/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS TLB handling, this file is part of the Linux host kernel so that * TLB handlers run from KSEG0 * * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. * Authors: Sanjay Lal <sanjayl@kymasys.com> */ #include <linux/sched.h> #include <linux/smp.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/kvm_host.h> #include <linux/srcu.h> #include <asm/cpu.h> #include <asm/bootinfo.h> #include <asm/mmu_context.h> #include <asm/pgtable.h> #include <asm/cacheflush.h> #include <asm/tlb.h> #undef CONFIG_MIPS_MT #include <asm/r4kcache.h> #define CONFIG_MIPS_MT #define KVM_GUEST_PC_TLB 0 #define KVM_GUEST_SP_TLB 1 #define PRIx64 "llx" atomic_t kvm_mips_instance; EXPORT_SYMBOL(kvm_mips_instance); /* These function pointers are initialized once the KVM module is loaded */ pfn_t(*kvm_mips_gfn_to_pfn) (struct kvm *kvm, gfn_t gfn); EXPORT_SYMBOL(kvm_mips_gfn_to_pfn); void (*kvm_mips_release_pfn_clean) (pfn_t pfn); EXPORT_SYMBOL(kvm_mips_release_pfn_clean); bool(*kvm_mips_is_error_pfn) (pfn_t pfn); EXPORT_SYMBOL(kvm_mips_is_error_pfn); uint32_t kvm_mips_get_kernel_asid(struct kvm_vcpu *vcpu) { return vcpu->arch.guest_kernel_asid[smp_processor_id()] & ASID_MASK; } uint32_t kvm_mips_get_user_asid(struct kvm_vcpu *vcpu) { return vcpu->arch.guest_user_asid[smp_processor_id()] & ASID_MASK; } inline uint32_t kvm_mips_get_commpage_asid (struct kvm_vcpu *vcpu) { return vcpu->kvm->arch.commpage_tlb; } /* * Structure defining an tlb entry data set. */ void kvm_mips_dump_host_tlbs(void) { unsigned long old_entryhi; unsigned long old_pagemask; struct kvm_mips_tlb tlb; unsigned long flags; int i; local_irq_save(flags); old_entryhi = read_c0_entryhi(); old_pagemask = read_c0_pagemask(); printk("HOST TLBs:\n"); printk("ASID: %#lx\n", read_c0_entryhi() & ASID_MASK); for (i = 0; i < current_cpu_data.tlbsize; i++) { write_c0_index(i); mtc0_tlbw_hazard(); tlb_read(); tlbw_use_hazard(); tlb.tlb_hi = read_c0_entryhi(); tlb.tlb_lo0 = read_c0_entrylo0(); tlb.tlb_lo1 = read_c0_entrylo1(); tlb.tlb_mask = read_c0_pagemask(); printk("TLB%c%3d Hi 0x%08lx ", (tlb.tlb_lo0 | tlb.tlb_lo1) & MIPS3_PG_V ? ' ' : '*', i, tlb.tlb_hi); printk("Lo0=0x%09" PRIx64 " %c%c attr %lx ", (uint64_t) mips3_tlbpfn_to_paddr(tlb.tlb_lo0), (tlb.tlb_lo0 & MIPS3_PG_D) ? 'D' : ' ', (tlb.tlb_lo0 & MIPS3_PG_G) ? 'G' : ' ', (tlb.tlb_lo0 >> 3) & 7); printk("Lo1=0x%09" PRIx64 " %c%c attr %lx sz=%lx\n", (uint64_t) mips3_tlbpfn_to_paddr(tlb.tlb_lo1), (tlb.tlb_lo1 & MIPS3_PG_D) ? 'D' : ' ', (tlb.tlb_lo1 & MIPS3_PG_G) ? 'G' : ' ', (tlb.tlb_lo1 >> 3) & 7, tlb.tlb_mask); } write_c0_entryhi(old_entryhi); write_c0_pagemask(old_pagemask); mtc0_tlbw_hazard(); local_irq_restore(flags); } void kvm_mips_dump_guest_tlbs(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct kvm_mips_tlb tlb; int i; printk("Guest TLBs:\n"); printk("Guest EntryHi: %#lx\n", kvm_read_c0_guest_entryhi(cop0)); for (i = 0; i < KVM_MIPS_GUEST_TLB_SIZE; i++) { tlb = vcpu->arch.guest_tlb[i]; printk("TLB%c%3d Hi 0x%08lx ", (tlb.tlb_lo0 | tlb.tlb_lo1) & MIPS3_PG_V ? ' ' : '*', i, tlb.tlb_hi); printk("Lo0=0x%09" PRIx64 " %c%c attr %lx ", (uint64_t) mips3_tlbpfn_to_paddr(tlb.tlb_lo0), (tlb.tlb_lo0 & MIPS3_PG_D) ? 'D' : ' ', (tlb.tlb_lo0 & MIPS3_PG_G) ? 'G' : ' ', (tlb.tlb_lo0 >> 3) & 7); printk("Lo1=0x%09" PRIx64 " %c%c attr %lx sz=%lx\n", (uint64_t) mips3_tlbpfn_to_paddr(tlb.tlb_lo1), (tlb.tlb_lo1 & MIPS3_PG_D) ? 