/* * Copyright © 2008,2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Chris Wilson * */ #include "drmP.h" #include "drm.h" #include "i915_drm.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" struct change_domains { uint32_t invalidate_domains; uint32_t flush_domains; uint32_t flush_rings; }; /* * Set the next domain for the specified object. This * may not actually perform the necessary flushing/invaliding though, * as that may want to be batched with other set_domain operations * * This is (we hope) the only really tricky part of gem. The goal * is fairly simple -- track which caches hold bits of the object * and make sure they remain coherent. A few concrete examples may * help to explain how it works. For shorthand, we use the notation * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the * a pair of read and write domain masks. * * Case 1: the batch buffer * * 1. Allocated * 2. Written by CPU * 3. Mapped to GTT * 4. Read by GPU * 5. Unmapped from GTT * 6. Freed * * Let's take these a step at a time * * 1. Allocated * Pages allocated from the kernel may still have * cache contents, so we set them to (CPU, CPU) always. * 2. Written by CPU (using pwrite) * The pwrite function calls set_domain (CPU, CPU) and * this function does nothing (as nothing changes) * 3. Mapped by GTT * This function asserts that the object is not * currently in any GPU-based read or write domains * 4. Read by GPU * i915_gem_execbuffer calls set_domain (COMMAND, 0). * As write_domain is zero, this function adds in the * current read domains (CPU+COMMAND, 0). * flush_domains is set to CPU. * invalidate_domains is set to COMMAND * clflush is run to get data out of the CPU caches * then i915_dev_set_domain calls i915_gem_flush to * emit an MI_FLUSH and drm_agp_chipset_flush * 5. Unmapped from GTT * i915_gem_object_unbind calls set_domain (CPU, CPU) * flush_domains and invalidate_domains end up both zero * so no flushing/invalidating happens * 6. Freed * yay, done * * Case 2: The shared render buffer * * 1. Allocated * 2. Mapped to GTT * 3. Read/written by GPU * 4. set_domain to (CPU,CPU) * 5. Read/written by CPU * 6. Read/written by GPU * * 1. Allocated * Same as last example, (CPU, CPU) * 2. Mapped to GTT * Nothing changes (assertions find that it is not in the GPU) * 3. Read/written by GPU * execbuffer calls set_domain (RENDER, RENDER) * flush_domains gets CPU * invalidate_domains gets GPU * clflush (obj) * MI_FLUSH and drm_agp_chipset_flush * 4. set_domain (CPU, CPU) * flush_domains gets GPU * invalidate_domains gets CPU * wait_rendering (obj) to make sure all drawing is complete. * This will include an MI_FLUSH to get the data from GPU * to memory * clflush (obj) to invalidate the CPU cache * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) * 5. Read/written by CPU * cache lines are loaded and dirtied * 6. Read written by GPU * Same as last GPU access * * Case 3: The constant buffer * * 1. Allocated * 2. Written by CPU * 3. Read by GPU * 4. Updated (written) by CPU again * 5. Read by GPU * * 1. Allocated * (CPU, CPU) * 2. Written by CPU * (CPU, CPU) * 3. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush * 4. Updated (written) by CPU again * (CPU, CPU) * flush_domains = 0 (no previous write domain) * invalidate_domains = 0 (no new read domains) * 5. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush */ static void i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj, struct intel_ring_buffer *ring, struct change_domains *cd) { uint32_t invalidate_domains = 0, flush_domains = 0; /* * If the object isn't moving to a new write domain, * let the object stay in multiple read domains */ if (obj->base.pending_write_domain == 0) obj->base.pending_read_domains |= obj->base.read_domains; /* * Flush the current write domain if * the new read domains don't match. Invalidate * any read domains which differ from the old * write domain */ if (obj->base.write_domain && (((obj->base.write_domain != obj->base.pending_read_domains || obj->ring != ring)) || (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) { flush_domains |= obj->base.write_domain; invalidate_domains |= obj->base.pending_read_domains & ~obj->base.write_domain; } /* * Invalidate any read caches which may have * stale data. That is, any new read domains. */ invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains; if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) i915_gem_clflush_object(obj); /* blow away mappings if mapped through GTT */ if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT) i915_gem_release_mmap(obj); /* The actual obj->write_domain will be updated with * pending_write_domain after we emit the accumulated flush for all * of our domain changes in execbuffers (which clears objects' * write_domains). So if we have a current write domain that we * aren't changing, set pending_write_domain to that. */ if (flush_domains == 0 && obj->base.pending_write_domain == 0) obj->base.pending_write_domain = obj->base.write_domain; cd->invalidate_domains |= invalidate_domains; cd->flush_domains |= flush_domains; if (flush_domains & I915_GEM_GPU_DOMAINS) cd->flush_rings |= obj->ring->id; if (invalidate_domains & I915_GEM_GPU_DOMAINS) cd->flush_rings |= ring->id; } struct eb_objects { int and; struct hlist_head buckets[0]; }; static struct eb_objects * eb_create(int size) { struct eb_objects *eb; int count = PAGE_SIZE / sizeof(struct hlist_head) / 2; while (count > size) count >>= 1; eb = kzalloc(count*sizeof(struct hlist_head) + sizeof(struct eb_objects), GFP_KERNEL); if (eb == NULL) return eb; eb->and = count - 1; return eb; } static void eb_reset(struct eb_objects *eb) { memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head)); } static void eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj) { hlist_add_head(&obj->exec_node, &eb->buckets[obj->exec_handle & eb->and]); } static struct drm_i915_gem_object * eb_get_object(struct eb_objects *eb, unsigned long handle) { struct hlist_head *head; struct hlist_node *node; struct drm_i915_gem_object *obj; head = &eb->buckets[handle & eb->and]; hlist_for_each(node, head) { obj = hlist_entry(node, struct drm_i915_gem_object, exec_node); if (obj->exec_handle == handle) return obj; } return NULL; } static void eb_destroy(struct eb_objects *eb) { kfree(eb); } static int i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj, struct eb_objects *eb, struct drm_i915_gem_exec_object2 *entry, struct drm_i915_gem_relocation_entry *reloc) { struct drm_device *dev = obj->base.dev; struct drm_gem_object *target_obj; uint32_t target_offset; int ret = -EINVAL; /* we've already hold a reference to all valid objects */ target_obj = &eb_get_object(eb, reloc->target_handle)->base; if (unlikely(target_obj == NULL)) return -ENOENT; target_offset = to_intel_bo(target_obj)->gtt_offset; #if WATCH_RELOC DRM_INFO("%s: obj %p offset %08x target %d " "read %08x write %08x gtt %08x " "presumed %08x delta %08x\n", __func__, obj, (int) reloc->offset, (int) reloc->target_handle, (int) reloc->read_domains, (int) reloc->write_domain, (int) target_offset, (int) reloc->presumed_offset, reloc->delta); #endif /* The target buffer should have appeared before us in the * exec_object list, so it should have a GTT space bound by now. */ if (unlikely(target_offset == 0)) { DRM_ERROR("No GTT space found for object %d\n", reloc->target_handle); return ret; } /* Validate that the target is in a valid r/w GPU domain */ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { DRM_ERROR("reloc with multiple write domains: " "obj %p target %d offset %d " "read %08x write %08x", obj, reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return