/* * Copyright(c) 2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include <linux/radix-tree.h> #include <linux/device.h> #include <linux/types.h> #include <linux/pfn_t.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/memory_hotplug.h> #include <linux/swap.h> #include <linux/swapops.h> #ifndef ioremap_cache /* temporary while we convert existing ioremap_cache users to memremap */ __weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size) { return ioremap(offset, size); } #endif #ifndef arch_memremap_wb static void *arch_memremap_wb(resource_size_t offset, unsigned long size) { return (__force void *)ioremap_cache(offset, size); } #endif #ifndef arch_memremap_can_ram_remap static bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size, unsigned long flags) { return true; } #endif static void *try_ram_remap(resource_size_t offset, size_t size, unsigned long flags) { unsigned long pfn = PHYS_PFN(offset); /* In the simple case just return the existing linear address */ if (pfn_valid(pfn) && !PageHighMem(pfn_to_page(pfn)) && arch_memremap_can_ram_remap(offset, size, flags)) return __va(offset); return NULL; /* fallback to arch_memremap_wb */ } /** * memremap() - remap an iomem_resource as cacheable memory * @offset: iomem resource start address * @size: size of remap * @flags: any of MEMREMAP_WB, MEMREMAP_WT, MEMREMAP_WC, * MEMREMAP_ENC, MEMREMAP_DEC * * memremap() is "ioremap" for cases where it is known that the resource * being mapped does not have i/o side effects and the __iomem * annotation is not applicable. In the case of multiple flags, the different * mapping types will be attempted in the order listed below until one of * them succeeds. * * MEMREMAP_WB - matches the default mapping for System RAM on * the architecture. This is usually a read-allocate write-back cache. * Morever, if MEMREMAP_WB is specified and the requested remap region is RAM * memremap() will bypass establishing a new mapping and instead return * a pointer into the direct map. * * MEMREMAP_WT - establish a mapping whereby writes either bypass the * cache or are written through to memory and never exist in a * cache-dirty state with respect to program visibility. Attempts to * map System RAM with this mapping type will fail. * * MEMREMAP_WC - establish a writecombine mapping, whereby writes may * be coalesced together (e.g. in the CPU's write buffers), but is otherwise * uncached. Attempts to map System RAM with this mapping type will fail. */ void *memremap(resource_size_t offset, size_t size, unsigned long flags) { int is_ram = region_intersects(offset, size, IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); void *addr = NULL; if (!flags) return NULL; if (is_ram == REGION_MIXED) { WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n", &offset, (unsigned long) size); return NULL; } /* Try all mapping types requested until one returns non-NULL */ if (flags & MEMREMAP_WB) { /* * MEMREMAP_WB is special in that it can be satisifed * from the direct map. Some archs depend on the * capability of memremap() to autodetect cases where * the requested range is potentially in System RAM. */ if (is_ram == REGION_INTERSECTS) addr = try_ram_remap(offset, size, flags); if (!addr) addr = arch_memremap_wb(offset, size); } /* * If we don't have a mapping yet and other request flags are * present then we will be attempting to establish a new virtual * address mapping. Enforce that this mapping is not aliasing * System RAM. */ if (!addr && is_ram == REGION_INTERSECTS && flags != MEMREMAP_WB) { WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n", &offset, (unsigned long) size); return NULL; } if (!addr && (flags & MEMREMAP_WT)) addr = ioremap_wt(offset, size); if (!addr && (flags & MEMREMAP_WC)) addr = ioremap_wc(offset, size); return addr; } EXPORT_SYMBOL(memremap); void memunmap(void *addr) { if (is_vmalloc_addr(addr)) iounmap((void __iomem *) addr); } EXPORT_SYMBOL(memunmap); static void devm_memremap_release(struct device *dev, void *res) { memunmap(*(void **)res); } static int devm_memremap_match(struct device *dev, void *res, void *match_data) { return *(void **)res == match_data; } void *devm_memremap(struct device *dev, resource_size_t offset, size_t size, unsigned long flags) { void **ptr, *addr; ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL, dev_to_node(dev)); if (!ptr) return ERR_PTR(-ENOMEM); addr = memremap(offset, size, flags); if (addr) { *ptr = addr; devres_add(dev, ptr); } else { devres_free(ptr); return ERR_PTR(-ENXIO); } return addr; } EXPORT_SYMBOL(devm_memremap); void devm_memunmap(struct device *dev, void *addr) { WARN_ON(devres_release(dev, devm_memremap_release, devm_memremap_match, addr)); } EXPORT_SYMBOL(devm_memunmap); #ifdef CONFIG_ZONE_DEVICE static DEFINE_MUTEX(pgmap_lock); static RADIX_TREE(pgmap_radix, GFP_KERNEL); #define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1) #define SECTION_SIZE (1UL << PA_SECTION_SHIFT) static unsigned long order_at(struct resource *res, unsigned long pgoff) { unsigned long phys_pgoff = PHYS_PFN(res->start) + pgoff; unsigned long nr_pages, mask; nr_pages = PHYS_PFN(resource_size(res)); if (nr_pages == pgoff) return ULONG_MAX; /* * What is the largest aligned power-of-2 range available from * this resource pgoff to the end of the resource range, * considering the alignment of the current pgoff? */ mask = phys_pgoff | rounddown_pow_of_two(nr_pages - pgoff); if (!mask) return ULONG_MAX; return find_first_bit(&mask, BITS_PER_LONG); } #define foreach_order_pgoff(res, order, pgoff) \ for (pgoff = 0, order = order_at((res), pgoff); order < ULONG_MAX; \ pgoff += 1UL << order, order = order_at((res), pgoff)) #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) int device_private_entry_fault(struct vm_area_struct *vma, unsigned long addr, swp_entry_t entry, unsigned int flags, pmd_t *pmdp) { struct page *page = device_private_entry_to_page(entry); /* * The page_fault() callback must migrate page back to system memory * so that CPU can access it. This might fail for various reasons * (device issue, device was unsafely unplugged, ...). When such * error conditions happen, the callback must return VM_FAULT_SIGBUS. * * Note that because memory cgroup charges are accounted to the device * memory, this should never fail because of memory restrictions (but * allocation of regular system page might still fail because we are * out of memory). * * There is a more in-depth description of what that callback can and * cannot do, in include/linux/memremap.h */ return page->pgmap->page_fault(vma, addr, page, flags, pmdp); } EXPORT_SYMBOL(device_private_entry_fault); #endif /* CONFIG_DEVICE_PRIVATE */ static void pgmap_radix_release(struct resource *res, unsigned long end_pgoff) { unsigned long pgoff, order; mutex_lock(&pgmap_lock); foreach_order_pgoff(res, order, pgoff) { if (pgoff >= end_pgoff) break; radix_tree_delete(&pgmap_radix, PHYS_PFN(res->start) + pgoff); } mutex_unlock(&pgmap_lock); synchronize_rcu(); } static unsigned long pfn_first(struct dev_pagemap *pgmap) { const struct resource *res = &pgmap->res; struct vmem_altmap *altmap = &pgmap->altmap; unsigned long pfn; pfn = res->start >> PAGE_SHIFT; if (pgmap->altmap_valid) pfn += vmem_altmap_offset(altmap); return pfn; } static unsigned long pfn_end(struct dev_pagemap *pgmap) { const struct resource *res = &pgmap->res; return (res->start + resource_size(res)) >> PAGE_SHIFT; } static unsigned long pfn_next(unsigned long pfn) { if (pfn % 1024 == 0) cond_resched(); return pfn + 1; } #define for_each_device_pfn(pfn, map) \ for (pfn = pfn_first(map); pfn < pfn_end(map); pfn = pfn_next(pfn)) static void devm_memremap_pages_release(void *data) { struct dev_pagemap *pgmap = data; struct device *dev = pgmap->dev; struct resource *res = &pgmap->res; resource_size_t align_start, align_size; unsigned long pfn; for_each_device_pfn(pfn, pgmap) put_page(pfn_to_page(pfn)); if (percpu_ref_tryget_live(pgmap->ref)) { dev_WARN(dev, "%s: page mapping is still live!\n", __func__); percpu_ref_put(pgmap->ref); } /* pages are dead and unused, undo the arch mapping */ align_start = res->start & ~(SECTION_SIZE - 1); align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE) - align_start; mem_hotplug_begin(); arch_remove_memory(align_start, align_size, pgmap->altmap_valid ? &pgmap->altmap : NULL); mem_hotplug_done(); untrack_pfn(NULL, PHYS_PFN(align_start), align_size); pgmap_radix_release(res, -1); dev_WARN_ONCE(dev, pgmap->altmap.alloc, "%s: failed to free all reserved pages\n", __func__); } /** * devm_memremap_pages - remap and provide memmap backing for the given resource * @dev: hosting device for @res * @pgmap: pointer to a struct dev_pgmap * * Notes: * 1/ At a minimum the res, ref and type members of @pgmap must be initialized * by the caller before passing it to this function * * 2/ The altmap field may optionally be initialized, in which case altmap_valid * must be set to true * * 3/ pgmap.ref must be 'live' on entry and 'dead' before devm_memunmap_pages() * time (or devm release event). The expected order of events is that ref has * been through percpu_ref_kill() before devm_memremap_pages_release(). The * wait for the completion of all references being dropped and * percpu_ref_exit() must occur after devm_memremap_pages_release(). * * 4/ res is expected to be a host memory range that could feasibly be * treated as a "System RAM" range, i.e. not a device mmio range, but * this is not enforced. */ void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) { resource_size_t align_start, align_size, align_end; struct vmem_altmap *altmap = pgmap->altmap_valid ? &pgmap->altmap : NULL; struct resource *res = &pgmap->res; unsigned long pfn, pgoff, order; pgprot_t pgprot = PAGE_KERNEL; int error, nid, is_ram; align_start = res->start & ~(SECTION_SIZE - 1); align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE) - align_start; is_ram = region_intersects(align_start, align_size, IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); if (is_ram == REGION_MIXED) { WARN_ONCE(1, "%s attempted on mixed region %pr\n", __func__, res); return ERR_PTR(-ENXIO); } if (is_ram == REGION_INTERSECTS) return __va(res->start); if (!pgmap->ref) return ERR_PTR(-EINVAL); pgmap->dev = dev; mutex_lock(&pgmap_lock); error = 0; align_end = align_start + align_size - 1; foreach_order_pgoff(res, order, pgoff) { error = __radix_tree_insert(&pgmap_radix, PHYS_PFN(res->start) + pgoff, order, pgmap); if (error) { dev_err(dev, "%s: failed: %d\n", __func__, error); break; } } mutex_unlock(&pgmap_lock); if (error) goto err_radix; nid = dev_to_node(dev); if (nid < 0) nid = numa_mem_id(); error = track_pfn_remap(NULL, &pgprot, PHYS_PFN(align_start), 0, align_size); if (error) goto err_pfn_remap; mem_hotplug_begin(); error = arch_add_memory(nid, align_start, align_size, altmap, false); if (!error) move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], align_start >> PAGE_SHIFT, align_size >> PAGE_SHIFT, altmap); mem_hotplug_done(); if (error) goto err_add_memory; for_each_device_pfn(pfn, pgmap) { struct page *page = pfn_to_page(pfn); /* * ZONE_DEVICE pages union ->lru with a ->pgmap back * pointer. It is a bug if a ZONE_DEVICE page is ever * freed or placed on a driver-private list. Seed the * storage with LIST_POISON* values. */ list_del(&page->lru); page->pgmap = pgmap; percpu_ref_get(pgmap->ref); } devm_add_action(dev, devm_memremap_pages_release, pgmap); return __va(res->start); err_add_memory: untrack_pfn(NULL, PHYS_PFN(align_start), align_size); err_pfn_remap: err_radix: pgmap_radix_release(res, pgoff); return ERR_PTR(error); } EXPORT_SYMBOL(devm_memremap_pages); unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) { /* number of pfns from base where pfn_to_page() is valid */ return altmap->reserve + altmap->free; } void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns) { altmap->alloc -= nr_pfns; } /** * get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn * @pfn: page frame number to lookup page_map * @pgmap: optional known pgmap that already has a reference * * If @pgmap is non-NULL and covers @pfn it will be returned as-is. If @pgmap * is non-NULL but does not cover @pfn the reference to it will be released. */ struct dev_pagemap *get_dev_pagemap(unsigned long pfn, struct dev_pagemap *pgmap) { resource_size_t phys = PFN_PHYS(pfn); /* * In the cached case we're already holding a live reference. */ if (pgmap) { if (phys >= pgmap->res.start && phys <= pgmap->res.end) return pgmap; put_dev_pagemap(pgmap); } /* fall back to slow path lookup */ rcu_read_lock(); pgmap = radix_tree_lookup(&pgmap_radix, PHYS_PFN(phys)); if (pgmap && !percpu_ref_tryget_live(pgmap->ref)) pgmap = NULL; rcu_read_unlock(); return pgmap; } #endif /* CONFIG_ZONE_DEVICE */ #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC) void put_zone_device_private_or_public_page(struct page *page) { int count = page_ref_dec_return(page); /* * If refcount is 1 then page is freed and refcount is stable as nobody * holds a reference on the page. */ if (count == 1) { /* Clear Active bit in case of parallel mark_page_accessed */ __ClearPageActive(page); __ClearPageWaiters(page); page->mapping = NULL; mem_cgroup_uncharge(page); page->pgmap->page_free(page, page->pgmap->data); } else if (!count) __put_page(page); } EXPORT_SYMBOL(put_zone_device_private_or_public_page); #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */