields * and add the grp back to the free group list. */ if (ret <= 0) { tid_group_add_tail(grp, &uctxt->tid_group_list); hfi1_cdbg(TID, "Failed to program RcvArray group %d", ret); goto unlock; } tid_group_add_tail(grp, &uctxt->tid_full_list); ngroups--; pageidx += ret; mapped_pages += mapped; } while (pageidx < pageset_count) { struct tid_group *grp, *ptr; /* * If we don't have any partially used tid groups, check * if we have empty groups. If so, take one from there and * put in the partially used list. */ if (!uctxt->tid_used_list.count || need_group) { if (!uctxt->tid_group_list.count) goto unlock; grp = tid_group_pop(&uctxt->tid_group_list); tid_group_add_tail(grp, &uctxt->tid_used_list); need_group = 0; } /* * There is an optimization opportunity here - instead of * fitting as many page sets as we can, check for a group * later on in the list that could fit all of them. */ list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list, list) { unsigned use = min_t(unsigned, pageset_count - pageidx, grp->size - grp->used); ret = program_rcvarray(fd, vaddr, grp, pagesets, pageidx, use, pages, tidlist, &tididx, &mapped); if (ret < 0) { hfi1_cdbg(TID, "Failed to program RcvArray entries %d", ret); ret = -EFAULT; goto unlock; } else if (ret > 0) { if (grp->used == grp->size) tid_group_move(grp, &uctxt->tid_used_list, &uctxt->tid_full_list); pageidx += ret; mapped_pages += mapped; need_group = 0; /* Check if we are done so we break out early */ if (pageidx >= pageset_count) break; } else if (WARN_ON(ret == 0)) { /* * If ret is 0, we did not program any entries * into this group, which can only happen if * we've screwed up the accounting somewhere. * Warn and try to continue. */ need_group = 1; } } } unlock: mutex_unlock(&uctxt->exp_lock); nomem: hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx, mapped_pages, ret); if (tididx) { spin_lock(&fd->tid_lock); fd->tid_used += tididx; spin_unlock(&fd->tid_lock); tinfo->tidcnt = tididx; tinfo->length = mapped_pages * PAGE_SIZE; if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist, tidlist, sizeof(tidlist[0]) * tididx)) { /* * On failure to copy to the user level, we need to undo * everything done so far so we don't leak resources. */ tinfo->tidlist = (unsigned long)&tidlist; hfi1_user_exp_rcv_clear(fd, tinfo); tinfo->tidlist = 0; ret = -EFAULT; goto bail; } } /* * If not everything was mapped (due to insufficient RcvArray entries, * for example), unpin all unmapped pages so we can pin them nex time. */ if (mapped_pages != pinned) { hfi1_release_user_pages(fd->mm, &pages[mapped_pages], pinned - mapped_pages, false); fd->tid_n_pinned -= pinned - mapped_pages; } bail: kfree(pagesets); kfree(pages); kfree(tidlist); return ret > 0 ? 0 : ret; } int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo) { int ret = 0; struct hfi1_ctxtdata *uctxt = fd->uctxt; u32 *tidinfo; unsigned tididx; if (unlikely(tinfo->tidcnt > fd->tid_used)) return -EINVAL; tidinfo = memdup_user((void __user *)(unsigned long)tinfo->tidlist, sizeof(tidinfo[0]) * tinfo->tidcnt); if (IS_ERR(tidinfo)) return PTR_ERR(tidinfo); mutex_lock(&uctxt->exp_lock); for (tididx = 0; tididx < tinfo->tidcnt; tididx++) { ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL); if (ret) { hfi1_cdbg(TID, "Failed to unprogram rcv array %d", ret); break; } } spin_lock(&fd->tid_lock); fd->tid_used -= tididx; spin_unlock(&fd->tid_lock); tinfo->tidcnt = tididx; mutex_unlock(&uctxt->exp_lock); kfree(tidinfo); return ret; } int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo) { struct hfi1_ctxtdata *uctxt = fd->uctxt; unsigned long *ev = uctxt->dd->events + (((uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * HFI1_MAX_SHARED_CTXTS) + fd->subctxt); u32 *array; int ret = 0; if (!fd->invalid_tids) return -EINVAL; /* * copy_to_user() can sleep, which will leave the invalid_lock * locked and cause the MMU notifier to be blocked on the lock * for a long time. * Copy the data to a local buffer so we can release the lock. */ array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL); if (!array) return -EFAULT; spin_lock(&fd->invalid_lock); if (fd->invalid_tid_idx) { memcpy(array, fd->invalid_tids, sizeof(*array) * fd->invalid_tid_idx); memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) * fd->invalid_tid_idx); tinfo->tidcnt = fd->invalid_tid_idx; fd->invalid_tid_idx = 0; /* * Reset the user flag while still holding the lock. * Otherwise, PSM can miss events. */ clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); } else { tinfo->tidcnt = 0; } spin_unlock(&fd->invalid_lock); if (tinfo->tidcnt) { if (copy_to_user((void __user *)tinfo->tidlist, array, sizeof(*array) * tinfo->tidcnt)) ret = -EFAULT; } kfree(array); return ret; } static u32 find_phys_blocks(struct page **pages, unsigned npages, struct tid_pageset *list) { unsigned pagecount, pageidx, setcount = 0, i; unsigned long pfn, this_pfn; if (!npages) return 0; /* * Look for sets of physically contiguous pages in the user buffer. * This will