ret; } if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) { DRM_ERROR("reloc with read/write CPU domains: " "obj %p target %d offset %d " "read %08x write %08x", obj, reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return ret; } if (unlikely(reloc->write_domain && target_obj->pending_write_domain && reloc->write_domain != target_obj->pending_write_domain)) { DRM_ERROR("Write domain conflict: " "obj %p target %d offset %d " "new %08x old %08x\n", obj, reloc->target_handle, (int) reloc->offset, reloc->write_domain, target_obj->pending_write_domain); return ret; } target_obj->pending_read_domains |= reloc->read_domains; target_obj->pending_write_domain |= reloc->write_domain; /* If the relocation already has the right value in it, no * more work needs to be done. */ if (target_offset == reloc->presumed_offset) return 0; /* Check that the relocation address is valid... */ if (unlikely(reloc->offset > obj->base.size - 4)) { DRM_ERROR("Relocation beyond object bounds: " "obj %p target %d offset %d size %d.\n", obj, reloc->target_handle, (int) reloc->offset, (int) obj->base.size); return ret; } if (unlikely(reloc->offset & 3)) { DRM_ERROR("Relocation not 4-byte aligned: " "obj %p target %d offset %d.\n", obj, reloc->target_handle, (int) reloc->offset); return ret; } /* and points to somewhere within the target object. */ if (unlikely(reloc->delta >= target_obj->size)) { DRM_ERROR("Relocation beyond target object bounds: " "obj %p target %d delta %d size %d.\n", obj, reloc->target_handle, (int) reloc->delta, (int) target_obj->size); return ret; } reloc->delta += target_offset; if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) { uint32_t page_offset = reloc->offset & ~PAGE_MASK; char *vaddr; vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]); *(uint32_t *)(vaddr + page_offset) = reloc->delta; kunmap_atomic(vaddr); } else { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t __iomem *reloc_entry; void __iomem *reloc_page; ret = i915_gem_object_set_to_gtt_domain(obj, 1); if (ret) return ret; /* Map the page containing the relocation we're going to perform. */ reloc->offset += obj->gtt_offset; reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping, reloc->offset & PAGE_MASK); reloc_entry = (uint32_t __iomem *) (reloc_page + (reloc->offset & ~PAGE_MASK)); iowrite32(reloc->delta, reloc_entry); io_mapping_unmap_atomic(reloc_page); } /* and update the user's relocation entry */ reloc->presumed_offset = target_offset; return 0; } static int i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj, struct eb_objects *eb, struct drm_i915_gem_exec_object2 *entry) { struct drm_i915_gem_relocation_entry __user *user_relocs; int i, ret; user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr; for (i = 0; i < entry->relocation_count; i++) { struct drm_i915_gem_relocation_entry reloc; if (__copy_from_user_inatomic(&reloc, user_relocs+i, sizeof(reloc))) return -EFAULT; ret = i915_gem_execbuffer_relocate_entry(obj, eb, entry, &reloc); if (ret) return ret; if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset, &reloc.presumed_offset, sizeof(reloc.presumed_offset))) return -EFAULT; } return 0; } static int i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj, struct eb_objects *eb, struct drm_i915_gem_exec_object2 *entry, struct drm_i915_gem_relocation_entry *relocs) { int i, ret; for (i = 0; i < entry->relocation_count; i++) { ret = i915_gem_execbuffer_relocate_entry(obj, eb, entry, &relocs[i]); if (ret) return ret; } return 0; } static int i915_gem_execbuffer_relocate(struct drm_device *dev, struct eb_objects *eb, struct list_head *objects, struct drm_i915_gem_exec_object2 *exec) { struct drm_i915_gem_object *obj; int ret; list_for_each_entry(obj, objects, exec_list) { obj->base.pending_read_domains = 