'D' : ' ', (tlb.tlb_lo1 & MIPS3_PG_G) ? 'G' : ' ', (tlb.tlb_lo1 >> 3) & 7, tlb.tlb_mask); } } static int kvm_mips_map_page(struct kvm *kvm, gfn_t gfn) { int srcu_idx, err = 0; pfn_t pfn; if (kvm->arch.guest_pmap[gfn] != KVM_INVALID_PAGE) return 0; srcu_idx = srcu_read_lock(&kvm->srcu); pfn = kvm_mips_gfn_to_pfn(kvm, gfn); if (kvm_mips_is_error_pfn(pfn)) { kvm_err("Couldn't get pfn for gfn %#" PRIx64 "!\n", gfn); err = -EFAULT; goto out; } kvm->arch.guest_pmap[gfn] = pfn; out: srcu_read_unlock(&kvm->srcu, srcu_idx); return err; } /* Translate guest KSEG0 addresses to Host PA */ unsigned long kvm_mips_translate_guest_kseg0_to_hpa(struct kvm_vcpu *vcpu, unsigned long gva) { gfn_t gfn; uint32_t offset = gva & ~PAGE_MASK; struct kvm *kvm = vcpu->kvm; if (KVM_GUEST_KSEGX(gva) != KVM_GUEST_KSEG0) { kvm_err("%s/%p: Invalid gva: %#lx\n", __func__, __builtin_return_address(0), gva); return KVM_INVALID_PAGE; } gfn = (KVM_GUEST_CPHYSADDR(gva) >> PAGE_SHIFT); if (gfn >= kvm->arch.guest_pmap_npages) { kvm_err("%s: Invalid gfn: %#llx, GVA: %#lx\n", __func__, gfn, gva); return KVM_INVALID_PAGE; } if (kvm_mips_map_page(vcpu->kvm, gfn) < 0) return KVM_INVALID_ADDR; return (kvm->arch.guest_pmap[gfn] << PAGE_SHIFT) + offset; } /* XXXKYMA: Must be called with interrupts disabled */ /* set flush_dcache_mask == 0 if no dcache flush required */ int kvm_mips_host_tlb_write(struct kvm_vcpu *vcpu, unsigned long entryhi, unsigned long entrylo0, unsigned long entrylo1, int flush_dcache_mask) { unsigned long flags; unsigned long old_entryhi; volatile int idx; local_irq_save(flags); old_entryhi = read_c0_entryhi(); write_c0_entryhi(entryhi); mtc0_tlbw_hazard(); tlb_probe(); tlb_probe_hazard(); idx = read_c0_index(); if (idx > current_cpu_data.tlbsize) { kvm_err("%s: Invalid Index: %d\n", __func__, idx); kvm_mips_dump_host_tlbs(); return -1; } write_c0_entrylo0(entrylo0); write_c0_entrylo1(entrylo1); mtc0_tlbw_hazard(); if (idx < 0) tlb_write_random(); else tlb_write_indexed(); tlbw_use_hazard(); kvm_debug("@ %#lx idx: %2d [entryhi(R): %#lx] entrylo0(R): 0x%08lx, entrylo1(R): 0x%08lx\n", vcpu->arch.pc, idx, read_c0_entryhi(), read_c0_entrylo0(), read_c0_entrylo1()); /* Flush D-cache */ if (flush_dcache_mask) { if (entrylo0 & MIPS3_PG_V) { ++vcpu->stat.flush_dcache_exits; flush_data_cache_page((entryhi & VPN2_MASK) & ~flush_dcache_mask); } if (entrylo1 & MIPS3_PG_V) { ++vcpu->stat.flush_dcache_exits; flush_data_cache_page(((entryhi & VPN2_MASK) & ~flush_dcache_mask) | (0x1 << PAGE_SHIFT)); } } /* Restore old ASID */ write_c0_entryhi(old_entryhi); mtc0_tlbw_hazard(); tlbw_use_hazard(); local_irq_restore(flags); return 0; } /* XXXKYMA: Must be called with interrupts disabled */ int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr, struct kvm_vcpu *vcpu) { gfn_t gfn; pfn_t pfn0, pfn1; unsigned long vaddr = 0; unsigned long entryhi = 0, entrylo0 = 0, entrylo1 = 0; int even; struct kvm *kvm = vcpu->kvm; const int flush_dcache_mask = 0; if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) { kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr); kvm_mips_dump_host_tlbs(); return -1; } gfn = (KVM_GUEST_CPHYSADDR(badvaddr) >> PAGE_SHIFT); if (gfn >= kvm->arch.guest_pmap_npages) { kvm_err("%s: Invalid gfn: %#llx, BadVaddr: %#lx\n", __func__, gfn, badvaddr); kvm_mips_dump_host_tlbs(); return -1; } even = !