/* * pNFS functions to call and manage layout drivers. * * Copyright (c) 2002 [year of first publication] * The Regents of the University of Michigan * All Rights Reserved * * Dean Hildebrand * * Permission is granted to use, copy, create derivative works, and * redistribute this software and such derivative works for any purpose, * so long as the name of the University of Michigan is not used in * any advertising or publicity pertaining to the use or distribution * of this software without specific, written prior authorization. If * the above copyright notice or any other identification of the * University of Michigan is included in any copy of any portion of * this software, then the disclaimer below must also be included. * * This software is provided as is, without representation or warranty * of any kind either express or implied, including without limitation * the implied warranties of merchantability, fitness for a particular * purpose, or noninfringement. The Regents of the University of * Michigan shall not be liable for any damages, including special, * indirect, incidental, or consequential damages, with respect to any * claim arising out of or in connection with the use of the software, * even if it has been or is hereafter advised of the possibility of * such damages. */ #include #include #include #include "internal.h" #include "pnfs.h" #include "iostat.h" #define NFSDBG_FACILITY NFSDBG_PNFS #define PNFS_LAYOUTGET_RETRY_TIMEOUT (120*HZ) /* Locking: * * pnfs_spinlock: * protects pnfs_modules_tbl. */ static DEFINE_SPINLOCK(pnfs_spinlock); /* * pnfs_modules_tbl holds all pnfs modules */ static LIST_HEAD(pnfs_modules_tbl); /* Return the registered pnfs layout driver module matching given id */ static struct pnfs_layoutdriver_type * find_pnfs_driver_locked(u32 id) { struct pnfs_layoutdriver_type *local; list_for_each_entry(local, &pnfs_modules_tbl, pnfs_tblid) if (local->id == id) goto out; local = NULL; out: dprintk("%s: Searching for id %u, found %p\n", __func__, id, local); return local; } static struct pnfs_layoutdriver_type * find_pnfs_driver(u32 id) { struct pnfs_layoutdriver_type *local; spin_lock(&pnfs_spinlock); local = find_pnfs_driver_locked(id); if (local != NULL && !try_module_get(local->owner)) { dprintk("%s: Could not grab reference on module\n", __func__); local = NULL; } spin_unlock(&pnfs_spinlock); return local; } void unset_pnfs_layoutdriver(struct nfs_server *nfss) { if (nfss->pnfs_curr_ld) { if (nfss->pnfs_curr_ld->clear_layoutdriver) nfss->pnfs_curr_ld->clear_layoutdriver(nfss); /* Decrement the MDS count. Purge the deviceid cache if zero */ if (atomic_dec_and_test(&nfss->nfs_client->cl_mds_count)) nfs4_deviceid_purge_client(nfss->nfs_client); module_put(nfss->pnfs_curr_ld->owner); } nfss->pnfs_curr_ld = NULL; } /* * Try to set the server's pnfs module to the pnfs layout type specified by id. * Currently only one pNFS layout driver per filesystem is supported. * * @id layout type. Zero (illegal layout type) indicates pNFS not in use. */ void set_pnfs_layoutdriver(struct nfs_server *server, const struct nfs_fh *mntfh, u32 id) { struct pnfs_layoutdriver_type *ld_type = NULL; if (id == 0) goto out_no_driver; if (!(server->nfs_client->cl_exchange_flags & (EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_USE_PNFS_MDS))) { printk(KERN_ERR "NFS: %s: id %u cl_exchange_flags 0x%x\n", __func__, id, server->nfs_client->cl_exchange_flags); goto out_no_driver; } ld_type = find_pnfs_driver(id); if (!ld_type) { request_module("%s-%u", LAYOUT_NFSV4_1_MODULE_PREFIX, id); ld_type = find_pnfs_driver(id); if (!ld_type) { dprintk("%s: No pNFS module found for %u.\n", __func__, id); goto out_no_driver; } } server->pnfs_curr_ld = ld_type; if (ld_type->set_layoutdriver && ld_type->set_layoutdriver(server, mntfh)) { printk(KERN_ERR "NFS: %s: Error initializing pNFS layout " "driver %u.\n", __func__, id); module_put(ld_type->owner); goto out_no_driver; } /* Bump the MDS count */ atomic_inc(&server->nfs_client->cl_mds_count); dprintk("%s: pNFS module for %u set\n", __func__, id); return; out_no_driver: dprintk("%s: Using NFSv4 I/O\n", __func__); server->pnfs_curr_ld = NULL; } int pnfs_register_layoutdriver(struct pnfs_layoutdriver_type *ld_type) { int status = -EINVAL; struct pnfs_layoutdriver_type *tmp; if (ld_type->id == 0) { printk(KERN_ERR "NFS: %s id 0 is reserved\n", __func__); return status; } if (!ld_type->alloc_lseg || !ld_type->free_lseg) { printk(KERN_ERR "NFS: %s Layout driver must provide " "alloc_lseg and free_lseg.\n", __func__); return status; } spin_lock(&pnfs_spinlock); tmp = find_pnfs_driver_locked(ld_type->id); if (!tmp) { list_add(&ld_type->pnfs_tblid, &pnfs_modules_tbl); status = 0; dprintk("%s Registering id:%u name:%s\n", __func__, ld_type->id, ld_type->name); } else { printk(KERN_ERR "NFS: %s Module with id %d already loaded!\n", __func__, ld_type->id); } spin_unlock(&pnfs_spinlock); return status; } EXPORT_SYMBOL_GPL(pnfs_register_layoutdriver); void pnfs_unregister_layoutdriver(struct pnfs_layoutdriver_type *ld_type) { dprintk("%s Deregistering id:%u\n", __func__, ld_type->id); spin_lock(&pnfs_spinlock); list_del(&ld_type->pnfs_tblid); spin_unlock(&pnfs_spinlock); } EXPORT_SYMBOL_GPL(pnfs_unregister_layoutdriver); /* * pNFS client layout cache */ /* Need to hold i_lock if caller does not already hold reference */ void pnfs_get_layout_hdr(struct pnfs_layout_hdr *lo) { atomic_inc(&lo->plh_refcount); } static struct pnfs_layout_hdr * pnfs_alloc_layout_hdr(struct inode *ino, gfp_t gfp_flags) { struct pnfs_layoutdriver_type *ld = NFS_SERVER(ino)->pnfs_curr_ld; return ld->alloc_layout_hdr ? ld->alloc_layout_hdr(ino, gfp_flags) : kzalloc(sizeof(struct pnfs_layout_hdr), gfp_flags); } static void pnfs_free_layout_hdr(struct pnfs_layout_hdr *lo) { struct nfs_server *server = NFS_SERVER(lo->plh_inode); struct pnfs_layoutdriver_type *ld = server->pnfs_curr_ld; if (!list_empty(&lo->plh_layouts)) { struct nfs_client *clp = server->nfs_client; spin_lock(&clp->cl_lock); list_del_init(&lo->plh_layouts); spin_unlock(&clp->cl_lock); } put_rpccred(lo->plh_lc_cred); return ld->alloc_layout_hdr ? ld->free_layout_hdr(lo) : kfree(lo); } static void pnfs_detach_layout_hdr(struct pnfs_layout_hdr *lo) { struct nfs_inode *nfsi = NFS_I(lo->plh_inode); dprintk("%s: freeing layout cache %p\n", __func__, lo); nfsi->layout = NULL; /* Reset MDS Threshold I/O counters */ nfsi->write_io = 0; nfsi->read_io = 0; } void pnfs_put_layout_hdr(struct pnfs_layout_hdr *lo) { struct inode *inode = lo->plh_inode; if (atomic_dec_and_lock(&lo->plh_refcount, &inode->i_lock)) { pnfs_detach_layout_hdr(lo); spin_unlock(&inode->i_lock); pnfs_free_layout_hdr(lo); } } static int pnfs_iomode_to_fail_bit(u32 iomode) { return iomode == IOMODE_RW ? NFS_LAYOUT_RW_FAILED : NFS_LAYOUT_RO_FAILED; } static void pnfs_layout_set_fail_bit(struct pnfs_layout_hdr *lo, int fail_bit) { lo->plh_retry_timestamp = jiffies; if (test_and_set_bit(fail_bit, &lo->plh_flags)) atomic_inc(&lo->plh_refcount); } static void pnfs_layout_clear_fail_bit(struct pnfs_layout_hdr *lo, int fail_bit) { if (test_and_clear_bit(fail_bit, &lo->plh_flags)) atomic_dec(&lo->plh_refcount); } static void pnfs_layout_io_set_failed(struct pnfs_layout_hdr *lo, u32 iomode) { struct inode *inode = lo->plh_inode; struct pnfs_layout_range range = { .iomode = iomode, .offset = 0, .length = NFS4_MAX_UINT64, }; LIST_HEAD(head); spin_lock(&inode->i_lock); pnfs_layout_set_fail_bit(lo, pnfs_iomode_to_fail_bit(iomode)); pnfs_mark_matching_lsegs_invalid(lo, &head, &range); spin_unlock(&inode->i_lock); pnfs_free_lseg_list(&head); dprintk("%s Setting layout IOMODE_%s fail bit\n", __func__, iomode == IOMODE_RW ? "RW" : "READ"); } static bool pnfs_layout_io_test_failed(struct pnfs_layout_hdr *lo, u32 iomode) { unsigned long start, end; int fail_bit = pnfs_iomode_to_fail_bit(iomode); if (test_bit(fail_bit, &lo->plh_flags) == 0) return false; end = jiffies; start = end - PNFS_LAYOUTGET_RETRY_TIMEOUT; if (!time_in_range(lo->plh_retry_timestamp, start, end)) { /* It is time to retry the failed layoutgets */ pnfs_layout_clear_fail_bit(lo, fail_bit); return false; } return true; } static void init_lseg(struct pnfs_layout_hdr *lo, struct pnfs_layout_segment *lseg) { INIT_LIST_HEAD(&lseg->pls_list); INIT_LIST_HEAD(&lseg->pls_lc_list); atomic_set(&lseg->pls_refcount, 1); smp_mb(); set_bit(NFS_LSEG_VALID, &lseg->pls_flags); lseg->pls_layout = lo; } static void free_lseg(struct pnfs_layout_segment *lseg) { struct inode *ino = lseg->pls_layout->plh_inode; NFS_SERVER(ino)->pnfs_curr_ld->free_lseg(lseg); /* Matched by pnfs_get_layout_hdr in pnfs_layout_insert_lseg */ pnfs_put_layout_hdr(NFS_I(ino)->layout); } static void pnfs_layout_remove_lseg(struct pnfs_layout_hdr *lo, struct pnfs_layout_segment *lseg) { struct inode *inode = lo->plh_inode; WARN_ON(test_bit(NFS_LSEG_VALID, &lseg->pls_flags)); list_del_init(&lseg->pls_list); if (list_empty(&lo->plh_segs)) set_bit(NFS_LAYOUT_DESTROYED, &lo->plh_flags); rpc_wake_up(&NFS_SERVER(inode)->roc_rpcwaitq); } void pnfs_put_lseg(struct pnfs_layout_segment *lseg) { struct pnfs_layout_hdr *lo; struct inode *inode; if (!lseg) return; dprintk("%s: lseg %p ref %d valid %d\n", __func__, lseg, atomic_read(&lseg->pls_refcount), test_bit(NFS_LSEG_VALID, &lseg->pls_flags)); lo = lseg->pls_layout; inode = lo->plh_inode; if (atomic_dec_and_lock(&lseg->pls_refcount, &inode->i_lock)) { LIST_HEAD(free_me); pnfs_layout_remove_lseg(lo, lseg); spin_unlock(&inode->i_lock); list_add(&lseg->pls_list, &free_me); pnfs_free_lseg_list(&free_me); } } EXPORT_SYMBOL_GPL(pnfs_put_lseg); static inline u64 end_offset(u64 start, u64 len) { u64 end; end = start + len; return end >= start ? end : NFS4_MAX_UINT64; } /* last octet in a range */ static inline u64 last_byte_offset(u64 start, u64 len) { u64 end; BUG_ON(!len); end = start + len; return end > start ? end - 1 : NFS4_MAX_UINT64; } /* * is l2 fully contained in l1? * start1 end1 * [----------------------------------) * start2 end2 * [----------------) */ static inline int lo_seg_contained(struct pnfs_layout_range *l1, struct pnfs_layout_range *l2) { u64 start1 = l1->offset; u64 end1 = end_offset(start1, l1->length); u64 start2 = l2->offset; u64 end2 = end_offset(start2, l2->length); return (start1 <= start2) && (end1 >= end2); } /* * is l1 and l2 intersecting? * start1 end1 * [----------------------------------) * start2 end2 * [----------------) */ static inline int lo_seg_intersecting(struct pnfs_layout_range *l1, struct pnfs_layout_range *l2) { u64 start1 = l1->offset; u64 end1 = end_offset(start1, l1->length); u64 start2 = l2->offset; u64 end2 = end_offset(start2, l2->length); return (end1 == NFS4_MAX_UINT64 || end1 > start2) && (end2 == NFS4_MAX_UINT64 || end2 > start1); } static bool should_free_lseg(struct pnfs_layout_range *lseg_range, struct pnfs_layout_range *recall_range) { return (recall_range->iomode == IOMODE_ANY || lseg_range->iomode == recall_range->iomode) && lo_seg_intersecting(lseg_range, recall_range); } /* Returns 1 if lseg is removed from list, 0 otherwise */ static int mark_lseg_invalid(struct pnfs_layout_segment *lseg, struct list_head *tmp_list) { int rv = 0; if (test_and_clear_bit(NFS_LSEG_VALID, &lseg->pls_flags)) { /* Remove the reference keeping the lseg in the * list. It will now be removed when all * outstanding io is finished. */ dprintk("%s: lseg %p ref %d\n", __func__, lseg, atomic_read(&lseg->pls_refcount)); if (atomic_dec_and_test(&lseg->pls_refcount)) { pnfs_layout_remove_lseg(lseg->pls_layout, lseg); list_add(&lseg->pls_list, tmp_list); rv = 1; } } return rv; } /* Returns count of number of matching invalid lsegs remaining in list * after call. */ int pnfs_mark_matching_lsegs_invalid(struct pnfs_layout_hdr *lo, struct list_head *tmp_list, struct pnfs_layout_range *recall_range) { struct pnfs_layout_segment *lseg, *next; int invalid = 0, removed = 0; dprintk("%s:Begin lo %p\n", __func__, lo); if (list_empty(&lo->plh_segs)) { set_bit(NFS_LAYOUT_DESTROYED, &lo->plh_flags); return 0; } list_for_each_entry_safe(lseg, next, &lo->plh_segs, pls_list) if (!recall_range || should_free_lseg(&lseg->pls_range, recall_range)) { dprintk("%s: freeing lseg %p iomode %d " "offset %llu length %llu\n", __func__, lseg, lseg->pls_range.iomode, lseg->pls_range.offset, lseg->pls_range.length); invalid++; removed += mark_lseg_invalid(lseg, tmp_list); } dprintk("%s:Return %i\n", __func__, invalid - removed); return invalid - removed; } /* note free_me must contain lsegs from a single layout_hdr */ void pnfs_free_lseg_list(struct list_head *free_me) { struct pnfs_layout_segment *lseg, *tmp; if (list_empty(free_me)) return; list_for_each_entry_safe(lseg, tmp, free_me, pls_list) { list_del(&lseg->pls_list); free_lseg(lseg); } } void pnfs_destroy_layout(struct nfs_inode *nfsi) { struct pnfs_layout_hdr *lo; LIST_HEAD(tmp_list); spin_lock(&nfsi->vfs_inode.i_lock); lo = nfsi->layout; if (lo) { lo->plh_block_lgets++; /* permanently block new LAYOUTGETs */ pnfs_mark_matching_lsegs_invalid(lo, &tmp_list, NULL); pnfs_get_layout_hdr(lo); pnfs_layout_clear_fail_bit(lo, NFS_LAYOUT_RO_FAILED); pnfs_layout_clear_fail_bit(lo, NFS_LAYOUT_RW_FAILED); spin_unlock(&nfsi->vfs_inode.i_lock); pnfs_free_lseg_list(&tmp_list); pnfs_put_layout_hdr(lo); } else spin_unlock(&nfsi->vfs_inode.i_lock); } EXPORT_SYMBOL_GPL(pnfs_destroy_layout); /* * Called by the state manger to remove all layouts established under an * expired lease. */ void pnfs_destroy_all_layouts(struct nfs_client *clp) { struct nfs_server *server; struct pnfs_layout_hdr *lo; LIST_HEAD(tmp_list); nfs4_deviceid_mark_client_invalid(clp); nfs4_deviceid_purge_client(clp); spin_lock(&clp->cl_lock); rcu_read_lock(); list_for_each_entry_rcu(server, &clp->cl_superblocks, client_link) { if (!list_empty(&server->layouts)) list_splice_init(&server->layouts, &tmp_list); } rcu_read_unlock(); spin_unlock(&clp->cl_lock); while (!list_empty(&tmp_list)) { lo = list_entry(tmp_list.next, struct pnfs_layout_hdr, plh_layouts); dprintk("%s freeing layout for inode %lu\n", __func__, lo->plh_inode->i_ino); list_del_init(&lo->plh_layouts); pnfs_destroy_layout(NFS_I(lo->plh_inode)); } } /* update lo->plh_stateid with new if is more recent */ void pnfs_set_layout_stateid(struct pnfs_layout_hdr *lo, const nfs4_stateid *new, bool update_barrier) { u32 oldseq, newseq; oldseq = be32_to_cpu(lo->plh_stateid.seqid); newseq = be32_to_cpu(new->seqid); if ((int)(newseq - oldseq) > 0) { nfs4_stateid_copy(&lo->plh_stateid, new); if (update_barrier) { u32 new_barrier = be32_to_cpu(new->seqid); if ((int)(new_barrier - lo->plh_barrier)) lo->plh_barrier = new_barrier; } else { /* Because of wraparound, we want to keep the barrier * "close" to the current seqids. It needs to be * within 2**31 to count as "behind", so if it * gets too near that limit, give us a litle leeway * and bring it to within 2**30. * NOTE - and yes, this is all unsigned arithmetic. */ if (unlikely((newseq - lo->plh_barrier) > (3 << 29))) lo->plh_barrier = newseq - (1 << 30); } } } /* lget is set to 1 if called from inside send_layoutget call chain */ static bool pnfs_layoutgets_blocked(struct pnfs_layout_hdr *lo, nfs4_stateid *stateid, int lget) { if ((stateid) && (int)(lo->plh_barrier - be32_to_cpu(stateid->seqid)) >= 0) return true; return lo->plh_block_lgets || test_bit(NFS_LAYOUT_DESTROYED, &lo->plh_flags) || test_bit(NFS_LAYOUT_BULK_RECALL, &lo->plh_flags) || (list_empty(&lo->plh_segs) && (atomic_read(&lo->plh_outstanding) > lget)); } int pnfs_choose_layoutget_stateid(nfs4_stateid *dst, struct pnfs_layout_hdr *lo, struct nfs4_state *open_state) { int status = 0; dprintk("--> %s\n", __func__); spin_lock(&lo->plh_inode->i_lock); if (pnfs_layoutgets_blocked(lo, NULL, 1)) { status = -EAGAIN; } else if (list_empty(&lo->plh_segs)) { int seq; do { seq = read_seqbegin(&open_state->seqlock); nfs4_stateid_copy(dst, &open_state->stateid); } while (read_seqretry(&open_state->seqlock, seq)); } else nfs4_stateid_copy(dst, &lo->plh_stateid); spin_unlock(&lo->plh_inode->i_lock); dprintk("<-- %s\n", __func__); return status; } /* * Get layout from server. * for now, assume that whole file layouts are requested. * arg->offset: 0 * arg->length: all ones */ static struct pnfs_layout_segment * send_layoutget(struct pnfs_layout_hdr *lo, struct nfs_open_context *ctx, struct pnfs_layout_range *range, gfp_t gfp_flags) { struct inode *ino = lo->plh_inode; struct nfs_server *server = NFS_SERVER(ino); struct nfs4_layoutget *lgp; struct pnfs_layout_segment *lseg; dprintk("--> %s\n", __func__); BUG_ON(ctx == NULL); lgp = kzalloc(sizeof(*lgp), gfp_flags); if (lgp == NULL) return NULL; lgp->args.minlength = PAGE_CACHE_SIZE; if (lgp->args.minlength > range->length) lgp->args.minlength = range->length; lgp->args.maxcount = PNFS_LAYOUT_MAXSIZE; lgp->args.range = *range; lgp->args.type = server->pnfs_curr_ld->id; lgp->args.inode = ino; lgp->args.ctx = get_nfs_open_context(ctx); lgp->gfp_flags = gfp_flags; /* Synchronously retrieve layout information from server and * store in lseg. */ lseg = nfs4_proc_layoutget(lgp, gfp_flags); if (IS_ERR(lseg)) { switch (PTR_ERR(lseg)) { case -ENOMEM: case -ERESTARTSYS: break; default: /* remember that LAYOUTGET failed and suspend trying */ pnfs_layout_io_set_failed(lo, range->iomode); } return NULL; } return lseg; } /* * Initiates a LAYOUTRETURN(FILE), and removes the pnfs_layout_hdr * when the layout segment list is empty. * * Note that a pnfs_layout_hdr can exist with an empty layout segment * list when LAYOUTGET has failed, or when LAYOUTGET succeeded, but the * deviceid is marked invalid. */ int _pnfs_return_layout(struct inode *ino) { struct pnfs_layout_hdr *lo = NULL; struct nfs_inode *nfsi = NFS_I(ino); LIST_HEAD(tmp_list); struct nfs4_layoutreturn *lrp; nfs4_stateid stateid; int status = 0, empty; dprintk("NFS: %s for inode %lu\n", __func__, ino->i_ino); spin_lock(&ino->i_lock); lo = nfsi->layout; if (!lo || pnfs_test_layout_returned(lo)) { spin_unlock(&ino->i_lock); dprintk("NFS: %s no layout to return\n", __func__); goto out; } stateid = nfsi->layout->plh_stateid; /* Reference matched in nfs4_layoutreturn_release */ pnfs_get_layout_hdr(lo); empty = list_empty(&lo->plh_segs); pnfs_mark_matching_lsegs_invalid(lo, &tmp_list, NULL); /* Don't send a LAYOUTRETURN if list was initially empty */ if (empty) { spin_unlock(&ino->i_lock); pnfs_put_layout_hdr(lo); dprintk("NFS: %s no layout segments to return\n", __func__); goto out; } lo->plh_block_lgets++; pnfs_mark_layout_returned(lo); spin_unlock(&ino->i_lock); pnfs_free_lseg_list(&tmp_list); WARN_ON(test_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)); lrp = kzalloc(sizeof(*lrp), GFP_KERNEL); if (unlikely(lrp == NULL)) { status = -ENOMEM; pnfs_layout_io_set_failed(lo, IOMODE_RW); pnfs_layout_io_set_failed(lo, IOMODE_READ); pnfs_clear_layout_returned(lo); pnfs_put_layout_hdr(lo); goto out; } lrp->args.stateid = stateid; lrp->args.layout_type = NFS_SERVER(ino)->pnfs_curr_ld->id; lrp->args.inode = ino; lrp->args.layout = lo; lrp->clp = NFS_SERVER(ino)->nfs_client; status = nfs4_proc_layoutreturn(lrp); out: dprintk("<-- %s status: %d\n", __func__, status); return status; } EXPORT_SYMBOL_GPL(_pnfs_return_layout); bool pnfs_roc(struct inode *ino) { struct pnfs_layout_hdr *lo; struct pnfs_layout_segment *lseg, *tmp; LIST_HEAD(tmp_list); bool found = false; spin_lock(&ino->i_lock); lo = NFS_I(ino)->layout; if (!lo || !test_and_clear_bit(NFS_LAYOUT_ROC, &lo->plh_flags) || test_bit(NFS_LAYOUT_BULK_RECALL, &lo->plh_flags)) goto out_nolayout; list_for_each_entry_safe(lseg, tmp, &lo->plh_segs, pls_list) if (test_bit(NFS_LSEG_ROC, &lseg->pls_flags)) { mark_lseg_invalid(lseg, &tmp_list); found = true; } if (!found) goto out_nolayout; lo->plh_block_lgets++; pnfs_get_layout_hdr(lo); /* matched in pnfs_roc_release */ spin_unlock(&ino->i_lock); pnfs_free_lseg_list(&tmp_list); return true; out_nolayout: spin_unlock(&ino->i_lock); return false; } void pnfs_roc_release(struct inode *ino) { struct pnfs_layout_hdr *lo; spin_lock(&ino->i_lock); lo = NFS_I(ino)->layout; lo->plh_block_lgets--; if (atomic_dec_and_test(&lo->plh_refcount)) { pnfs_detach_layout_hdr(lo); spin_unlock(&ino->i_lock); pnfs_free_layout_hdr(lo); } else spin_unlock(&ino->i_lock); } void pnfs_roc_set_barrier(struct inode *ino, u32 barrier) { struct pnfs_layout_hdr *lo; spin_lock(&ino->i_lock); lo = NFS_I(ino)->layout; if ((int)(barrier - lo->plh_barrier) > 0) lo->plh_barrier = barrier; spin_unlock(&ino->i_lock); } bool pnfs_roc_drain(struct inode *ino, u32 *barrier, struct rpc_task *task) { struct nfs_inode *nfsi = NFS_I(ino); struct pnfs_layout_hdr *lo; struct pnfs_layout_segment *lseg; u32 current_seqid; bool found = false; spin_lock(&ino->i_lock); list_for_each_entry(lseg, &nfsi->layout->plh_segs, pls_list) if (test_bit(NFS_LSEG_ROC, &lseg->pls_flags)) { rpc_sleep_on(&NFS_SERVER(ino)->roc_rpcwaitq, task, NULL); found = true; goto out; } lo = nfsi->layout; current_seqid = be32_to_cpu(lo->plh_stateid.seqid); /* Since close does not return a layout stateid for use as * a barrier, we choose the worst-case barrier. */ *barrier = current_seqid + atomic_read(&lo->plh_outstanding); out: spin_unlock(&ino->i_lock); return found; } /* * Compare two layout segments for sorting into layout cache. * We want to preferentially return RW over RO layouts, so ensure those * are seen first. */ static s64 cmp_layout(struct pnfs_layout_range *l1, struct pnfs_layout_range *l2) { s64 d; /* high offset > low offset */ d = l1->offset - l2->offset; if (d) return d; /* short length > long length */ d = l2->length - l1->length; if (d) return d; /* read > read/write */ return (int)(l1->iomode == IOMODE_READ) - (int)(l2->iomode == IOMODE_READ); } static void pnfs_layout_insert_lseg(struct pnfs_layout_hdr *lo, struct pnfs_layout_segment *lseg) { struct pnfs_layout_segment *lp; dprintk("%s:Begin\n", __func__); assert_spin_locked(&lo->plh_inode->i_lock); list_for_each_entry(lp, &lo->plh_segs, pls_list) { if (cmp_layout(&lseg->pls_range, &lp->pls_range) > 0) continue; list_add_tail(&lseg->pls_list, &lp->pls_list); dprintk("%s: inserted lseg %p " "iomode %d offset %llu length %llu before " "lp %p iomode %d offset %llu length %llu\n", __func__, lseg, lseg->pls_range.iomode, lseg->pls_range.offset, lseg->pls_range.length, lp, lp->pls_range.iomode, lp->pls_range.offset, lp->pls_range.length); goto out; } list_add_tail(&lseg->pls_list, &lo->plh_segs); dprintk("%s: inserted lseg %p " "iomode %d offset %llu length %llu at tail\n", __func__, lseg, lseg->pls_range.iomode, lseg->pls_range.offset, lseg->pls_range.length); out: pnfs_get_layout_hdr(lo); dprintk("%s:Return\n", __func__); } static struct pnfs_layout_hdr * alloc_init_layout_hdr(struct inode *ino, struct nfs_open_context *ctx, gfp_t gfp_flags) { struct pnfs_layout_hdr *lo; lo = pnfs_alloc_layout_hdr(ino, gfp_flags); if (!lo) return NULL; atomic_set(&lo->plh_refcount, 