/* * arch/arm/kernel/probes.h * * Copyright (C) 2011 Jon Medhurst . * * Some contents moved here from arch/arm/include/asm/kprobes.h which is * Copyright (C) 2006, 2007 Motorola Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #ifndef _ARM_KERNEL_PROBES_H #define _ARM_KERNEL_PROBES_H #include #include #include #include "kprobes.h" #if __LINUX_ARM_ARCH__ >= 7 /* str_pc_offset is architecturally defined from ARMv7 onwards */ #define str_pc_offset 8 #define find_str_pc_offset() #else /* __LINUX_ARM_ARCH__ < 7 */ /* We need a run-time check to determine str_pc_offset */ extern int str_pc_offset; void __init find_str_pc_offset(void); #endif struct decode_header; /* * Update ITSTATE after normal execution of an IT block instruction. * * The 8 IT state bits are split into two parts in CPSR: * ITSTATE<1:0> are in CPSR<26:25> * ITSTATE<7:2> are in CPSR<15:10> */ static inline unsigned long it_advance(unsigned long cpsr) { if ((cpsr & 0x06000400) == 0) { /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */ cpsr &= ~PSR_IT_MASK; } else { /* We need to shift left ITSTATE<4:0> */ const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */ unsigned long it = cpsr & mask; it <<= 1; it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */ it &= mask; cpsr &= ~mask; cpsr |= it; } return cpsr; } static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs) { long cpsr = regs->ARM_cpsr; if (pcv & 0x1) { cpsr |= PSR_T_BIT; pcv &= ~0x1; } else { cpsr &= ~PSR_T_BIT; pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */ } regs->ARM_cpsr = cpsr; regs->ARM_pc = pcv; } #if __LINUX_ARM_ARCH__ >= 6 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */ #define load_write_pc_interworks true #define test_load_write_pc_interworking() #else /* __LINUX_ARM_ARCH__ < 6 */ /* We need run-time testing to determine if load_write_pc() should interwork. */ extern bool load_write_pc_interworks; void __init test_load_write_pc_interworking(void); #endif static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs) { if (load_write_pc_interworks) bx_write_pc(pcv, regs); else regs->ARM_pc = pcv; } #if __LINUX_ARM_ARCH__ >= 7 #define alu_write_pc_interworks true #define test_alu_write_pc_interworking() #elif __LINUX_ARM_ARCH__ <= 5 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */ #define alu_write_pc_interworks false #define test_alu_write_pc_interworking() #else /* __LINUX_ARM_ARCH__ == 6 */ /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */ extern bool alu_write_pc_interworks; void __init test_alu_write_pc_interworking(void); #endif /* __LINUX_ARM_ARCH__ == 6 */ static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs) { if (alu_write_pc_interworks) bx_write_pc(pcv, regs); else regs->ARM_pc = pcv; } void __kprobes kprobe_simulate_nop(kprobe_opcode_t, struct arch_specific_insn *, struct pt_regs *regs); void __kprobes kprobe_emulate_none(kprobe_opcode_t, struct arch_specific_insn *, struct pt_regs *regs); enum kprobe_insn __kprobes kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi, const struct decode_header *h); /* * Test if load/store instructions writeback the address register. * if P (bit 24) == 0 or W (bit 21) == 1 */ #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000) /* * The following definitions and macros are used to build instruction * decoding tables for use by kprobe_decode_insn. * * These tables are a concatenation of entries each of which consist of one of * the decode_* structs. All of the fields in every type of decode structure * are of the union type decode_item, therefore the entire decode table can be * viewed as an array of these and declared like: * * static const union decode_item table_name[] = {}; * * In order to construct each entry in the table, macros are used to * initialise a number of sequential decode_item values in a layout which * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct * decode_simulate by initialising four decode_item objects like this... * * {.bits = _type}, * {.bits = _mask}, * {.bits = _value}, * {.action = _handler}, * * Initialising a specified member of the union means that the compiler * will produce a warning if the argument is of an incorrect type. * * Below is a list of each of the macros used to initialise entries and a * description of the action performed when that entry is matched to an * instruction. A match is found when (instruction & mask) == value. * * DECODE_TABLE(mask, value, table) * Instruction decoding jumps to parsing the new sub-table 'table'. * * DECODE_CUSTOM(mask, value, decoder) * The value of 'decoder' is used as an index into the array of * action functions, and the retrieved decoder function is invoked * to complete decoding of the instruction. * * DECODE_SIMULATE(mask, value, handler) * The probes instruction handler is set to the value found by * indexing into the action array using the value of 'handler'. This * will be used to simulate the instruction when the probe is hit. * Decoding returns with INSN_GOOD_NO_SLOT. * * DECODE_EMULATE(mask, value, handler) * The probes instruction handler is set to the value found by * indexing into the action array using the value of 'handler'. This * will be used to emulate the instruction when the probe is hit. The * modified instruction (see below) is placed in the probes instruction * slot so it may be called by the emulation code. Decoding returns * with INSN_GOOD. * * DECODE_REJECT(mask, value) * Instruction decoding fails with INSN_REJECTED * * DECODE_OR(mask, value) * This allows the mask/value test of multiple table entries to be * logically ORed. Once an 'or' entry is matched the decoding action to * be performed is that of the next entry which isn't an 'or'. E.g. * * DECODE_OR (mask1, value1) * DECODE_OR (mask2, value2) * DECODE_SIMULATE (mask3, value3, simulation_handler) * * This means that if any of the three mask/value pairs match the * instruction being decoded, then 'simulation_handler' will be used * for it. * * Both the SIMULATE and EMULATE macros have a second form which take an * additional 'regs' argument. * * DECODE_SIMULATEX(mask, value, handler, regs) * DECODE_EMULATEX (mask, value, handler, regs) * * These are used to specify what kind of CPU register is encoded in each of the * least significant 5 nibbles of the instruction being decoded. The regs value * is specified using the REGS macro, this takes any of the REG_TYPE_* values * from enum decode_reg_type as arguments; only the '*' part of the name is * given. E.g. * * REGS(0, ANY, NOPC, 0, ANY) * * This indicates an instruction is encoded like: * * bits 19..16 ignore * bits 15..12 any register allowed here * bits 11.. 8 any register except PC allowed here * bits 7.. 4 ignore * bits 3.. 0 any register allowed here * * This register specification is checked after a decode table entry is found to * match an instruction (through the mask/value test). Any invalid register then * found in the instruction will cause decoding to fail with INSN_REJECTED. In * the above example this would happen if bits 11..8 of the instruction were * 1111, indicating R15 or PC. * * As well as checking for legal combinations of registers, this data is also * used to modify the registers encoded in the instructions so that an * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) * * Here is a real example which matches ARM instructions of the form * "AND ,,, " * * DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG, * REGS(ANY, ANY, NOPC, 0, ANY)), * ^ ^ ^ ^ * Rn Rd Rs Rm * * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because * Rs == R15 * * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into * the kprobes instruction slot. This can then be called later by the handler * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from * the indicated slot in the action array), in order to simulate the instruction. */ enum decode_type { DECODE_TYPE_END, DECODE_TYPE_TABLE, DECODE_TYPE_CUSTOM, DECODE_TYPE_SIMULATE, DECODE_TYPE_EMULATE, DECODE_TYPE_OR, DECODE_TYPE_REJECT, NUM_DECODE_TYPES /* Must be last enum */ }; #define DECODE_TYPE_BITS 4 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1) enum decode_reg_type { REG_TYPE_NONE = 0, /* Not a register, ignore */ REG_TYPE_ANY, /* Any register allowed */ REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */ REG_TYPE_SP, /* Register must be SP */ REG_TYPE_PC, /* Register must be PC */ REG_TYPE_NOSP, /* Register must not be SP */ REG_TYPE_NOSPPC, /* Register must not be SP or PC */ REG_TYPE_NOPC, /* Register must not be PC */ REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */ /* The following types are used when the encoding for PC indicates * another instruction form. This distiction only matters for test * case coverage checks. */ REG_TYPE_NOPCX, /* Register must not be PC */ REG_TYPE_NOSPPCX, /* Register must not be SP or PC */ /* Alias to allow '0' arg to be used in REGS macro. */ REG_TYPE_0 = REG_TYPE_NONE }; #define REGS(r16, r12, r8, r4, r0) \ (((REG_TYPE_##r16) << 16) + \ ((REG_TYPE_##r12) << 12) + \ ((REG_TYPE_##r8) << 8) + \ ((REG_TYPE_##r4) << 4) + \ (REG_TYPE_##r0)) union decode_item { u32 bits; const union decode_item *table; int action; }; typedef enum kprobe_insn (probes_custom_decode_t)(kprobe_opcode_t, struct arch_specific_insn *, const struct decode_header *); union decode_action { kprobe_insn_handler_t *handler; probes_custom_decode_t *decoder; }; #define DECODE_END \ {.bits = DECODE_TYPE_END} struct decode_header { union decode_item type_regs; union decode_item mask; union decode_item value; }; #define DECODE_HEADER(_type, _mask, _value, _regs) \ {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \ {.bits = (_mask)}, \ {.bits = (_value)} struct decode_table { struct decode_header header; union decode_item table; }; #define DECODE_TABLE(_mask, _value, _table) \ DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \ {.table = (_table)} struct decode_custom { struct decode_header header; union decode_item decoder; }; #define DECODE_CUSTOM(_mask, _value, _decoder) \ DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \ {.action = (_decoder)} struct decode_simulate { struct decode_header header; union decode_item handler; }; #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \ DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \ {.action = (_handler)} #define DECODE_SIMULATE(_mask, _value, _handler) \ DECODE_SIMULATEX(_mask, _value, _handler, 0) struct decode_emulate { struct decode_header header; union decode_item handler; }; #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \ DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \ {.action = (_handler)} #define DECODE_EMULATE(_mask, _value, _handler) \ DECODE_EMULATEX(_mask, _value, _handler, 0) struct decode_or { struct decode_header header; }; #define DECODE_OR(_mask, _value) \ DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0) struct decode_reject { struct decode_header header; }; #define DECODE_REJECT(_mask, _value) \ DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0) #ifdef CONFIG_THUMB2_KERNEL extern const union decode_item kprobe_decode_thumb16_table[]; extern const union decode_item kprobe_decode_thumb32_table[]; extern const union decode_action kprobes_t32_actions[]; extern const union decode_action kprobes_t16_actions[]; #else extern const union decode_item kprobe_decode_arm_table[]; extern const union decode_action kprobes_arm_actions[]; #endif extern kprobe_check_cc * const kprobe_condition_checks[16]; int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi, const union decode_item *table, bool thumb16, const union decode_action *actions); #endif