allow us to optimize Expected RcvArray entry usage by * using the bigger supported sizes. */ pfn = page_to_pfn(pages[0]); for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { this_pfn = i < npages ? page_to_pfn(pages[i]) : 0; /* * If the pfn's are not sequential, pages are not physically * contiguous. */ if (this_pfn != ++pfn) { /* * At this point we have to loop over the set of * physically contiguous pages and break them down it * sizes supported by the HW. * There are two main constraints: * 1. The max buffer size is MAX_EXPECTED_BUFFER. * If the total set size is bigger than that * program only a MAX_EXPECTED_BUFFER chunk. * 2. The buffer size has to be a power of two. If * it is not, round down to the closes power of * 2 and program that size. */ while (pagecount) { int maxpages = pagecount; u32 bufsize = pagecount * PAGE_SIZE; if (bufsize > MAX_EXPECTED_BUFFER) maxpages = MAX_EXPECTED_BUFFER >> PAGE_SHIFT; else if (!is_power_of_2(bufsize)) maxpages = rounddown_pow_of_two(bufsize) >> PAGE_SHIFT; list[setcount].idx = pageidx; list[setcount].count = maxpages; pagecount -= maxpages; pageidx += maxpages; setcount++; } pageidx = i; pagecount = 1; pfn = this_pfn; } else { pagecount++; } } return setcount; } /** * program_rcvarray() - program an RcvArray group with receive buffers * @fd: filedata pointer * @vaddr: starting user virtual address * @grp: RcvArray group * @sets: array of struct tid_pageset holding information on physically * contiguous chunks from the user buffer * @start: starting index into sets array * @count: number of struct tid_pageset's to program * @pages: an array of struct page * for the user buffer * @tidlist: the array of u32 elements when the information about the * programmed RcvArray entries is to be encoded. * @tididx: starting offset into tidlist * @pmapped: (output parameter) number of pages programmed into the RcvArray * entries. * * This function will program up to 'count' number of RcvArray entries from the * group 'grp'. To make best use of write-combining writes, the function will * perform writes to the unused RcvArray entries which will be ignored by the * HW. Each RcvArray entry will be programmed with a physically contiguous * buffer chunk from the user's virtual buffer. * * Return: * -EINVAL if the requested count is larger than the size of the group, * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or * number of RcvArray entries programmed. */ static int program_rcvarray(struct hfi1_filedata *fd, unsigned long vaddr, struct tid_group *grp, struct tid_pageset *sets, unsigned start, u16 count, struct page **pages, u32 *tidlist, unsigned *tididx, unsigned *pmapped) { struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; u16 idx; u32 tidinfo = 0, rcventry, useidx = 0; int mapped = 0; /* Count should never be larger than the group size */ if (count > grp->size) return -EINVAL; /* Find the first unused entry in the group */ for (idx = 0; idx < grp->size; idx++) { if (!(grp->map & (1 << idx))) { useidx = idx; break; } rcv_array_wc_fill(dd, grp->base + idx); } idx = 0; while (idx < count) { u16 npages, pageidx, setidx = start + idx; int ret = 0; /* * If this entry in the group is used, move to the next one. * If we go past the end of the group, exit the loop. */ if (useidx >= grp->size) { break; } else if (grp->map & (1 << useidx)) { rcv_array_wc_fill(dd, grp->base + useidx); useidx++; continue; } rcventry = grp->base + useidx; npages = sets[setidx].count; pageidx = sets[setidx].idx; ret = set_rcvarray_entry(fd, vaddr + (pageidx * PAGE_SIZE), rcventry, grp, pages + pageidx, npages); if (ret) return ret; mapped += npages; tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) | EXP_TID_SET(LEN, npages); tidlist[(*tididx)++] = tidinfo; grp->used++; grp->map |= 1 << useidx++; idx++; } /* Fill the rest of the group with "blank" writes */ for (; useidx < grp->size; useidx++) rcv_array_wc_fill(dd, grp->base + useidx); *pmapped = mapped; return idx; } static int set_rcvarray_entry(struct hfi1_filedata *fd, unsigned long vaddr, u32 rcventry, struct tid_group *grp, struct page **pages, unsigned npages) { int ret; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct tid_rb_node *node; struct hfi1_devdata *dd = uctxt->dd; dma_addr_t phys; /* * Allocate the node first so we can handle a potential * failure before we've programmed anything. */ node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages), GFP_KERNEL); if (!node) return -ENOMEM; phys = pci_map_single(dd->pcidev, __va(page_to_phys(pages[0])), npages * PAGE_SIZE, PCI_DMA_FROMDEVICE); if (dma_mapping_error(&dd->pcidev->dev, phys)) { dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n", phys); kfree(node); return -EFAULT; } node->mmu.addr = vaddr; node->mmu.len = npages * PAGE_SIZE; node->phys = page_to_phys(pages[0]); node->npages = npages; node->rcventry = rcventry; node->dma_addr = phys; node->grp = grp; node->freed = false; memcpy(node->pages, pages, sizeof(struct page *) * npages); if (!fd->handler) ret = tid_rb_insert(fd, &node->mmu); else ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu); if (ret) { hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d", node->rcventry, node->mmu.addr, node->phys, ret); pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE, PCI_DMA_FROMDEVICE); kfree(node); return -EFAULT; } hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1); trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages, node->mmu.addr, node->phys, phys); return 0; } static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo, struct tid_group **grp) { struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; struct tid_rb_node *node; u8 tidctrl = EXP_TID_GET(tidinfo, CTRL); u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry; if (tididx >= uctxt->expected_count) { dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n", tididx, uctxt->ctxt); return -EINVAL; } if (tidctrl == 0x3) return -EINVAL; rcventry = tididx + (tidctrl - 1); node = fd->entry_to_rb[rcventry]; if (!node || node->rcventry != (uctxt->expected_base + rcventry)) return -EBADF; if (grp) *grp = node->grp; if (!fd->handler) cacheless_tid_rb_remove(fd, node); else hfi1_mmu_rb_remove(fd->handler, &node->mmu); return 0; } static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) { struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry, node->npages, node->mmu.addr, node->phys, node->dma_addr); hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0); /* * Make sure device has seen the write before we unpin the * pages. */ flush_wc(); pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len, PCI_DMA_FROMDEVICE); hfi1_release_user_pages(fd->mm, node->pages, node->npages, true); fd->tid_n_pinned -= node->npages; node->grp->used--; node->grp->map &= ~(1 << (node->rcventry - node->grp->base)); if (node->grp->used == node->grp->size - 1) tid_group_move(node->grp, &uctxt->tid_full_list, &uctxt->tid_used_list); else if (!node->grp->used) tid_group_move(node->grp, &uctxt->tid_used_list, &uctxt->tid_group_list); kfree(node); } /* * As a simple helper for hfi1_user_exp_rcv_free, this function deals with * clearing nodes in the non-cached case. */ static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, struct exp_tid_set *set, struct hfi1_filedata *fd) { struct tid_group *grp, *ptr; int i; list_for_each_entry_safe(grp, ptr, &set->list, list) { list_del_init(&grp->list); for (i = 0; i < grp->size; i++) { if (grp->map & (1 << i)) { u16 rcventry = grp->base + i; struct tid_rb_node *node; node = fd->entry_to_rb[rcventry - uctxt->expected_base]; if (!node || node->rcventry != rcventry) continue; cacheless_tid_rb_remove(fd, node); } } } } /* * Always return 0 from this function. A non-zero return indicates that the * remove operation will be called and that memory should be unpinned. * However, the driver cannot unpin out from under PSM. Instead, retain the * memory (by returning 0) and inform PSM that the memory is going away. PSM * will call back later when it has removed the memory from its list. */ static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode) { struct hfi1_filedata *fdata = arg; struct hfi1_ctxtdata *uctxt = fdata->uctxt; struct tid_rb_node *node = container_of(mnode, struct tid_rb_node, mmu); if (node->freed) return 0; trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr, node->rcventry, node->npages, node->dma_addr); node->freed = true; spin_lock(&fdata->invalid_lock); if (fdata->invalid_tid_idx < uctxt->expected_count) { fdata->invalid_tids[fdata->invalid_tid_idx] = rcventry2tidinfo(node->rcventry - uctxt->expected_base); fdata->invalid_tids[fdata->invalid_tid_idx] |= EXP_TID_SET(LEN, node->npages); if (!fdata->invalid_tid_idx) { unsigned long *ev; /* * hfi1_set_uevent_bits() sets a user event flag * for all processes. Because calling into the * driver to process TID cache invalidations is * expensive and TID cache invalidations are * handled on a per-process basis, we can * optimize this to set the flag only for the * process in question. */ ev = uctxt->dd->events + (((uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * HFI1_MAX_SHARED_CTXTS) + fdata->subctxt); set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); } fdata->invalid_tid_idx++; } spin_unlock(&fdata->invalid_lock); return 0; } static int tid_rb_insert(void *arg, struct mmu_rb_node *node) { struct hfi1_filedata *fdata = arg; struct tid_rb_node *tnode = container_of(node, struct tid_rb_node, mmu); u32 base = fdata->uctxt->expected_base; fdata->entry_to_rb[tnode->rcventry - base] = tnode; return 0; } static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, struct tid_rb_node *tnode) { u32 base = fdata->uctxt->expected_base; fdata->entry_to_rb[tnode->rcventry - base] = NULL; clear_tid_node(fdata, tnode); } static void tid_rb_remove(void *arg, struct mmu_rb_node *node) { struct hfi1_filedata *fdata = arg; struct tid_rb_node *tnode = container_of(node, struct tid_rb_node, mmu); cacheless_tid_rb_remove(fdata, tnode); }