/* * UEFI Common Platform Error Record (CPER) support * * Copyright (C) 2010, Intel Corp. * Author: Huang Ying * * CPER is the format used to describe platform hardware error by * various APEI tables, such as ERST, BERT and HEST etc. * * For more information about CPER, please refer to Appendix N of UEFI * Specification version 2.3. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include /* * CPER record ID need to be unique even after reboot, because record * ID is used as index for ERST storage, while CPER records from * multiple boot may co-exist in ERST. */ u64 cper_next_record_id(void) { static atomic64_t seq; if (!atomic64_read(&seq)) atomic64_set(&seq, ((u64)get_seconds()) << 32); return atomic64_inc_return(&seq); } EXPORT_SYMBOL_GPL(cper_next_record_id); static const char *cper_severity_strs[] = { "recoverable", "fatal", "corrected", "info", }; static const char *cper_severity_str(unsigned int severity) { return severity < ARRAY_SIZE(cper_severity_strs) ? cper_severity_strs[severity] : "unknown"; } /* * cper_print_bits - print strings for set bits * @pfx: prefix for each line, including log level and prefix string * @bits: bit mask * @strs: string array, indexed by bit position * @strs_size: size of the string array: @strs * * For each set bit in @bits, print the corresponding string in @strs. * If the output length is longer than 80, multiple line will be * printed, with @pfx is printed at the beginning of each line. */ void cper_print_bits(const char *pfx, unsigned int bits, const char *strs[], unsigned int strs_size) { int i, len = 0; const char *str; char buf[84]; for (i = 0; i < strs_size; i++) { if (!(bits & (1U << i))) continue; str = strs[i]; if (!str) continue; if (len && len + strlen(str) + 2 > 80) { printk("%s\n", buf); len = 0; } if (!len) len = snprintf(buf, sizeof(buf), "%s%s", pfx, str); else len += snprintf(buf+len, sizeof(buf)-len, ", %s", str); } if (len) printk("%s\n", buf); } static const char *cper_proc_type_strs[] = { "IA32/X64", "IA64", }; static const char *cper_proc_isa_strs[] = { "IA32", "IA64", "X64", }; static const char *cper_proc_error_type_strs[] = { "cache error", "TLB error", "bus error", "micro-architectural error", }; static const char *cper_proc_op_strs[] = { "unknown or generic", "data read", "data write", "instruction execution", }; static const char *cper_proc_flag_strs[] = { "restartable", "precise IP", "overflow", "corrected", }; static void cper_print_proc_generic(const char *pfx, const struct cper_sec_proc_generic *proc) { if (proc->validation_bits & CPER_PROC_VALID_TYPE) printk("%s""processor_type: %d, %s\n", pfx, proc->proc_type, proc->proc_type < ARRAY_SIZE(cper_proc_type_strs) ? cper_proc_type_strs[proc->proc_type] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_ISA) printk("%s""processor_isa: %d, %s\n", pfx, proc->proc_isa, proc->proc_isa < ARRAY_SIZE(cper_proc_isa_strs) ? cper_proc_isa_strs[proc->proc_isa] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_ERROR_TYPE) { printk("%s""error_type: 0x%02x\n", pfx, proc->proc_error_type); cper_print_bits(pfx, proc->proc_error_type, cper_proc_error_type_strs, ARRAY_SIZE(cper_proc_error_type_strs)); } if (proc->validation_bits & CPER_PROC_VALID_OPERATION) printk("%s""operation: %d, %s\n", pfx, proc->operation, proc->operation < ARRAY_SIZE(cper_proc_op_strs) ? cper_proc_op_strs[proc->operation] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_FLAGS) { printk("%s""flags: 0x%02x\n", pfx, proc->flags); cper_print_bits(pfx, proc->flags, cper_proc_flag_strs, ARRAY_SIZE(cper_proc_flag_strs)); } if (proc->validation_bits & CPER_PROC_VALID_LEVEL) printk("%s""level: %d\n", pfx, proc->level); if (proc->validation_bits & CPER_PROC_VALID_VERSION) printk("%s""version_info: 0x%016llx\n", pfx, proc->cpu_version); if (proc->validation_bits & CPER_PROC_VALID_ID) printk("%s""processor_id: 0x%016llx\n", pfx, proc->proc_id); if (proc->validation_bits & CPER_PROC_VALID_TARGET_ADDRESS) printk("%s""target_address: 0x%016llx\n", pfx, proc->target_addr); if (proc->validation_bits & CPER_PROC_VALID_REQUESTOR_ID) printk("%s""requestor_id: 0x%016llx\n", pfx, proc->requestor_id); if (proc->validation_bits & CPER_PROC_VALID_RESPONDER_ID) printk("%s""responder_id: 0x%016llx\n", pfx, proc->responder_id); if (proc->validation_bits & CPER_PROC_VALID_IP) printk("%s""IP: 0x%016llx\n", pfx, proc->ip); } static const char *cper_mem_err_type_strs[] = { "unknown", "no error", "single-bit ECC", "multi-bit ECC", "single-symbol chipkill ECC", "multi-symbol chipkill ECC", "master abort", "target abort", "parity error", "watchdog timeout", "invalid address", "mirror Broken", "memory sparing", "scrub corrected error", "scrub uncorrected error", }; static void cper_print_mem(const char *pfx, const struct cper_sec_mem_err *mem) { if (mem->validation_bits & CPER_MEM_VALID_ERROR_STATUS) printk("%s""error_status: 0x%016llx\n", pfx, mem->error_status); if (mem->validation_bits & CPER_MEM_VALID_PHYSICAL_ADDRESS) printk("%s""physical_address: 0x%016llx\n", pfx, mem->physical_addr); if (mem->validation_bits & CPER_MEM_VALID_PHYSICAL_ADDRESS_MASK) printk("%s""physical_address_mask: 0x%016llx\n", pfx, mem->physical_addr_mask); if (mem->validation_bits & CPER_MEM_VALID_NODE) printk("%s""node: %d\n", pfx, mem->node); if (mem->validation_bits & CPER_MEM_VALID_CARD) printk("%s""card: %d\n", pfx, mem->card); if (mem->validation_bits & CPER_MEM_VALID_MODULE) printk("%s""module: %d\n", pfx, mem->module); if (mem->validation_bits & CPER_MEM_VALID_BANK) printk("%s""bank: %d\n", pfx, mem->bank); if (mem->validation_bits & CPER_MEM_VALID_DEVICE) printk("%s""device: %d\n", pfx, mem->device); if (mem->validation_bits & CPER_MEM_VALID_ROW) printk("%s""row: %d\n", pfx, mem->row); if (mem->validation_bits & CPER_MEM_VALID_COLUMN) printk("%s""column: %d\n", pfx, mem->column); if (mem->validation_bits & CPER_MEM_VALID_BIT_POSITION) printk("%s""bit_position: %d\n", pfx, mem->bit_pos); if (mem->validation_bits & CPER_MEM_VALID_REQUESTOR_ID) printk("%s""requestor_id: 0x%016llx\n", pfx, mem->requestor_id); if (mem->validation_bits & CPER_MEM_VALID_RESPONDER_ID) printk("%s""responder_id: 0x%016llx\n", pfx, mem->responder_id); if (mem->validation_bits & CPER_MEM_VALID_TARGET_ID) printk("%s""target_id: 0x%016llx\n", pfx, mem->target_id); if (mem->validation_bits & CPER_MEM_VALID_ERROR_TYPE) { u8 etype = mem->error_type; printk("%s""error_type: %d, %s\n", pfx, etype, etype < ARRAY_SIZE(cper_mem_err_type_strs) ? cper_mem_err_type_strs[etype] : "unknown"); } } static const char *cper_pcie_port_type_strs[] = { "PCIe end point", "legacy PCI end point", "unknown", "unknown", "root port", "upstream switch port", "downstream switch port", "PCIe to PCI/PCI-X bridge", "PCI/PCI-X to PCIe bridge", "root complex integrated endpoint device", "root complex event collector", }; static void cper_print_pcie(const char *pfx, const struct cper_sec_pcie *pcie, const struct acpi_hest_generic_data *gdata) { if (pcie->validation_bits & CPER_PCIE_VALID_PORT_TYPE) printk("%s""port_type: %d, %s\n", pfx, pcie->port_type, pcie->port_type < ARRAY_SIZE(cper_pcie_port_type_strs) ? cper_pcie_port_type_strs[pcie->port_type] : "unknown"); if (pcie->validation_bits & CPER_PCIE_VALID_VERSION) printk("%s""version: %d.%d\n", pfx, pcie->version.major, pcie->version.minor); if (pcie->validation_bits & CPER_PCIE_VALID_COMMAND_STATUS) printk("%s""command: 0x%04x, status: 0x%04x\n", pfx, pcie->command, pcie->status); if (pcie->validation_bits & CPER_PCIE_VALID_DEVICE_ID) { const __u8 *p; printk("%s""device_id: %04x:%02x:%02x.%x\n", pfx, pcie->device_id.segment, pcie->device_id.bus, pcie->device_id.device, pcie->device_id.function); printk("%s""slot: %d\n", pfx, pcie->device_id.slot >> CPER_PCIE_SLOT_SHIFT); printk("%s""secondary_bus: 0x%02x\n", pfx, pcie->device_id.secondary_bus); printk("%s""vendor_id: 0x%04x, device_id: 0x%04x\n", pfx, pcie->device_id.vendor_id, pcie->device_id.device_id); p = pcie->device_id.class_code; printk("%s""class_code: %02x%02x%02x\n", pfx, p[0], p[1], p[2]); } if (pcie->validation_bits & CPER_PCIE_VALID_SERIAL_NUMBER) printk("%s""serial number: 0x%04x, 0x%04x\n", pfx, pcie->serial_number.lower, pcie->serial_number.upper); if (pcie->validation_bits & CPER_PCIE_VALID_BRIDGE_CONTROL_STATUS) printk( "%s""bridge: secondary_status: 0x%04x, control: 0x%04x\n", pfx, pcie->bridge.secondary_status, pcie->bridge.control); } static const char *apei_estatus_section_flag_strs[] = { "primary", "containment warning", "reset", "threshold exceeded", "resource not accessible", "latent error", }; static void apei_estatus_print_section( const char *pfx, const struct acpi_hest_generic_data *gdata, int sec_no) { uuid_le *sec_type = (uuid_le *)gdata->section_type; __u16 severity; severity = gdata->error_severity; printk("%s""section: %d, severity: %d, %s\n", pfx, sec_no, severity, cper_severity_str(severity)); printk("%s""flags: 0x%02x\n", pfx, gdata->flags); cper_print_bits(pfx, gdata->flags, apei_estatus_section_flag_strs, ARRAY_SIZE(apei_estatus_section_flag_strs)); if (gdata->validation_bits & CPER_SEC_VALID_FRU_ID) printk("%s""fru_id: %pUl\n", pfx, (uuid_le *)gdata->fru_id); if (gdata->validation_bits & CPER_SEC_VALID_FRU_TEXT) printk("%s""fru_text: %.20s\n", pfx, gdata->fru_text); if (!uuid_le_cmp(*sec_type, CPER_SEC_PROC_GENERIC)) { struct cper_sec_proc_generic *proc_err = (void *)(gdata + 1); printk("%s""section_type: general processor error\n", pfx); if (gdata->error_data_length >= sizeof(*proc_err)) cper_print_proc_generic(pfx, proc_err); else goto err_section_too_small; } else if (!uuid_le_cmp(*sec_type, CPER_SEC_PLATFORM_MEM)) { struct cper_sec_mem_err *mem_err = (void *)(gdata + 1); printk("%s""section_type: memory error\n", pfx); if (gdata->error_data_length >= sizeof(*mem_err)) cper_print_mem(pfx, mem_err); else goto err_section_too_small; } else if (!uuid_le_cmp(*sec_type, CPER_SEC_PCIE)) { struct cper_sec_pcie *pcie = (void *)(gdata + 1); printk("%s""section_type: PCIe error\n", pfx); if (gdata->error_data_length >= sizeof(*pcie)) cper_print_pcie(pfx, pcie, gdata); else goto err_section_too_small; } else printk("%s""section type: unknown, %pUl\n", pfx, sec_type); return; err_section_too_small: pr_err(FW_WARN "error section length is too small\n"); } void apei_estatus_print(const char *pfx, const struct acpi_hest_generic_status *estatus) { struct acpi_hest_generic_data *gdata; unsigned int data_len, gedata_len; int sec_no = 0; __u16 severity; printk("%s""APEI generic hardware error status\n", pfx); severity = estatus->error_severity; printk("%s""severity: %d, %s\n", pfx, severity, cper_severity_str(severity)); data_len = estatus->data_length; gdata = (struct acpi_hest_generic_data *)(estatus + 1); while (data_len >= sizeof(*gdata)) { gedata_len = gdata->error_data_length; apei_estatus_print_section(pfx, gdata, sec_no); data_len -= gedata_len + sizeof(*gdata); gdata = (void *)(gdata + 1) + gedata_len; sec_no++; } } EXPORT_SYMBOL_GPL(apei_estatus_print); int apei_estatus_check_header(const struct acpi_hest_generic_status *estatus) { if (estatus->data_length && estatus->data_length < sizeof(struct acpi_hest_generic_data)) return -EINVAL; if (estatus->raw_data_length && estatus->raw_data_offset < sizeof(*estatus) + estatus->data_length) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(apei_estatus_check_header); int apei_estatus_check(const struct acpi_hest_generic_status *estatus) { struct acpi_hest_generic_data *gdata; unsigned int data_len, gedata_len; int rc; rc = apei_estatus_check_header(estatus); if (rc) return rc; data_len = estatus->data_length; gdata = (struct acpi_hest_generic_data *)(estatus + 1); while (data_len >= sizeof(*gdata)) { gedata_len = gdata->error_data_length; if (gedata_len > data_len - sizeof(*gdata)) return -EINVAL; data_len -= gedata_len + sizeof(*gdata); gdata = (void *)(gdata + 1) + gedata_len; } if (data_len) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(apei_estatus_check);