1); INIT_LIST_HEAD(&lo->plh_layouts); INIT_LIST_HEAD(&lo->plh_segs); INIT_LIST_HEAD(&lo->plh_bulk_recall); lo->plh_inode = ino; lo->plh_lc_cred = get_rpccred(ctx->state->owner->so_cred); return lo; } static struct pnfs_layout_hdr * pnfs_find_alloc_layout(struct inode *ino, struct nfs_open_context *ctx, gfp_t gfp_flags) { struct nfs_inode *nfsi = NFS_I(ino); struct pnfs_layout_hdr *new = NULL; dprintk("%s Begin ino=%p layout=%p\n", __func__, ino, nfsi->layout); assert_spin_locked(&ino->i_lock); if (nfsi->layout) { if (test_bit(NFS_LAYOUT_DESTROYED, &nfsi->layout->plh_flags)) return NULL; pnfs_get_layout_hdr(nfsi->layout); return nfsi->layout; } spin_unlock(&ino->i_lock); new = alloc_init_layout_hdr(ino, ctx, gfp_flags); spin_lock(&ino->i_lock); if (likely(nfsi->layout == NULL)) /* Won the race? */ nfsi->layout = new; else pnfs_free_layout_hdr(new); return nfsi->layout; } /* * iomode matching rules: * iomode lseg match * ----- ----- ----- * ANY READ true * ANY RW true * RW READ false * RW RW true * READ READ true * READ RW true */ static int is_matching_lseg(struct pnfs_layout_range *ls_range, struct pnfs_layout_range *range) { struct pnfs_layout_range range1; if ((range->iomode == IOMODE_RW && ls_range->iomode != IOMODE_RW) || !lo_seg_intersecting(ls_range, range)) return 0; /* range1 covers only the first byte in the range */ range1 = *range; range1.length = 1; return lo_seg_contained(ls_range, &range1); } /* * lookup range in layout */ static struct pnfs_layout_segment * pnfs_find_lseg(struct pnfs_layout_hdr *lo, struct pnfs_layout_range *range) { struct pnfs_layout_segment *lseg, *ret = NULL; dprintk("%s:Begin\n", __func__); assert_spin_locked(&lo->plh_inode->i_lock); list_for_each_entry(lseg, &lo->plh_segs, pls_list) { if (test_bit(NFS_LSEG_VALID, &lseg->pls_flags) && is_matching_lseg(&lseg->pls_range, range)) { ret = pnfs_get_lseg(lseg); break; } if (lseg->pls_range.offset > range->offset) break; } dprintk("%s:Return lseg %p ref %d\n", __func__, ret, ret ? atomic_read(&ret->pls_refcount) : 0); return ret; } /* * Use mdsthreshold hints set at each OPEN to determine if I/O should go * to the MDS or over pNFS * * The nfs_inode read_io and write_io fields are cumulative counters reset * when there are no layout segments. Note that in pnfs_update_layout iomode * is set to IOMODE_READ for a READ request, and set to IOMODE_RW for a * WRITE request. * * A return of true means use MDS I/O. * * From rfc 5661: * If a file's size is smaller than the file size threshold, data accesses * SHOULD be sent to the metadata server. If an I/O request has a length that * is below the I/O size threshold, the I/O SHOULD be sent to the metadata * server. If both file size and I/O size are provided, the client SHOULD * reach or exceed both thresholds before sending its read or write * requests to the data server. */ static bool pnfs_within_mdsthreshold(struct nfs_open_context *ctx, struct inode *ino, int iomode) { struct nfs4_threshold *t = ctx->mdsthreshold; struct nfs_inode *nfsi = NFS_I(ino); loff_t fsize = i_size_read(ino); bool size = false, size_set = false, io = false, io_set = false, ret = false; if (t == NULL) return ret; dprintk("%s bm=0x%x rd_sz=%llu wr_sz=%llu rd_io=%llu wr_io=%llu\n", __func__, t->bm, t->rd_sz, t->wr_sz, t->rd_io_sz, t->wr_io_sz); switch (iomode) { case IOMODE_READ: if (t->bm & THRESHOLD_RD) { dprintk("%s fsize %llu\n", __func__, fsize); size_set = true; if (fsize < t->rd_sz) size = true; } if (t->bm & THRESHOLD_RD_IO) { dprintk("%s nfsi->read_io %llu\n", __func__, nfsi->read_io); io_set = true; if (nfsi->read_io < t->rd_io_sz) io = true; } break; case IOMODE_RW: if (t->bm & THRESHOLD_WR) { dprintk("%s fsize %llu\n", __func__, fsize); size_set = true; if (fsize < t->wr_sz) size = true; } if (t->bm & THRESHOLD_WR_IO) { dprintk("%s nfsi->write_io %llu\n", __func__, nfsi->write_io); io_set = true; if (nfsi->write_io < t->wr_io_sz) io = true; } break; } if (size_set && io_set) { if (size && io) ret = true; } else if (size || io) ret = true; dprintk("<-- %s size %d io %d ret %d\n", __func__, size, io, ret); return ret; } /* * Layout segment is retreived from the server if not cached. * The appropriate layout segment is referenced and returned to the caller. */ struct pnfs_layout_segment * pnfs_update_layout(struct inode *ino, struct nfs_open_context *ctx, loff_t pos, u64 count, enum pnfs_iomode iomode, gfp_t gfp_flags) { struct pnfs_layout_range arg = { .iomode = iomode, .offset = pos, .length = count, }; unsigned pg_offset; struct nfs_server *server = NFS_SERVER(ino); struct nfs_client *clp = server->nfs_client; struct pnfs_layout_hdr *lo; struct pnfs_layout_segment *lseg = NULL; bool first = false; if (!pnfs_enabled_sb(NFS_SERVER(ino))) goto out; if (pnfs_within_mdsthreshold(ctx, ino, iomode)) goto out; spin_lock(&ino->i_lock); lo = pnfs_find_alloc_layout(ino, ctx, gfp_flags); if (lo == NULL) { spin_unlock(&ino->i_lock); goto out; } /* Do we even need to bother with this? */ if (test_bit(NFS_LAYOUT_BULK_RECALL, &lo->plh_flags)) { dprintk("%s matches recall, use MDS\n", __func__); goto out_unlock; } /* if LAYOUTGET already failed once we don't try again */ if (pnfs_layout_io_test_failed(lo, iomode)) goto out_unlock; /* Check to see if the layout for the given range already exists */ lseg = pnfs_find_lseg(lo, &arg); if (lseg) goto out_unlock; if (pnfs_layoutgets_blocked(lo, NULL, 0)) goto out_unlock; atomic_inc(&lo->plh_outstanding); if (list_empty(&lo->plh_segs)) first = true; /* Enable LAYOUTRETURNs */ pnfs_clear_layout_returned(lo); spin_unlock(&ino->i_lock); if (first) { /* The lo must be on the clp list if there is any * chance of a CB_LAYOUTRECALL(FILE) coming in. */ spin_lock(&clp->cl_lock); BUG_ON(!list_empty(&lo->plh_layouts)); list_add_tail(&lo->plh_layouts, &server->layouts); spin_unlock(&clp->cl_lock); } pg_offset = arg.offset & ~PAGE_CACHE_MASK; if (pg_offset) { arg.offset -= pg_offset; arg.length += pg_offset; } if (arg.length != NFS4_MAX_UINT64) arg.length = PAGE_CACHE_ALIGN(arg.length); lseg = send_layoutget(lo, ctx, &arg, gfp_flags); atomic_dec(&lo->plh_outstanding); out_put_layout_hdr: pnfs_put_layout_hdr(lo); out: dprintk("%s: inode %s/%llu pNFS layout segment %s for " "(%s, offset: %llu, length: %llu)\n", __func__, ino->i_sb->s_id, (unsigned long long)NFS_FILEID(ino), lseg == NULL ? "not found" : "found", iomode==IOMODE_RW ? "read/write" : "read-only", (unsigned long long)pos, (unsigned long long)count); return lseg; out_unlock: spin_unlock(&ino->i_lock); goto out_put_layout_hdr; } EXPORT_SYMBOL_GPL(pnfs_update_layout); struct pnfs_layout_segment * pnfs_layout_process(struct nfs4_layoutget *lgp) { struct pnfs_layout_hdr *lo = NFS_I(lgp->args.inode)->layout; struct nfs4_layoutget_res *res = &lgp->res; struct pnfs_layout_segment *lseg; struct inode *ino = lo->plh_inode; int status = 0; /* Inject layout blob into I/O device driver */ lseg = NFS_SERVER(ino)->pnfs_curr_ld->alloc_lseg(lo, res, lgp->gfp_flags); if (!lseg || IS_ERR(lseg)) { if (!lseg) status = -ENOMEM; else status = PTR_ERR(lseg); dprintk("%s: Could not allocate layout: error %d\n", __func__, status); goto out; } spin_lock(&ino->i_lock); if (test_bit(NFS_LAYOUT_BULK_RECALL, &lo->plh_flags)) { dprintk("%s forget reply due to recall\n", __func__); goto out_forget_reply; } if (pnfs_layoutgets_blocked(lo, &res->stateid, 1)) { dprintk("%s forget reply due to state\n", __func__); goto out_forget_reply; } init_lseg(lo, lseg); lseg->pls_range = res->range; pnfs_get_lseg(lseg); pnfs_layout_insert_lseg(lo, lseg); if (res->return_on_close) { set_bit(NFS_LSEG_ROC, &lseg->pls_flags); set_bit(NFS_LAYOUT_ROC, &lo->plh_flags); } /* Done processing layoutget. Set the layout stateid */ pnfs_set_layout_stateid(lo, &res->stateid, false); spin_unlock(&ino->i_lock); return lseg; out: return ERR_PTR(status); out_forget_reply: spin_unlock(&ino->i_lock); lseg->pls_layout = lo; NFS_SERVER(ino)->pnfs_curr_ld->free_lseg(lseg); goto out; } void pnfs_generic_pg_init_read(struct nfs_pageio_descriptor *pgio, struct nfs_page *req) { BUG_ON(pgio->pg_lseg != NULL); if (req->wb_offset != req->wb_pgbase) { nfs_pageio_reset_read_mds(pgio); return; } pgio->pg_lseg = pnfs_update_layout(pgio->pg_inode, req->wb_context, req_offset(req), req->wb_bytes, IOMODE_READ, GFP_KERNEL); /* If no lseg, fall back to read through mds */ if (pgio->pg_lseg == NULL) nfs_pageio_reset_read_mds(pgio); } EXPORT_SYMBOL_GPL(pnfs_generic_pg_init_read); void pnfs_generic_pg_init_write(struct nfs_pageio_descriptor *pgio, struct nfs_page *req) { BUG_ON(pgio->pg_lseg != NULL); if (req->wb_offset != req->wb_pgbase) { nfs_pageio_reset_write_mds(pgio); return; } pgio->pg_lseg = pnfs_update_layout(pgio->pg_inode, req->wb_context, req_offset(req), req->wb_bytes, IOMODE_RW, GFP_NOFS); /* If no lseg, fall back to write through mds */ if (pgio->pg_lseg == NULL) nfs_pageio_reset_write_mds(pgio); } EXPORT_SYMBOL_GPL(pnfs_generic_pg_init_write); void pnfs_pageio_init_read(struct nfs_pageio_descriptor *pgio, struct inode *inode, const struct nfs_pgio_completion_ops *compl_ops) { struct nfs_server *server = NFS_SERVER(inode); struct pnfs_layoutdriver_type *ld = server->pnfs_curr_ld; if (ld == NULL) nfs_pageio_init_read(pgio, inode, compl_ops); else nfs_pageio_init(pgio, inode, ld->pg_read_ops, compl_ops, server->rsize, 0); } void pnfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, struct inode *inode, int ioflags, const struct nfs_pgio_completion_ops *compl_ops) { struct nfs_server *server = NFS_SERVER(inode); struct pnfs_layoutdriver_type *ld = server->pnfs_curr_ld; if (ld == NULL) nfs_pageio_init_write(pgio, inode, ioflags, compl_ops); else nfs_pageio_init(pgio, inode, ld->pg_write_ops, compl_ops, server->wsize, ioflags); } bool pnfs_generic_pg_test(struct nfs_pageio_descriptor *pgio, struct nfs_page *prev, struct nfs_page *req) { if (pgio->pg_lseg == NULL) return nfs_generic_pg_test(pgio, prev, req); /* * Test if a nfs_page is fully contained in the pnfs_layout_range. * Note that this test makes several assumptions: * - that the previous nfs_page in the struct nfs_pageio_descriptor * is known to lie within the range. * - that the nfs_page being tested is known to be contiguous with the * previous nfs_page. * - Layout ranges are page aligned, so we only have to test the * start offset of the request. * * Please also note that 'end_offset' is actually the offset of the * first byte that lies outside the pnfs_layout_range. FIXME? * */ return req_offset(req) < end_offset(pgio->pg_lseg->pls_range.offset, pgio->pg_lseg->pls_range.length); } EXPORT_SYMBOL_GPL(pnfs_generic_pg_test); int pnfs_write_done_resend_to_mds(struct inode *inode, struct list_head *head, const struct nfs_pgio_completion_ops *compl_ops) { struct nfs_pageio_descriptor pgio; LIST_HEAD(failed); /* Resend all requests through the MDS */ nfs_pageio_init_write(&pgio, inode, FLUSH_STABLE, compl_ops); while (!list_empty(head)) { struct nfs_page *req = nfs_list_entry(head->next); nfs_list_remove_request(req); if (!nfs_pageio_add_request(&pgio, req)) nfs_list_add_request(req, &failed); } nfs_pageio_complete(&pgio); if (!list_empty(&failed)) { /* For some reason our attempt to resend pages. Mark the * overall send request as having failed, and let * nfs_writeback_release_full deal with the error. */ list_move(&failed, head); return -EIO; } return 0; } EXPORT_SYMBOL_GPL(pnfs_write_done_resend_to_mds); static void pnfs_ld_handle_write_error(struct nfs_write_data *data) { struct nfs_pgio_header *hdr = data->header; dprintk("pnfs write error = %d\n", hdr->pnfs_error); if (NFS_SERVER(hdr->inode)->pnfs_curr_ld->flags & PNFS_LAYOUTRET_ON_ERROR) { clear_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(hdr->inode)->flags); pnfs_return_layout(hdr->inode); } if (!test_and_set_bit(NFS_IOHDR_REDO, &hdr->flags)) data->task.tk_status = pnfs_write_done_resend_to_mds(hdr->inode, &hdr->pages, hdr->completion_ops); } /* * Called by non rpc-based layout drivers */ void pnfs_ld_write_done(struct nfs_write_data *data) { struct nfs_pgio_header *hdr = data->header; if (!hdr->pnfs_error) { pnfs_set_layoutcommit(data); hdr->mds_ops->rpc_call_done(&data->task, data); } else pnfs_ld_handle_write_error(data); hdr->mds_ops->rpc_release(data); } EXPORT_SYMBOL_GPL(pnfs_ld_write_done); static void pnfs_write_through_mds(struct nfs_pageio_descriptor *desc, struct nfs_write_data *data) { struct nfs_pgio_header *hdr = data->header; if (!test_and_set_bit(NFS_IOHDR_REDO, &hdr->flags)) { list_splice_tail_init(&hdr->pages, &desc->pg_list); nfs_pageio_reset_write_mds(desc); desc->pg_recoalesce = 1; } nfs_writedata_release(data); } static enum pnfs_try_status pnfs_try_to_write_data(struct nfs_write_data *wdata, const struct rpc_call_ops *call_ops, struct pnfs_layout_segment *lseg, int how) { struct nfs_pgio_header *hdr = wdata->header; struct inode *inode = hdr->inode; enum pnfs_try_status trypnfs; struct nfs_server *nfss = NFS_SERVER(inode); hdr->mds_ops = call_ops; dprintk("%s: Writing ino:%lu %u@%llu (how %d)\n", __func__, inode->i_ino, wdata->args.count, wdata->args.offset, how); trypnfs = nfss->pnfs_curr_ld->write_pagelist(wdata, how); if (trypnfs != PNFS_NOT_ATTEMPTED) nfs_inc_stats(inode, NFSIOS_PNFS_WRITE); dprintk("%s End (trypnfs:%d)\n", __func__, trypnfs); return trypnfs; } static void pnfs_do_multiple_writes(struct nfs_pageio_descriptor *desc, struct list_head *head, int how) { struct nfs_write_data *data; const struct rpc_call_ops *call_ops = desc->pg_rpc_callops; struct pnfs_layout_segment *lseg = desc->pg_lseg; desc->pg_lseg = NULL; while (!list_empty(head)) { enum pnfs_try_status trypnfs; data = list_first_entry(head, struct nfs_write_data, list); list_del_init(&data->list); trypnfs = pnfs_try_to_write_data(data, call_ops, lseg, how); if (trypnfs == PNFS_NOT_ATTEMPTED) pnfs_write_through_mds(desc, data); } pnfs_put_lseg(lseg); } static void pnfs_writehdr_free(struct nfs_pgio_header *hdr) { pnfs_put_lseg(hdr->lseg); nfs_writehdr_free(hdr); } EXPORT_SYMBOL_GPL(pnfs_writehdr_free); int pnfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc) { struct nfs_write_header *whdr; struct nfs_pgio_header *hdr; int ret; whdr = nfs_writehdr_alloc(); if (!whdr) { desc->pg_completion_ops->error_cleanup(&desc->pg_list); pnfs_put_lseg(desc->pg_lseg); desc->pg_lseg = NULL; return -ENOMEM; } hdr = &whdr->header; nfs_pgheader_init(desc, hdr, pnfs_writehdr_free); hdr->lseg = pnfs_get_lseg(desc->pg_lseg); atomic_inc(&hdr->refcnt); ret = nfs_generic_flush(desc, hdr); if (ret != 0) { pnfs_put_lseg(desc->pg_lseg); desc->pg_lseg = NULL; } else pnfs_do_multiple_writes(desc, &hdr->rpc_list, desc->pg_ioflags); if (atomic_dec_and_test(&hdr->refcnt)) hdr->completion_ops->completion(hdr); return ret; } EXPORT_SYMBOL_GPL(pnfs_generic_pg_writepages); int pnfs_read_done_resend_to_mds(struct inode *inode, struct list_head *head, const struct nfs_pgio_completion_ops *compl_ops) { struct nfs_pageio_descriptor pgio; LIST_HEAD(failed); /* Resend all requests through the MDS */ nfs_pageio_init_read(&pgio, inode, compl_ops); while (!list_empty(head)) { struct nfs_page *req = nfs_list_entry(head->next); nfs_list_remove_request(req); if (!nfs_pageio_add_request(&pgio, req)) nfs_list_add_request(req, &failed); } nfs_pageio_complete(&pgio); if (!list_empty(&failed)) { list_move(&failed, head); return -EIO; } return 0; } EXPORT_SYMBOL_GPL(pnfs_read_done_resend_to_mds); static void pnfs_ld_handle_read_error(struct nfs_read_data *data) { struct nfs_pgio_header *hdr = data->header; dprintk("pnfs read error = %d\n", hdr->pnfs_error); if (NFS_SERVER(hdr->inode)->pnfs_curr_ld->flags & PNFS_LAYOUTRET_ON_ERROR) { clear_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(hdr->inode)->flags); pnfs_return_layout(hdr->inode); } if (!test_and_set_bit(NFS_IOHDR_REDO, &hdr->flags)) data->task.tk_status = pnfs_read_done_resend_to_mds(hdr->inode, &hdr->pages, hdr->completion_ops); } /* * Called by non rpc-based layout drivers */ void pnfs_ld_read_done(struct nfs_read_data *data) { struct nfs_pgio_header *hdr = data->header; if (likely(!hdr->pnfs_error)) { __nfs4_read_done_cb(data); hdr->mds_ops->rpc_call_done(&data->task, data); } else pnfs_ld_handle_read_error(data); hdr->mds_ops->rpc_release(data); } EXPORT_SYMBOL_GPL(pnfs_ld_read_done); static void pnfs_read_through_mds(struct nfs_pageio_descriptor *desc, struct nfs_read_data *data) { struct nfs_pgio_header *hdr = data->header; if (!test_and_set_bit(NFS_IOHDR_REDO, &hdr->flags)) { list_splice_tail_init(&hdr->pages, &desc->pg_list); nfs_pageio_reset_read_mds(desc); desc->pg_recoalesce = 1; } nfs_readdata_release(data); } /* * Call the appropriate parallel I/O subsystem read function. */ static enum pnfs_try_status pnfs_try_to_read_data(struct nfs_read_data *rdata, const struct rpc_call_ops *call_ops, struct pnfs_layout_segment *lseg) { struct nfs_pgio_header *hdr = rdata->header; struct inode *inode = hdr->inode; struct nfs_server *nfss = NFS_SERVER(inode); enum pnfs_try_status trypnfs; hdr->mds_ops = call_ops; dprintk("%s: Reading ino:%lu %u@%llu\n", __func__, inode->i_ino, rdata->args.count, rdata->args.offset); trypnfs = nfss->pnfs_curr_ld->read_pagelist(rdata); if (trypnfs != PNFS_NOT_ATTEMPTED) nfs_inc_stats(inode, NFSIOS_PNFS_READ); dprintk("%s End (trypnfs:%d)\n", __func__, trypnfs); return trypnfs; } static void pnfs_do_multiple_reads(struct nfs_pageio_descriptor *desc, struct list_head *head) { struct nfs_read_data *data; const struct rpc_call_ops *call_ops = desc->pg_rpc_callops; struct pnfs_layout_segment *lseg = desc->pg_lseg; desc->pg_lseg = NULL; while (!list_empty(head)) { enum pnfs_try_status trypnfs; data = list_first_entry(head, struct nfs_read_data, list); list_del_init(&data->list); trypnfs = pnfs_try_to_read_data(data, call_ops, lseg); if (trypnfs == PNFS_NOT_ATTEMPTED) pnfs_read_through_mds(desc, data); } pnfs_put_lseg(lseg); } static void pnfs_readhdr_free(struct nfs_pgio_header *hdr) { pnfs_put_lseg(hdr->lseg); nfs_readhdr_free(hdr); } EXPORT_SYMBOL_GPL(pnfs_readhdr_free); int pnfs_generic_pg_readpages(struct nfs_pageio_descriptor *desc) { struct nfs_read_header *rhdr; struct nfs_pgio_header *hdr; int ret; rhdr = nfs_readhdr_alloc(); if (!rhdr) { desc->pg_completion_ops->error_cleanup(&desc->pg_list); ret = -ENOMEM; pnfs_put_lseg(desc->pg_lseg); desc->pg_lseg = NULL; return ret; } hdr = &rhdr->header; nfs_pgheader_init(desc, hdr, pnfs_readhdr_free); hdr->lseg = pnfs_get_lseg(desc->pg_lseg); atomic_inc(&hdr->refcnt); ret = nfs_generic_pagein(desc, hdr); if (ret != 0) { pnfs_put_lseg(desc->pg_lseg); desc->pg_lseg = NULL; } else pnfs_do_multiple_reads(desc, &hdr->rpc_list); if (atomic_dec_and_test(&hdr->refcnt)) hdr->completion_ops->completion(hdr); return ret; } EXPORT_SYMBOL_GPL(pnfs_generic_pg_readpages); /* * There can be multiple RW segments. */ static void pnfs_list_write_lseg(struct inode *inode, struct list_head *listp) { struct pnfs_layout_segment *lseg; list_for_each_entry(lseg, &NFS_I(inode)->layout->plh_segs, pls_list) { if (lseg->pls_range.iomode == IOMODE_RW && test_bit(NFS_LSEG_LAYOUTCOMMIT, &lseg->pls_flags)) list_add(&lseg->pls_lc_list, listp); } } void pnfs_set_lo_fail(struct pnfs_layout_segment *lseg) { pnfs_layout_io_set_failed(lseg->pls_layout, lseg->pls_range.iomode); } EXPORT_SYMBOL_GPL(pnfs_set_lo_fail); void pnfs_set_layoutcommit(struct nfs_write_data *wdata) { struct nfs_pgio_header *hdr = wdata->header; struct inode *inode = hdr->inode; struct nfs_inode *nfsi = NFS_I(inode); loff_t end_pos = wdata->mds_offset + wdata->res.count; bool mark_as_dirty = false; spin_lock(&inode->i_lock); if (!test_and_set_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)) { mark_as_dirty = true; dprintk("%s: Set layoutcommit for inode %lu ", __func__, inode->i_ino); } if (!test_and_set_bit(NFS_LSEG_LAYOUTCOMMIT, &hdr->lseg->pls_flags)) { /* references matched in nfs4_layoutcommit_release */ pnfs_get_lseg(hdr->lseg); } if (end_pos > nfsi->layout->plh_lwb) nfsi->layout->plh_lwb = end_pos; spin_unlock(&inode->i_lock); dprintk("%s: lseg %p end_pos %llu\n", __func__, hdr->lseg, nfsi->layout->plh_lwb); /* if pnfs_layoutcommit_inode() runs between inode locks, the next one * will be a noop because NFS_INO_LAYOUTCOMMIT will not be set */ if (mark_as_dirty) mark_inode_dirty_sync(inode); } EXPORT_SYMBOL_GPL(pnfs_set_layoutcommit); void pnfs_cleanup_layoutcommit(struct nfs4_layoutcommit_data *data) { struct nfs_server *nfss = NFS_SERVER(data->args.inode); if (nfss->pnfs_curr_ld->cleanup_layoutcommit) nfss->pnfs_curr_ld->cleanup_layoutcommit(data); } /* * For the LAYOUT4_NFSV4_1_FILES layout type, NFS_DATA_SYNC WRITEs and * NFS_UNSTABLE WRITEs with a COMMIT to data servers must store enough * data to disk to allow the server to recover the data if it crashes. * LAYOUTCOMMIT is only needed when the NFL4_UFLG_COMMIT_THRU_MDS flag * is off, and a COMMIT is sent to a data server, or * if WRITEs to a data server return NFS_DATA_SYNC. */ int pnfs_layoutcommit_inode(struct inode *inode, bool sync) { struct nfs4_layoutcommit_data *data; struct nfs_inode *nfsi = NFS_I(inode); loff_t end_pos; int status = 0; dprintk("--> %s inode %lu\n", __func__, inode->i_ino); if (!test_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)) return 0; /* Note kzalloc ensures data->res.seq_res.sr_slot == NULL */ data = kzalloc(sizeof(*data), GFP_NOFS); if (!data) { status = -ENOMEM; goto out; } if (!test_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)) goto out_free; if (test_and_set_bit(NFS_INO_LAYOUTCOMMITTING, &nfsi->flags)) { if (!sync) { status = -EAGAIN; goto out_free; } status = wait_on_bit_lock(&nfsi->flags, NFS_INO_LAYOUTCOMMITTING, nfs_wait_bit_killable, TASK_KILLABLE); if (status) goto out_free; } INIT_LIST_HEAD(&data->lseg_list); spin_lock(&inode->i_lock); if (!test_and_clear_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)) { clear_bit(NFS_INO_LAYOUTCOMMITTING, &nfsi->flags); spin_unlock(&inode->i_lock); wake_up_bit(&nfsi->flags, NFS_INO_LAYOUTCOMMITTING); goto out_free; } pnfs_list_write_lseg(inode, &data->lseg_list); end_pos = nfsi->layout->plh_lwb; nfsi->layout->plh_lwb = 0; nfs4_stateid_copy(&data->args.stateid, &nfsi->layout->plh_stateid); spin_unlock(&inode->i_lock); data->args.inode = inode; data->cred = get_rpccred(nfsi->layout->plh_lc_cred); nfs_fattr_init(&data->fattr); data->args.bitmask = NFS_SERVER(inode)->cache_consistency_bitmask; data->res.fattr = &data->fattr; data->args.lastbytewritten = end_pos - 1; data->res.server = NFS_SERVER(inode); status = nfs4_proc_layoutcommit(data, sync); out: if (status) mark_inode_dirty_sync(inode); dprintk("<-- %s status %d\n", __func__, status); return status; out_free: kfree(data); goto out; } struct nfs4_threshold *pnfs_mdsthreshold_alloc(void) { struct nfs4_threshold *thp; thp = kzalloc(sizeof(*thp), GFP_NOFS); if (!thp) { dprintk("%s mdsthreshold allocation failed\n", __func__); return NULL; } return thp; }