// SPDX-License-Identifier: GPL-2.0 /* * background writeback - scan btree for dirty data and write it to the backing * device * * Copyright 2010, 2011 Kent Overstreet * Copyright 2012 Google, Inc. */ #include "bcache.h" #include "btree.h" #include "debug.h" #include "writeback.h" #include #include #include #include /* Rate limiting */ static void __update_writeback_rate(struct cached_dev *dc) { struct cache_set *c = dc->disk.c; uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size - bcache_flash_devs_sectors_dirty(c); uint64_t cache_dirty_target = div_u64(cache_sectors * dc->writeback_percent, 100); int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev), c->cached_dev_sectors); /* * PI controller: * Figures out the amount that should be written per second. * * First, the error (number of sectors that are dirty beyond our * target) is calculated. The error is accumulated (numerically * integrated). * * Then, the proportional value and integral value are scaled * based on configured values. These are stored as inverses to * avoid fixed point math and to make configuration easy-- e.g. * the default value of 40 for writeback_rate_p_term_inverse * attempts to write at a rate that would retire all the dirty * blocks in 40 seconds. * * The writeback_rate_i_inverse value of 10000 means that 1/10000th * of the error is accumulated in the integral term per second. * This acts as a slow, long-term average that is not subject to * variations in usage like the p term. */ int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); int64_t error = dirty - target; int64_t proportional_scaled = div_s64(error, dc->writeback_rate_p_term_inverse); int64_t integral_scaled; uint32_t new_rate; if ((error < 0 && dc->writeback_rate_integral > 0) || (error > 0 && time_before64(local_clock(), dc->writeback_rate.next + NSEC_PER_MSEC))) { /* * Only decrease the integral term if it's more than * zero. Only increase the integral term if the device * is keeping up. (Don't wind up the integral * ineffectively in either case). * * It's necessary to scale this by * writeback_rate_update_seconds to keep the integral * term dimensioned properly. */ dc->writeback_rate_integral += error * dc->writeback_rate_update_seconds; } integral_scaled = div_s64(dc->writeback_rate_integral, dc->writeback_rate_i_term_inverse); new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), dc->writeback_rate_minimum, NSEC_PER_SEC); dc->writeback_rate_proportional = proportional_scaled; dc->writeback_rate_integral_scaled = integral_scaled; dc->writeback_rate_change = new_rate - dc->writeback_rate.rate; dc->writeback_rate.rate = new_rate; dc->writeback_rate_target = target; } static void update_writeback_rate(struct work_struct *work) { struct cached_dev *dc = container_of(to_delayed_work(work), struct cached_dev, writeback_rate_update); down_read(&dc->writeback_lock); if (atomic_read(&dc->has_dirty) && dc->writeback_percent) __update_writeback_rate(dc); up_read(&dc->writeback_lock); schedule_delayed_work(&dc->writeback_rate_update, dc->writeback_rate_update_seconds * HZ); } static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors) { if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || !dc->writeback_percent) return 0; return bch_next_delay(&dc->writeback_rate, sectors); } struct dirty_io { struct closure cl; struct cached_dev *dc; struct bio bio; }; static void dirty_init(struct keybuf_key *w) { struct dirty_io *io = w->private; struct bio *bio = &io->bio; bio_init(bio, bio->bi_inline_vecs, DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); if (!io->dc->writeback_percent) bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; bio->bi_private = w; bch_bio_map(bio, NULL); } static void dirty_io_destructor(struct closure *cl) { struct dirty_io *io = container_of(cl, struct dirty_io, cl); kfree(io); } static void write_dirty_finish(struct closure *cl) { struct dirty_io *io = container_of(cl, struct dirty_io, cl); struct keybuf_key *w = io->bio.bi_private; struct cached_dev *dc = io->dc; bio_free_pages(&io->bio); /* This is kind of a dumb way of signalling errors. */ if (KEY_DIRTY(&w->key)) { int ret; unsigned i; struct keylist keys; bch_keylist_init(&keys); bkey_copy(keys.top, &w->key); SET_KEY_DIRTY(keys.top, false); bch_keylist_push(&keys); for (i = 0; i < KEY_PTRS(&w->key); i++) atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); if (ret) trace_bcache_writeback_collision(&w->key); atomic_long_inc(ret ? &dc->disk.c->writeback_keys_failed : &dc->disk.c->writeback_keys_done); } bch_keybuf_del(&dc->writeback_keys, w); up(&dc->in_flight); closure_return_with_destructor(cl, dirty_io_destructor); } static void dirty_endio(struct bio *bio) { struct keybuf_key *w = bio->bi_private; struct dirty_io *io = w->private; if (bio->bi_status) SET_KEY_DIRTY(&w->key, false); closure_put(&io->cl); } static void write_dirty(struct closure *cl) { struct dirty_io *io = container_of(cl, struct dirty_io, cl); struct keybuf_key *w = io->bio.bi_private; /* * IO errors are signalled using the dirty bit on the key. * If we failed to read, we should not attempt to write to the * backing device. Instead, immediately go to write_dirty_finish * to clean up. */ if (KEY_DIRTY(&w->key)) { dirty_init(w); bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); io->bio.bi_iter.bi_sector = KEY_START(&w->key); bio_set_dev(&io->bio, io->dc->bdev); io->bio.bi_end_io = dirty_endio; closure_bio_submit(&io->bio, cl); } continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); } static void read_dirty_endio(struct bio *bio) { struct keybuf_key *w = bio->bi_private; struct dirty_io *io = w->private; bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), bio->bi_status, "reading dirty data from cache"); dirty_endio(bio); } static void read_dirty_submit(struct closure *cl) { struct dirty_io *io = container_of(cl, struct dirty_io, cl); closure_bio_submit(&io->bio, cl); continue_at(cl, write_dirty, io->dc->writeback_write_wq); } static void read_dirty(struct cached_dev *dc) { unsigned delay = 0; struct keybuf_key *w; struct dirty_io *io; struct closure cl; closure_init_stack(&cl); /* * XXX: if we error, background writeback just spins. Should use some * mempools. */ while (!kthread_should_stop()) { w = bch_keybuf_next(&dc->writeback_keys); if (!w) break; BUG_ON(ptr_stale(dc->disk.c, &w->key, 0)); if (KEY_START(&w->key) != dc->last_read || jiffies_to_msecs(delay) > 50) while (!kthread_should_stop() && delay) delay = schedule_timeout_interruptible(delay); dc->last_read = KEY_OFFSET(&w->key); io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec) * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), GFP_KERNEL); if (!io) goto err; w->private = io; io->dc = dc; dirty_init(w); bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); bio_set_dev(&io->bio, PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); io->bio.bi_end_io = read_dirty_endio; if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) goto err_free; trace_bcache_writeback(&w->key); down(&dc->in_flight); closure_call(&io->cl, read_dirty_submit, NULL, &cl); delay = writeback_delay(dc, KEY_SIZE(&w->key)); } if (0) { err_free: kfree(w->private); err: bch_keybuf_del(&dc->writeback_keys, w); } /* * Wait for outstanding writeback IOs to finish (and keybuf slots to be * freed) before refilling again */ closure_sync(&cl); } /* Scan for dirty data */ void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode, uint64_t offset, int nr_sectors) { struct bcache_device *d = c->devices[inode]; unsigned stripe_offset, stripe, sectors_dirty; if (!d) return; stripe = offset_to_stripe(d, offset); stripe_offset = offset & (d->stripe_size - 1); while (nr_sectors) { int s = min_t(unsigned, abs(nr_sectors), d->stripe_size - stripe_offset); if (nr_sectors < 0) s = -s; if (stripe >= d->nr_stripes) return; sectors_dirty = atomic_add_return(s, d->stripe_sectors_dirty + stripe); if (sectors_dirty == d->stripe_size) set_bit(stripe, d->full_dirty_stripes); else clear_bit(stripe, d->full_dirty_stripes); nr_sectors -= s; stripe_offset = 0; stripe++; } } static bool dirty_pred(struct keybuf *buf, struct bkey *k) { struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys); BUG_ON(KEY_INODE(k) != dc->disk.id); return KEY_DIRTY(k); } static void refill_full_stripes(struct cached_dev *dc) { struct keybuf *buf = &dc->writeback_keys; unsigned start_stripe, stripe, next_stripe; bool wrapped = false; stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); if (stripe >= dc->disk.nr_stripes) stripe = 0; start_stripe = stripe; while (1) { stripe = find_next_bit(dc->disk.full_dirty_stripes, dc->disk.nr_stripes, stripe); if (stripe == dc->disk.nr_stripes) goto next; next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, dc->disk.nr_stripes, stripe); buf->last_scanned = KEY(dc->disk.id, stripe * dc->disk.stripe_size, 0); bch_refill_keybuf(dc->disk.c, buf, &KEY(dc->disk.id, next_stripe * dc->disk.stripe_size, 0), dirty_pred); if (array_freelist_empty(&buf->freelist)) return; stripe = next_stripe; next: if (wrapped && stripe > start_stripe) return; if (stripe == dc->disk.nr_stripes) { stripe = 0; wrapped = true; } } } /* * Returns true if we scanned the entire disk */ static bool refill_dirty(struct cached_dev *dc) { struct keybuf *buf = &dc->writeback_keys; struct bkey start = KEY(dc->disk.id, 0, 0); struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); struct bkey start_pos; /* * make sure keybuf pos is inside the range for this disk - at bringup * we might not be attached yet so this disk's inode nr isn't * initialized then */ if (bkey_cmp(&buf->last_scanned, &start) < 0 || bkey_cmp(&buf->last_scanned, &end) > 0) buf->last_scanned = start; if (dc->partial_stripes_expensive) { refill_full_stripes(dc); if (array_freelist_empty(&buf->freelist)) return false; } start_pos = buf->last_scanned; bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); if (bkey_cmp(&buf->last_scanned, &end) < 0) return false; /* * If we get to the end start scanning again from the beginning, and * only scan up to where we initially started scanning from: */ buf->last_scanned = start; bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; } static int bch_writeback_thread(void *arg) { struct cached_dev *dc = arg; bool searched_full_index; bch_ratelimit_reset(&dc->writeback_rate); while (!kthread_should_stop()) { down_write(&dc->writeback_lock); if (!atomic_read(&dc->has_dirty) || (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && !dc->writeback_running)) { up_write(&dc->writeback_lock); set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) return 0; schedule(); continue; } searched_full_index = refill_dirty(dc); if (searched_full_index && RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { atomic_set(&dc->has_dirty, 0); cached_dev_put(dc); SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); bch_write_bdev_super(dc, NULL); } up_write(&dc->writeback_lock); read_dirty(dc); if (searched_full_index) { unsigned delay = dc->writeback_delay * HZ; while (delay && !kthread_should_stop() && !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) delay = schedule_timeout_interruptible(delay); bch_ratelimit_reset(&dc->writeback_rate); } } return 0; } /* Init */ struct sectors_dirty_init { struct btree_op op; unsigned inode; }; static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, struct bkey *k) { struct sectors_dirty_init *op = container_of(_op, struct sectors_dirty_init, op); if (KEY_INODE(k) > op->inode) return MAP_DONE; if (KEY_DIRTY(k)) bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), KEY_START(k), KEY_SIZE(k)); return MAP_CONTINUE; } void bch_sectors_dirty_init(struct bcache_device *d) { struct sectors_dirty_init op; bch_btree_op_init(&op.op, -1); op.inode = d->id; bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0), sectors_dirty_init_fn, 0); } void bch_cached_dev_writeback_init(struct cached_dev *dc) { sema_init(&dc->in_flight, 64); init_rwsem(&dc->writeback_lock); bch_keybuf_init(&dc->writeback_keys); dc->writeback_metadata = true; dc->writeback_running = true; dc->writeback_percent = 10; dc->writeback_delay = 30; dc->writeback_rate.rate = 1024; dc->writeback_rate_minimum = 8; dc->writeback_rate_update_seconds = 5; dc->writeback_rate_p_term_inverse = 40; dc->writeback_rate_i_term_inverse = 10000; INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); } int bch_cached_dev_writeback_start(struct cached_dev *dc) { dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", WQ_MEM_RECLAIM, 0); if (!dc->writeback_write_wq) return -ENOMEM; dc->writeback_thread = kthread_create(bch_writeback_thread, dc, "bcache_writeback"); if (IS_ERR(dc->writeback_thread)) return PTR_ERR(dc->writeback_thread); schedule_delayed_work(&dc->writeback_rate_update, dc->writeback_rate_update_seconds * HZ); bch_writeback_queue(dc); return 0; }