/* * Based on documentation provided by Dave Jones. Thanks! * * Licensed under the terms of the GNU GPL License version 2. * * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* */ #include #include #include #include #include #include #include #include #include #include #include #define EPS_BRAND_C7M 0 #define EPS_BRAND_C7 1 #define EPS_BRAND_EDEN 2 #define EPS_BRAND_C3 3 struct eps_cpu_data { u32 fsb; struct cpufreq_frequency_table freq_table[]; }; static struct eps_cpu_data *eps_cpu[NR_CPUS]; static unsigned int eps_get(unsigned int cpu) { struct eps_cpu_data *centaur; u32 lo, hi; if (cpu) return 0; centaur = eps_cpu[cpu]; if (centaur == NULL) return 0; /* Return current frequency */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); return centaur->fsb * ((lo >> 8) & 0xff); } static int eps_set_state(struct eps_cpu_data *centaur, unsigned int cpu, u32 dest_state) { struct cpufreq_freqs freqs; u32 lo, hi; int err = 0; int i; freqs.old = eps_get(cpu); freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff); freqs.cpu = cpu; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); /* Wait while CPU is busy */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); i = 0; while (lo & ((1 << 16) | (1 << 17))) { udelay(16); rdmsr(MSR_IA32_PERF_STATUS, lo, hi); i++; if (unlikely(i > 64)) { err = -ENODEV; goto postchange; } } /* Set new multiplier and voltage */ wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0); /* Wait until transition end */ i = 0; do { udelay(16); rdmsr(MSR_IA32_PERF_STATUS, lo, hi); i++; if (unlikely(i > 64)) { err = -ENODEV; goto postchange; } } while (lo & ((1 << 16) | (1 << 17))); /* Return current frequency */ postchange: rdmsr(MSR_IA32_PERF_STATUS, lo, hi); freqs.new = centaur->fsb * ((lo >> 8) & 0xff); cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); return err; } static int eps_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct eps_cpu_data *centaur; unsigned int newstate = 0; unsigned int cpu = policy->cpu; unsigned int dest_state; int ret; if (unlikely(eps_cpu[cpu] == NULL)) return -ENODEV; centaur = eps_cpu[cpu]; if (unlikely(cpufreq_frequency_table_target(policy, &eps_cpu[cpu]->freq_table[0], target_freq, relation, &newstate))) { return -EINVAL; } /* Make frequency transition */ dest_state = centaur->freq_table[newstate].index & 0xffff; ret = eps_set_state(centaur, cpu, dest_state); if (ret) printk(KERN_ERR "eps: Timeout!\n"); return ret; } static int eps_verify(struct cpufreq_policy *policy) { return cpufreq_frequency_table_verify(policy, &eps_cpu[policy->cpu]->freq_table[0]); } static int eps_cpu_init(struct cpufreq_policy *policy) { unsigned int i; u32 lo, hi; u64 val; u8 current_multiplier, current_voltage; u8 max_multiplier, max_voltage; u8 min_multiplier, min_voltage; u8 brand; u32 fsb; struct eps_cpu_data *centaur; struct cpufreq_frequency_table *f_table; int k, step, voltage; int ret; int states; if (policy->cpu != 0) return -ENODEV; /* Check brand */ printk("eps: Detected VIA "); rdmsr(0x1153, lo, hi); brand = (((lo >> 2) ^ lo) >> 18) & 3; switch(brand) { case EPS_BRAND_C7M: printk("C7-M\n"); break; case EPS_BRAND_C7: printk("C7\n"); break; case EPS_BRAND_EDEN: printk("Eden\n"); break; case EPS_BRAND_C3: printk("C3\n"); return -ENODEV; break; } /* Enable Enhanced PowerSaver */ rdmsrl(MSR_IA32_MISC_ENABLE, val); if (!(val & 1 << 16)) { val |= 1 << 16; wrmsrl(MSR_IA32_MISC_ENABLE, val); /* Can be locked at 0 */ rdmsrl(MSR_IA32_MISC_ENABLE, val); if (!