/* * SWIOTLB-based DMA API implementation * * Copyright (C) 2012 ARM Ltd. * Author: Catalin Marinas * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include static int swiotlb __read_mostly; static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot, bool coherent) { if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE)) return pgprot_writecombine(prot); return prot; } static struct gen_pool *atomic_pool; #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; static int __init early_coherent_pool(char *p) { atomic_pool_size = memparse(p, &p); return 0; } early_param("coherent_pool", early_coherent_pool); static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) { unsigned long val; void *ptr = NULL; if (!atomic_pool) { WARN(1, "coherent pool not initialised!\n"); return NULL; } val = gen_pool_alloc(atomic_pool, size); if (val) { phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); *ret_page = phys_to_page(phys); ptr = (void *)val; memset(ptr, 0, size); } return ptr; } static bool __in_atomic_pool(void *start, size_t size) { return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); } static int __free_from_pool(void *start, size_t size) { if (!__in_atomic_pool(start, size)) return 0; gen_pool_free(atomic_pool, (unsigned long)start, size); return 1; } static void *__dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags, unsigned long attrs) { if (dev == NULL) { WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); return NULL; } if (IS_ENABLED(CONFIG_ZONE_DMA) && dev->coherent_dma_mask <= DMA_BIT_MASK(32)) flags |= GFP_DMA; if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { struct page *page; void *addr; page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, get_order(size)); if (!page) return NULL; *dma_handle = phys_to_dma(dev, page_to_phys(page)); addr = page_address(page); memset(addr, 0, size); return addr; } else { return swiotlb_alloc_coherent(dev, size, dma_handle, flags); } } static void __dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { bool freed; phys_addr_t paddr = dma_to_phys(dev, dma_handle); if (dev == NULL) { WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); return; } freed = dma_release_from_contiguous(dev, phys_to_page(paddr), size >> PAGE_SHIFT); if (!freed) swiotlb_free_coherent(dev, size, vaddr, dma_handle); } static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags, unsigned long attrs) { struct page *page; void *ptr, *coherent_ptr; bool coherent = is_device_dma_coherent(dev); pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); size = PAGE_ALIGN(size); if (!coherent && !gfpflags_allow_blocking(flags)) { struct page *page = NULL; void *addr = __alloc_from_pool(size, &page, flags); if (addr) *dma_handle = phys_to_dma(dev, page_to_phys(page)); return addr; } ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); if (!ptr) goto no_mem; /* no need for non-cacheable mapping if coherent */ if (coherent) return ptr; /* remove any dirty cache lines on the kernel alias */ __dma_flush_area(ptr, size); /* create a coherent mapping */ page = virt_to_page(ptr); coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, prot, NULL); if (!coherent_ptr) goto no_map; return coherent_ptr; no_map: __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); no_mem: *dma_handle = DMA_ERROR_CODE; return NULL; } static void __dma_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); size = PAGE_ALIGN(size); if (!is_device_dma_coherent(dev)) { if (__free_from_pool(vaddr, size)) return; vunmap(vaddr); } __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); } static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t dev_addr; dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); if (!is_device_dma_coherent(dev)) __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); return dev_addr; } static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { if (!is_device_dma_coherent(dev)) __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); } static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i, ret; ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); if (!is_device_dma_coherent(dev)) for_each_sg(sgl, sg, ret, i) __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), sg->length, dir); return ret; } static void __swiotlb_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; if (!is_device_dma_coherent(dev)) for_each_sg(sgl, sg, nelems, i) __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), sg->length, dir); swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); } static void __swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { if (!is_device_dma_coherent(dev)) __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); } static void __swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { swiotlb_sync_single_for_device(dev, dev_addr, size, dir); if (!is_device_dma_coherent(dev)) __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); } static void __swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (!is_device_dma_coherent(dev)) for_each_sg(sgl, sg, nelems, i) __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), sg->length, dir); swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); } static void __swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); if (!is_device_dma_coherent(dev)) for_each_sg(sgl, sg, nelems, i) __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), sg->length, dir); } static int __swiotlb_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { int ret = -ENXIO; unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; unsigned long off = vma->vm_pgoff; vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, is_device_dma_coherent(dev)); if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { ret = remap_pfn_range(vma, vma->vm_start, pfn + off, vma->vm_end - vma->vm_start, vma->vm_page_prot); } return ret; } static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t handle, size_t size, unsigned long attrs) { int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); if (!ret) sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)), PAGE_ALIGN(size), 0); return ret; } static int __swiotlb_dma_supported(struct device *hwdev, u64 mask) { if (swiotlb) return swiotlb_dma_supported(hwdev, mask); return 1; } static struct dma_map_ops swiotlb_dma_ops = { .alloc = __dma_alloc, .free = __dma_free, .mmap = __swiotlb_mmap, .get_sgtable = __swiotlb_get_sgtable, .map_page = __swiotlb_map_page, .unmap_page = __swiotlb_unmap_page, .map_sg = __swiotlb_map_sg_attrs, .unmap_sg = __swiotlb_unmap_sg_attrs, .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, .sync_single_for_device = __swiotlb_sync_single_for_device, .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, .sync_sg_for_device = __swiotlb_sync_sg_for_device, .dma_supported = __swiotlb_dma_supported, .mapping_error = swiotlb_dma_mapping_error, }; static int __init atomic_pool_init(void) { pgprot_t prot = __pgprot(PROT_NORMAL_NC); unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; struct page *page; void *addr; unsigned int pool_size_order = get_order(atomic_pool_size); if (dev_get_cma_area(NULL)) page = dma_alloc_from_contiguous(NULL, nr_pages, pool_size_order); else page = alloc_pages(GFP_DMA, pool_size_order); if (page) { int ret; void *page_addr = page_address(page); memset(page_addr, 0, atomic_pool_size); __dma_flush_area(page_addr, atomic_pool_size); atomic_pool = gen_pool_create(PAGE_SHIFT, -1); if (!atomic_pool) goto free_page; addr = dma_common_contiguous_remap(page, atomic_pool_size, VM_USERMAP, prot, atomic_pool_init); if (!addr) goto destroy_genpool; ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, page_to_phys(page), atomic_pool_size, -1); if (ret) goto remove_mapping; gen_pool_set_algo(atomic_pool, gen_pool_first_fit_order_align, (void *)PAGE_SHIFT); pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", atomic_pool_size / 1024); return 0; } goto out; remove_mapping: dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); destroy_genpool: gen_pool_destroy(atomic_pool); atomic_pool = NULL; free_page: if (!dma_release_from_contiguous(NULL, page, nr_pages)) __free_pages(page, pool_size_order); out: pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", atomic_pool_size / 1024); return -ENOMEM; } /******************************************** * The following APIs are for dummy DMA ops * ********************************************/ static void *__dummy_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags, unsigned long attrs) { return NULL; } static void __dummy_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { } static int __dummy_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { return -ENXIO; } static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { return DMA_ERROR_CODE; } static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { } static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { return 0; } static void __dummy_unmap_sg(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { } static void __dummy_sync_single(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { } static void __dummy_sync_sg(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { } static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) { return 1; } static int __dummy_dma_supported(struct device *hwdev, u64 mask) { return 0; } struct dma_map_ops dummy_dma_ops = { .alloc = __dummy_alloc, .free = __dummy_free, .mmap = __dummy_mmap, .map_page = __dummy_map_page, .unmap_page = __dummy_unmap_page, .map_sg = __dummy_map_sg, .unmap_sg = __dummy_unmap_sg, .sync_single_for_cpu = __dummy_sync_single, .sync_single_for_device = __dummy_sync_single, .sync_sg_for_cpu = __dummy_sync_sg, .sync_sg_for_device = __dummy_sync_sg, .mapping_error = __dummy_mapping_error, .dma_supported = __dummy_dma_supported, }; EXPORT_SYMBOL(dummy_dma_ops); static int __init arm64_dma_init(void) { if (swiotlb_force || max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) swiotlb = 1; return atomic_pool_init(); } arch_initcall(arm64_dma_init); #define PREALLOC_DMA_DEBUG_ENTRIES 4096 static int __init dma_debug_do_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); return 0; } fs_initcall(dma_debug_do_init); #ifdef CONFIG_IOMMU_DMA #include #include #include /* Thankfully, all cache ops are by VA so we can ignore phys here */ static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) { __dma_flush_area(virt, PAGE_SIZE); } static void *__iommu_alloc_attrs(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, unsigned long attrs) { bool coherent = is_device_dma_coherent(dev); int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent); size_t iosize = size; void *addr; if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) return NULL; size = PAGE_ALIGN(size); /* * Some drivers rely on this, and we probably don't want the * possibility of stale kernel data being read by devices anyway. */ gfp |= __GFP_ZERO; if (gfpflags_allow_blocking(gfp)) { struct page **pages; pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, handle, flush_page); if (!pages) return NULL; addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, __builtin_return_address(0)); if (!addr) iommu_dma_free(dev, pages, iosize, handle); } else { struct page *page; /* * In atomic context we can't remap anything, so we'll only * get the virtually contiguous buffer we need by way of a * physically contiguous allocation. */ if (coherent) { page = alloc_pages(gfp, get_order(size)); addr = page ? page_address(page) : NULL; } else { addr = __alloc_from_pool(size, &page, gfp); } if (!addr) return NULL; *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); if (iommu_dma_mapping_error(dev, *handle)) { if (coherent) __free_pages(page, get_order(size)); else __free_from_pool(addr, size); addr = NULL; } } return addr; } static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, unsigned long attrs) { size_t iosize = size; size = PAGE_ALIGN(size); /* * @cpu_addr will be one of 3 things depending on how it was allocated: * - A remapped array of pages from iommu_dma_alloc(), for all * non-atomic allocations. * - A non-cacheable alias from the atomic pool, for atomic * allocations by non-coherent devices. * - A normal lowmem address, for atomic allocations by * coherent devices. * Hence how dodgy the below logic looks... */ if (__in_atomic_pool(cpu_addr, size)) { iommu_dma_unmap_page(dev, handle, iosize, 0, 0); __free_from_pool(cpu_addr, size); } else if (is_vmalloc_addr(cpu_addr)){ struct vm_struct *area = find_vm_area(cpu_addr); if (WARN_ON(!area || !area->pages)) return; iommu_dma_free(dev, area->pages, iosize, &handle); dma_common_free_remap(cpu_addr, size, VM_USERMAP); } else { iommu_dma_unmap_page(dev, handle, iosize, 0, 0); __free_pages(virt_to_page(cpu_addr), get_order(size)); } } static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { struct vm_struct *area; int ret; vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, is_device_dma_coherent(dev)); if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) return ret; area = find_vm_area(cpu_addr); if (WARN_ON(!area || !area->pages)) return -ENXIO; return iommu_dma_mmap(area->pages, size, vma); } static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; struct vm_struct *area = find_vm_area(cpu_addr); if (WARN_ON(!area || !area->pages)) return -ENXIO; return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, GFP_KERNEL); } static void __iommu_sync_single_for_cpu(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { phys_addr_t phys; if (is_device_dma_coherent(dev)) return; phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); __dma_unmap_area(phys_to_virt(phys), size, dir); } static void __iommu_sync_single_for_device(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { phys_addr_t phys; if (is_device_dma_coherent(dev)) return; phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); __dma_map_area(phys_to_virt(phys), size, dir); } static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { bool coherent = is_device_dma_coherent(dev); int prot = dma_direction_to_prot(dir, coherent); dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); if (!iommu_dma_mapping_error(dev, dev_addr) && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) __iommu_sync_single_for_device(dev, dev_addr, size, dir); return dev_addr; } static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); } static void __iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (is_device_dma_coherent(dev)) return; for_each_sg(sgl, sg, nelems, i) __dma_unmap_area(sg_virt(sg), sg->length, dir); } static void __iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (is_device_dma_coherent(dev)) return; for_each_sg(sgl, sg, nelems, i) __dma_map_area(sg_virt(sg), sg->length, dir); } static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { bool coherent = is_device_dma_coherent(dev); if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) __iommu_sync_sg_for_device(dev, sgl, nelems, dir); return iommu_dma_map_sg(dev, sgl, nelems, dma_direction_to_prot(dir, coherent)); } static void __iommu_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); } static struct dma_map_ops iommu_dma_ops = { .alloc = __iommu_alloc_attrs, .free = __iommu_free_attrs, .mmap = __iommu_mmap_attrs, .get_sgtable = __iommu_get_sgtable, .map_page = __iommu_map_page, .unmap_page = __iommu_unmap_page, .map_sg = __iommu_map_sg_attrs, .unmap_sg = __iommu_unmap_sg_attrs, .sync_single_for_cpu = __iommu_sync_single_for_cpu, .sync_single_for_device = __iommu_sync_single_for_device, .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, .sync_sg_for_device = __iommu_sync_sg_for_device, .dma_supported = iommu_dma_supported, .mapping_error = iommu_dma_mapping_error, }; /* * TODO: Right now __iommu_setup_dma_ops() gets called too early to do * everything it needs to - the device is only partially created and the * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we * need this delayed attachment dance. Once IOMMU probe ordering is sorted * to move the arch_setup_dma_ops() call later, all the notifier bits below * become unnecessary, and will go away. */ struct iommu_dma_notifier_data { struct list_head list; struct device *dev; const struct iommu_ops *ops; u64 dma_base; u64 size; }; static LIST_HEAD(iommu_dma_masters); static DEFINE_MUTEX(iommu_dma_notifier_lock); static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops, u64 dma_base, u64 size) { struct iommu_domain *domain = iommu_get_domain_for_dev(dev); /* * If the IOMMU driver has the DMA domain support that we require, * then the IOMMU core will have already configured a group for this * device, and allocated the default domain for that group. */ if (!domain || iommu_dma_init_domain(domain, dma_base, size)) { pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", dev_name(dev)); return false; } dev->archdata.dma_ops = &iommu_dma_ops; return true; } static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops, u64 dma_base, u64 size) { struct iommu_dma_notifier_data *iommudata; iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL); if (!iommudata) return; iommudata->dev = dev; iommudata->ops = ops; iommudata->dma_base = dma_base; iommudata->size = size; mutex_lock(&iommu_dma_notifier_lock); list_add(&iommudata->list, &iommu_dma_masters); mutex_unlock(&iommu_dma_notifier_lock); } static int __iommu_attach_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct iommu_dma_notifier_data *master, *tmp; if (action != BUS_NOTIFY_BIND_DRIVER) return 0; mutex_lock(&iommu_dma_notifier_lock); list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) { if (data == master->dev && do_iommu_attach(master->dev, master->ops, master->dma_base, master->size)) { list_del(&master->list); kfree(master); break; } } mutex_unlock(&iommu_dma_notifier_lock); return 0; } static int __init register_iommu_dma_ops_notifier(struct bus_type *bus) { struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL); int ret; if (!nb) return -ENOMEM; nb->notifier_call = __iommu_attach_notifier; ret = bus_register_notifier(bus, nb); if (ret) { pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n", bus->name); kfree(nb); } return ret; } static int __init __iommu_dma_init(void) { int ret; ret = iommu_dma_init(); if (!ret) ret = register_iommu_dma_ops_notifier(&platform_bus_type); if (!ret) ret = register_iommu_dma_ops_notifier(&amba_bustype); #ifdef CONFIG_PCI if (!ret) ret = register_iommu_dma_ops_notifier(&pci_bus_type); #endif return ret; } arch_initcall(__iommu_dma_init); static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *ops) { struct iommu_group *group; if (!ops) return; /* * TODO: As a concession to the future, we're ready to handle being * called both early and late (i.e. after bus_add_device). Once all * the platform bus code is reworked to call us late and the notifier * junk above goes away, move the body of do_iommu_attach here. */ group = iommu_group_get(dev); if (group) { do_iommu_attach(dev, ops, dma_base, size); iommu_group_put(group); } else { queue_iommu_attach(dev, ops, dma_base, size); } } void arch_teardown_dma_ops(struct device *dev) { struct iommu_domain *domain = iommu_get_domain_for_dev(dev); if (WARN_ON(domain)) iommu_detach_device(domain, dev); dev->archdata.dma_ops = NULL; } #else static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu) { } #endif /* CONFIG_IOMMU_DMA */ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent) { if (!dev->archdata.dma_ops) dev->archdata.dma_ops = &swiotlb_dma_ops; dev->archdata.dma_coherent = coherent; __iommu_setup_dma_ops(dev, dma_base, size, iommu); }