0; obj->base.pending_write_domain = 0; ret = i915_gem_execbuffer_relocate_object(obj, eb, exec++); if (ret) return ret; } return 0; } static int i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring, struct drm_file *file, struct list_head *objects, struct drm_i915_gem_exec_object2 *exec) { struct drm_i915_gem_object *obj; struct drm_i915_gem_exec_object2 *entry; int ret, retry; bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4; /* Attempt to pin all of the buffers into the GTT. * This is done in 3 phases: * * 1a. Unbind all objects that do not match the GTT constraints for * the execbuffer (fenceable, mappable, alignment etc). * 1b. Increment pin count for already bound objects. * 2. Bind new objects. * 3. Decrement pin count. * * This avoid unnecessary unbinding of later objects in order to makr * room for the earlier objects *unless* we need to defragment. */ retry = 0; do { ret = 0; /* Unbind any ill-fitting objects or pin. */ entry = exec; list_for_each_entry(obj, objects, exec_list) { bool need_fence, need_mappable; if (!obj->gtt_space) { entry++; continue; } need_fence = has_fenced_gpu_access && entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj->tiling_mode != I915_TILING_NONE; need_mappable = entry->relocation_count ? true : need_fence; if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) || (need_mappable && !obj->map_and_fenceable)) ret = i915_gem_object_unbind(obj); else ret = i915_gem_object_pin(obj, entry->alignment, need_mappable); if (ret) goto err; entry++; } /* Bind fresh objects */ entry = exec; list_for_each_entry(obj, objects, exec_list) { bool need_fence; need_fence = has_fenced_gpu_access && entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj->tiling_mode != I915_TILING_NONE; if (!obj->gtt_space) { bool need_mappable = entry->relocation_count ? true : need_fence; ret = i915_gem_object_pin(obj, entry->alignment, need_mappable); if (ret) break; } if (has_fenced_gpu_access) { if (need_fence) { ret = i915_gem_object_get_fence(obj, ring, 1); if (ret) break; } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj->tiling_mode == I915_TILING_NONE) { /* XXX pipelined! */ ret = i915_gem_object_put_fence(obj); if (ret) break; } obj->pending_fenced_gpu_access = need_fence; } entry->offset = obj->gtt_offset; entry++; } /* Decrement pin count for bound objects */ list_for_each_entry(obj, objects, exec_list) { if (obj->gtt_space) i915_gem_object_unpin(obj); } if (ret != -ENOSPC || retry > 1) return ret; /* First attempt, just clear anything that is purgeable. * Second attempt, clear the entire GTT. */ ret = i915_gem_evict_everything(ring->dev, retry == 0); if (ret) return ret; retry++; } while (1); err: obj = list_entry(obj->exec_list.prev, struct drm_i915_gem_object, exec_list); while (objects != &obj->exec_list) { if (obj->gtt_space) i915_gem_object_unpin(obj); obj = list_entry(obj->exec_list.prev, struct drm_i915_gem_object, exec_list); } return ret; } static int i915_gem_execbuffer_relocate_slow(struct drm_device *dev, struct drm_file *file, struct intel_ring_buffer *ring, struct list_head *objects, struct eb_objects *eb, struct drm_i915_gem_exec_object2 *exec, int count) { struct drm_i915_gem_relocation_entry *reloc; struct drm_i915_gem_object *obj; int i, total, ret; /* We may process another execbuffer during the unlock... */ while (list_empty(objects)) { obj = list_first_entry(objects, struct drm_i915_gem_object, exec_list); list_del_init(&obj->exec_list); drm_gem_object_unreference(&obj->base); } mutex_unlock(&dev->struct_mutex); total = 0; for (i = 0; i < count; i++) total += exec[i].relocation_count; reloc = drm_malloc_ab(total, sizeof(*reloc)); if (reloc == NULL) { mutex_lock(&dev->struct_mutex); return -ENOMEM; } total = 0; for (i = 0; i < count; i++) { struct drm_i915_gem_relocation_entry __user *user_relocs; user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr; if (copy_from_user(reloc+total, user_relocs, exec[i].relocation_count * sizeof(*reloc))) { ret = -EFAULT; mutex_lock(&dev->struct_mutex); goto err; } total += exec[i].relocation_count; } ret = i915_mutex_lock_interruptible(dev); if (ret) { mutex_lock(&dev->struct_mutex); goto err; } /* reacquire the objects */ INIT_LIST_HEAD(objects); eb_reset(eb); for (i = 0; i < count; i++) { struct drm_i915_gem_object *obj; obj = to_intel_bo(drm_gem_object_lookup(dev, file, exec[i].handle)); if (obj == NULL) { DRM_ERROR("Invalid object handle %d at index %d\n", exec[i].handle, i); ret = -ENOENT; goto err; } list_add_tail(&obj->exec_list, objects); obj->exec_handle = exec[i].handle; eb_add_object(eb, obj); } ret = i915_gem_execbuffer_reserve(ring, file, objects, exec); if (ret) goto err; total = 0; list_for_each_entry(obj, objects, exec_list) { obj->base.pending_read_domains = 0; obj->base.pending_write_domain = 0; ret = i915_gem_execbuffer_relocate_object_slow(obj, eb, exec, reloc + total); if (ret) goto err; total += exec->relocation_count; exec++; } /* Leave the user relocations as are, this is the painfully slow path, * and we want to avoid the complication of dropping the lock whilst * having buffers reserved in the aperture and so causing spurious * ENOSPC for random operations. */ err: drm_free_large(reloc); return ret; } static void i915_gem_execbuffer_flush(struct drm_device *dev, uint32_t invalidate_domains, uint32_t flush_domains, uint32_t flush_rings) { drm_i915_private_t *dev_priv = dev->dev_private; int i; if (flush_domains & I915_GEM_DOMAIN_CPU) intel_gtt_chipset_flush(); if (flush_domains & I915_GEM_DOMAIN_GTT) wmb(); if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) { for (i = 0; i < I915_NUM_RINGS; i++) if (flush_rings & (1 << i)) i915_gem_flush_ring(dev, &dev_priv->ring[i], invalidate_domains, flush_domains); } } static int i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj, struct intel_ring_buffer *to) { struct intel_ring_buffer *from = obj->ring; u32 seqno; int ret, idx; if (from == NULL || to == from) return 0; if (INTEL_INFO(obj->base.dev)->gen < 6) return i915_gem_object_wait_rendering(obj, true); idx = intel_ring_sync_index(from, to); seqno = obj->last_rendering_seqno; if (seqno <= from->sync_seqno[idx]) return 0; if (seqno == from->outstanding_lazy_request) { struct drm_i915_gem_request *request; request = kzalloc(sizeof(*request), GFP_KERNEL); if (request == NULL) return -ENOMEM; ret = i915_add_request(obj->base.dev, NULL, request, from); if (ret) { kfree(request); return ret; } seqno = request->seqno; } from->sync_seqno[idx] = seqno; return intel_ring_sync(to, from, seqno - 1); } static int i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring, struct list_head *objects) { struct drm_i915_gem_object *obj; struct change_domains cd; int ret; cd.invalidate_domains = 0; cd.flush_domains = 0; cd.flush_rings = 0; list_for_each_entry(obj, objects, exec_list) i915_gem_object_set_to_gpu_domain(obj, ring, &cd); if (cd.invalidate_domains | cd.flush_domains) { #if WATCH_EXEC DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", __func__, cd.invalidate_domains, cd.flush_domains); #endif i915_gem_execbuffer_flush(ring->dev, cd.invalidate_domains, cd.flush_domains, cd.flush_rings); } list_for_each_entry(obj, objects, exec_list) { ret = i915_gem_execbuffer_sync_rings(obj, ring); if (ret) return ret; } return 0; } static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) { return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0; } static int validate_exec_list(struct drm_i915_gem_exec_object2 *exec, int count) { int i; for (i = 0; i < count; i++) { char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr; int length; /* limited by fault_in_pages_readable() */ /* First check for malicious input causing overflow */ if (exec[i].relocation_count > INT_MAX / sizeof(struct drm_i915_gem_relocation_entry)) return -EINVAL; length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry); if (!access_ok(VERIFY_READ, ptr, length)) return -EFAULT; /* we may also need to update the presumed offsets */ if (!access_ok(VERIFY_WRITE, ptr, length)) return -EFAULT; if (fault_in_pages_readable(ptr, length)) return -EFAULT; } return 0; } static int i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, struct list_head *objects) { struct drm_i915_gem_object *obj; int flips; /* Check for any pending flips. As we only maintain a flip queue depth * of 1, we can simply insert a WAIT for the next display flip prior * to executing the batch and avoid stalling the CPU. */ flips = 0; list_for_each_entry(obj, objects, exec_list) { if (obj->base.write_domain) flips |= atomic_read(&obj->pending_flip); } if (flips) { int plane, flip_mask, ret; for (plane = 0; flips >> plane; plane++) { if (((flips >> plane) & 1) == 0) continue; if (plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); } } return 0; } static void i915_gem_execbuffer_move_to_active(struct list_head *objects, struct intel_ring_buffer *ring, u32 seqno) { struct drm_i915_gem_object *obj; list_for_each_entry(obj, objects, exec_list) { obj->base.read_domains = obj->base.pending_read_domains; obj->base.write_domain = obj->base.pending_write_domain; obj->fenced_gpu_access = obj->pending_fenced_gpu_access; i915_gem_object_move_to_active(obj, ring, seqno); if (obj->base.write_domain) { obj->dirty = 1; obj->pending_gpu_write = true; list_move_tail(&obj->gpu_write_list, &ring->gpu_write_list); intel_mark_busy(ring->dev, obj); } trace_i915_gem_object_change_domain(obj, obj->base.read_domains, obj->base.write_domain); } } static void i915_gem_execbuffer_retire_commands(struct drm_device *dev, struct drm_file *file, struct intel_ring_buffer *ring) { struct drm_i915_gem_request *request; u32 invalidate; /* * Ensure that the commands in the batch buffer are * finished before the interrupt fires. * * The sampler always gets flushed on i965 (sigh). */ invalidate = I915_GEM_DOMAIN_COMMAND; if (INTEL_INFO(dev)->gen >= 4) invalidate |= I915_GEM_DOMAIN_SAMPLER; if (ring->flush(ring, invalidate, 0)) { i915_gem_next_request_seqno(dev, ring); return; } /* Add a breadcrumb for the completion of the batch buffer */ request = kzalloc(sizeof(*request), GFP_KERNEL); if (request == NULL || i915_add_request(dev, file, request, ring)) { i915_gem_next_request_seqno(dev, ring); kfree(request); } } static int i915_gem_do_execbuffer(struct drm_device *dev, void *data, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec) { drm_i915_private_t *dev_priv = dev->dev_private; struct list_head objects; struct eb_objects *eb; struct drm_i915_gem_object *batch_obj; struct drm_clip_rect *cliprects = NULL; struct intel_ring_buffer *ring; u32 exec_start, exec_len; u32 seqno; int ret, mode, i; if (!i915_gem_check_execbuffer(args)) { DRM_ERROR("execbuf with invalid offset/length\n"); return -EINVAL; } ret = validate_exec_list(exec, args->buffer_count); if (ret) return ret; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif switch (args->flags & I915_EXEC_RING_MASK) { case I915_EXEC_DEFAULT: case I915_EXEC_RENDER: ring = &dev_priv->ring[RCS]; break; case I915_EXEC_BSD: if (!HAS_BSD(dev)) { DRM_ERROR("execbuf with invalid ring (BSD)\n"); return -EINVAL; } ring = &dev_priv->ring[VCS]; break; case I915_EXEC_BLT: if (!HAS_BLT(dev)) { DRM_ERROR("execbuf with invalid ring (BLT)\n"); return -EINVAL; } ring = &dev_priv->ring[BCS]; break; default: DRM_ERROR("execbuf with unknown ring: %d\n", (int)(args->flags & I915_EXEC_RING_MASK)); return -EINVAL; } mode = args->flags & I915_EXEC_CONSTANTS_MASK; switch (mode) { case I915_EXEC_CONSTANTS_REL_GENERAL: case I915_EXEC_CONSTANTS_ABSOLUTE: case I915_EXEC_CONSTANTS_REL_SURFACE: if (ring == &dev_priv->ring[RCS] && mode != dev_priv->relative_constants_mode) { if (INTEL_INFO(dev)->gen < 4) return -EINVAL; if (INTEL_INFO(dev)->gen > 5 && mode == I915_EXEC_CONSTANTS_REL_SURFACE) return -EINVAL; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, INSTPM); intel_ring_emit(ring, I915_EXEC_CONSTANTS_MASK << 16 | mode); intel_ring_advance(ring); dev_priv->relative_constants_mode = mode; } break; default: DRM_ERROR("execbuf with unknown constants: %d\n", mode); return -EINVAL; } if (args->buffer_count < 1) { DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); return -EINVAL; } if (args->num_cliprects != 0) { if (ring != &dev_priv->ring[RCS]) { DRM_ERROR("clip rectangles are only valid with the render ring\n"); return -EINVAL; } cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects), GFP_KERNEL); if (cliprects == NULL) { ret = -ENOMEM; goto pre_mutex_err; } if (copy_from_user(cliprects, (struct drm_clip_rect __user *)(uintptr_t) args->cliprects_ptr, sizeof(*cliprects)*args->num_cliprects)) { ret = -EFAULT; goto pre_mutex_err; } } ret = i915_mutex_lock_interruptible(dev); if (ret) goto pre_mutex_err; if (dev_priv->mm.suspended) { mutex_unlock(&dev->struct_mutex); ret = -EBUSY; goto pre_mutex_err; } eb = eb_create(args->buffer_count); if (eb == NULL) { mutex_unlock(&dev->struct_mutex); ret = -ENOMEM; goto pre_mutex_err; } /* Look up object handles */ INIT_LIST_HEAD(&objects); for (i = 0; i < args->buffer_count; i++) { struct drm_i915_gem_object *obj; obj = to_intel_bo(drm_gem_object_lookup(dev, file, exec[i].handle)); if (obj == NULL) { DRM_ERROR("Invalid object handle %d at index %d\n", exec[i].handle, i); /* prevent error path from reading uninitialized data */ ret = -ENOENT; goto err; } if (!list_empty(&obj->exec_list)) { DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n", obj, exec[i].handle, i); ret = -EINVAL; goto err; } list_add_tail(&obj->exec_list, &objects); obj->exec_handle = exec[i].handle; eb_add_object(eb, obj); } /* Move the objects en-masse into the GTT, evicting if necessary. */ ret = i915_gem_execbuffer_reserve(ring, file, &objects, exec); if (ret) goto err; /* The objects are in their final locations, apply the relocations. */ ret = i915_gem_execbuffer_relocate(dev, eb, &objects, exec); if (ret) { if (ret == -EFAULT) { ret = i915_gem_execbuffer_relocate_slow(dev, file, ring, &objects, eb, exec, args->buffer_count); BUG_ON(!mutex_is_locked(&dev->struct_mutex)); } if (ret) goto err; } /* Set the pending read domains for the batch buffer to COMMAND */ batch_obj = list_entry(objects.prev, struct drm_i915_gem_object, exec_list); if (batch_obj->base.pending_write_domain) { DRM_ERROR("Attempting to use self-modifying batch buffer\n"); ret = -EINVAL; goto err; } batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND; ret = i915_gem_execbuffer_move_to_gpu(ring, &objects); if (ret) goto err; ret = i915_gem_execbuffer_wait_for_flips(ring, &objects); if (ret) goto err; seqno = i915_gem_next_request_seqno(dev, ring); for (i = 0; i < I915_NUM_RINGS-1; i++) { if (seqno < ring->sync_seqno[i]) { /* The GPU can not handle its semaphore value wrapping, * so every billion or so execbuffers, we need to stall * the GPU in order to reset the counters. */ ret = i915_gpu_idle(dev); if (ret) goto err; BUG_ON(ring->sync_seqno[i]); } } exec_start = batch_obj->gtt_offset + args->batch_start_offset; exec_len = args->batch_len; if (cliprects) { for (i = 0; i < args->num_cliprects; i++) { ret = i915_emit_box(dev, &cliprects[i], args->DR1, args->DR4); if (ret) goto err; ret = ring->dispatch_execbuffer(ring, exec_start, exec_len); if (ret) goto err; } } else { ret = ring->dispatch_execbuffer(ring, exec_start, exec_len); if (ret) goto err; } i915_gem_execbuffer_move_to_active(&objects, ring, seqno); i915_gem_execbuffer_retire_commands(dev, file, ring); err: eb_destroy(eb); while (!list_empty(&objects)) { struct drm_i915_gem_object *obj; obj = list_first_entry(&objects, struct drm_i915_gem_object, exec_list); list_del_init(&obj->exec_list); drm_gem_object_unreference(&obj->base); } mutex_unlock(&dev->struct_mutex); pre_mutex_err: kfree(cliprects); return ret; } /* * Legacy execbuffer just creates an exec2 list from the original exec object * list array and passes it to the real function. */ int i915_gem_execbuffer(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer *args = data; struct drm_i915_gem_execbuffer2 exec2; struct drm_i915_gem_exec_object *exec_list = NULL; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret, i; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif if (args->buffer_count < 1) { DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); return -EINVAL; } /* Copy in the exec list from userland */ exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count); exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); if (exec_list == NULL || exec2_list == NULL) { DRM_ERROR("Failed to allocate exec list for %d buffers\n", args->buffer_count); drm_free_large(exec_list); drm_free_large(exec2_list); return -ENOMEM; } ret = copy_from_user(exec_list, (struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, sizeof(*exec_list) * args->buffer_count); if (ret != 0) { DRM_ERROR("copy %d exec entries failed %d\n", args->buffer_count, ret); drm_free_large(exec_list); drm_free_large(exec2_list); return -EFAULT; } for (i = 0; i < args->buffer_count; i++) { exec2_list[i].handle = exec_list[i].handle; exec2_list[i].relocation_count = exec_list[i].relocation_count; exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; exec2_list[i].alignment = exec_list[i].alignment; exec2_list[i].offset = exec_list[i].offset; if (INTEL_INFO(dev)->gen < 4) exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; else exec2_list[i].flags = 0; } exec2.buffers_ptr = args->buffers_ptr; exec2.buffer_count = args->buffer_count; exec2.batch_start_offset = args->batch_start_offset; exec2.batch_len = args->batch_len; exec2.DR1 = args->DR1; exec2.DR4 = args->DR4; exec2.num_cliprects = args->num_cliprects; exec2.cliprects_ptr = args->cliprects_ptr; exec2.flags = I915_EXEC_RENDER; ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ for (i = 0; i < args->buffer_count; i++) exec_list[i].offset = exec2_list[i].offset; /* ... and back out to userspace */ ret = copy_to_user((struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, exec_list, sizeof(*exec_list) * args->buffer_count); if (ret) { ret = -EFAULT; DRM_ERROR("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); } } drm_free_large(exec_list); drm_free_large(exec2_list); return ret; } int i915_gem_execbuffer2(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif if (args->buffer_count < 1) { DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count); return -EINVAL; } exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); if (exec2_list == NULL) { DRM_ERROR("Failed to allocate exec list for %d buffers\n", args->buffer_count); return -ENOMEM; } ret = copy_from_user(exec2_list, (struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, sizeof(*exec2_list) * args->buffer_count); if (ret != 0) { DRM_ERROR("copy %d exec entries failed %d\n", args->buffer_count, ret); drm_free_large(exec2_list); return -EFAULT; } ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ ret = copy_to_user((struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, exec2_list, sizeof(*exec2_list) * args->buffer_count); if (ret) { ret = -EFAULT; DRM_ERROR("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); } } drm_free_large(exec2_list); return ret; }