(val & 1 << 16)) { printk("eps: Can't enable Enhanced PowerSaver\n"); return -ENODEV; } } /* Print voltage and multiplier */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); current_voltage = lo & 0xff; printk("eps: Current voltage = %dmV\n", current_voltage * 16 + 700); current_multiplier = (lo >> 8) & 0xff; printk("eps: Current multiplier = %d\n", current_multiplier); /* Print limits */ max_voltage = hi & 0xff; printk("eps: Highest voltage = %dmV\n", max_voltage * 16 + 700); max_multiplier = (hi >> 8) & 0xff; printk("eps: Highest multiplier = %d\n", max_multiplier); min_voltage = (hi >> 16) & 0xff; printk("eps: Lowest voltage = %dmV\n", min_voltage * 16 + 700); min_multiplier = (hi >> 24) & 0xff; printk("eps: Lowest multiplier = %d\n", min_multiplier); /* Sanity checks */ if (current_multiplier == 0 || max_multiplier == 0 || min_multiplier == 0) return -EINVAL; if (current_multiplier > max_multiplier || max_multiplier <= min_multiplier) return -EINVAL; if (current_voltage > 0x1c || max_voltage > 0x1c) return -EINVAL; if (max_voltage < min_voltage) return -EINVAL; /* Calc FSB speed */ fsb = cpu_khz / current_multiplier; /* Calc number of p-states supported */ if (brand == EPS_BRAND_C7M) states = max_multiplier - min_multiplier + 1; else states = 2; /* Allocate private data and frequency table for current cpu */ centaur = kzalloc(sizeof(struct eps_cpu_data) + (states + 1) * sizeof(struct cpufreq_frequency_table), GFP_KERNEL); if (!centaur) return -ENOMEM; eps_cpu[0] = centaur; /* Copy basic values */ centaur->fsb = fsb; /* Fill frequency and MSR value table */ f_table = ¢aur->freq_table[0]; if (brand == EPS_BRAND_EDEN) { f_table[0].frequency = fsb * min_multiplier; f_table[0].index = (min_multiplier << 8) | min_voltage; f_table[1].frequency = fsb * max_multiplier; f_table[1].index = (max_multiplier << 8) | max_voltage; f_table[2].frequency = CPUFREQ_TABLE_END; } else { k = 0; step = ((max_voltage - min_voltage) * 256) / (max_multiplier - min_multiplier); for (i = min_multiplier; i <= max_multiplier; i++) { voltage = (k * step) / 256 + min_voltage; f_table[k].frequency = fsb * i; f_table[k].index = (i << 8) | voltage; k++; } f_table[k].frequency = CPUFREQ_TABLE_END; } policy->governor = CPUFREQ_DEFAULT_GOVERNOR; policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */ policy->cur = fsb * current_multiplier; ret = cpufreq_frequency_table_cpuinfo(policy, ¢aur->freq_table[0]); if (ret) { kfree(centaur); return ret; } cpufreq_frequency_table_get_attr(¢aur->freq_table[0], policy->cpu); return 0; } static int eps_cpu_exit(struct cpufreq_policy *policy) { unsigned int cpu = policy->cpu; struct eps_cpu_data *centaur; u32 lo, hi; if (eps_cpu[cpu] == NULL) return -ENODEV; centaur = eps_cpu[cpu]; /* Get max frequency */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); /* Set max frequency */ eps_set_state(centaur, cpu, hi & 0xffff); /* Bye */ cpufreq_frequency_table_put_attr(policy->cpu); kfree(eps_cpu[cpu]); eps_cpu[cpu] = NULL; return 0; } static struct freq_attr* eps_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver eps_driver = { .verify = eps_verify, .target = eps_target, .init = eps_cpu_init, .exit = eps_cpu_exit, .get = eps_get, .name = "e_powersaver", .owner = THIS_MODULE, .attr = eps_attr, }; static int __init eps_init(void) { struct cpuinfo_x86 *c = cpu_data; /* This driver will work only on Centaur C7 processors with * Enhanced SpeedStep/PowerSaver registers */ if (c->x86_vendor != X86_VENDOR_CENTAUR || c->x86 != 6 || c->x86_model != 10) return -ENODEV; if (!cpu_has(c, X86_FEATURE_EST)) return -ENODEV; if (cpufreq_register_driver(&eps_driver)) return -EINVAL; return 0; } static void __exit eps_exit(void) { cpufreq_unregister_driver(&eps_driver); } MODULE_AUTHOR("Rafał Bilski "); MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's."); MODULE_LICENSE("GPL"); module_init(eps_init); module_exit(eps_exit);