(gfn & 0x1); vaddr = badvaddr & (PAGE_MASK << 1); if (kvm_mips_map_page(vcpu->kvm, gfn) < 0) return -1; if (kvm_mips_map_page(vcpu->kvm, gfn ^ 0x1) < 0) return -1; if (even) { pfn0 = kvm->arch.guest_pmap[gfn]; pfn1 = kvm->arch.guest_pmap[gfn ^ 0x1]; } else { pfn0 = kvm->arch.guest_pmap[gfn ^ 0x1]; pfn1 = kvm->arch.guest_pmap[gfn]; } entryhi = (vaddr | kvm_mips_get_kernel_asid(vcpu)); entrylo0 = mips3_paddr_to_tlbpfn(pfn0 << PAGE_SHIFT) | (0x3 << 3) | (1 << 2) | (0x1 << 1); entrylo1 = mips3_paddr_to_tlbpfn(pfn1 << PAGE_SHIFT) | (0x3 << 3) | (1 << 2) | (0x1 << 1); return kvm_mips_host_tlb_write(vcpu, entryhi, entrylo0, entrylo1, flush_dcache_mask); } int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr, struct kvm_vcpu *vcpu) { pfn_t pfn0, pfn1; unsigned long flags, old_entryhi = 0, vaddr = 0; unsigned long entrylo0 = 0, entrylo1 = 0; pfn0 = CPHYSADDR(vcpu->arch.kseg0_commpage) >> PAGE_SHIFT; pfn1 = 0; entrylo0 = mips3_paddr_to_tlbpfn(pfn0 << PAGE_SHIFT) | (0x3 << 3) | (1 << 2) | (0x1 << 1); entrylo1 = 0; local_irq_save(flags); old_entryhi = read_c0_entryhi(); vaddr = badvaddr & (PAGE_MASK << 1); write_c0_entryhi(vaddr | kvm_mips_get_kernel_asid(vcpu)); mtc0_tlbw_hazard(); write_c0_entrylo0(entrylo0); mtc0_tlbw_hazard(); write_c0_entrylo1(entrylo1); mtc0_tlbw_hazard(); write_c0_index(kvm_mips_get_commpage_asid(vcpu)); mtc0_tlbw_hazard(); tlb_write_indexed(); mtc0_tlbw_hazard(); tlbw_use_hazard(); kvm_debug ("@ %#lx idx: %2d [entryhi(R): %#lx] entrylo0 (R): 0x%08lx, entrylo1(R): 0x%08lx\n", vcpu->arch.pc, read_c0_index(), read_c0_entryhi(), read_c0_entrylo0(), read_c0_entrylo1()); /* Restore old ASID */ write_c0_entryhi(old_entryhi); mtc0_tlbw_hazard(); tlbw_use_hazard(); local_irq_restore(flags); return 0; } int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu, struct kvm_mips_tlb *tlb, unsigned long *hpa0, unsigned long *hpa1) { unsigned long entryhi = 0, entrylo0 = 0, entrylo1 = 0; struct kvm *kvm = vcpu->kvm; pfn_t pfn0, pfn1; if ((tlb->tlb_hi & VPN2_MASK) == 0) { pfn0 = 0; pfn1 = 0; } else { if (kvm_mips_map_page(kvm, mips3_tlbpfn_to_paddr(tlb->tlb_lo0) >> PAGE_SHIFT) < 0) return -1; if (kvm_mips_map_page(kvm, mips3_tlbpfn_to_paddr(tlb->tlb_lo1) >> PAGE_SHIFT) < 0) return -1; pfn0 = kvm->arch.guest_pmap[mips3_tlbpfn_to_paddr(tlb->tlb_lo0) >> PAGE_SHIFT]; pfn1 = kvm->arch.guest_pmap[mips3_tlbpfn_to_paddr(tlb->tlb_lo1) >> PAGE_SHIFT]; } if (hpa0) *hpa0 = pfn0 << PAGE_SHIFT; if (hpa1) *hpa1 = pfn1 << PAGE_SHIFT; /* Get attributes from the Guest TLB */ entryhi = (tlb->tlb_hi & VPN2_MASK) | (KVM_GUEST_KERNEL_MODE(vcpu) ? kvm_mips_get_kernel_asid(vcpu) : kvm_mips_get_user_asid(vcpu)); entrylo0 = mips3_paddr_to_tlbpfn(pfn0 << PAGE_SHIFT) | (0x3 << 3) | (tlb->tlb_lo0 & MIPS3_PG_D) | (tlb->tlb_lo0 & MIPS3_PG_V); entrylo1 = mips3_paddr_to_tlbpfn(pfn1 << PAGE_SHIFT) | (0x3 << 3) | (tlb->tlb_lo1 & MIPS3_PG_D) | (tlb->tlb_lo1 & MIPS3_PG_V); kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc, tlb->tlb_lo0, tlb->tlb_lo1); return kvm_mips_host_tlb_write(vcpu, entryhi, entrylo0, entrylo1, tlb->tlb_mask); } int kvm_mips_guest_tlb_lookup(struct kvm_vcpu *vcpu, unsigned long entryhi) { int i; int index = -1; struct kvm_mips_tlb *tlb = vcpu->arch.guest_tlb; for (i = 0; i < KVM_MIPS_GUEST_TLB_SIZE; i++) { if (((TLB_VPN2(tlb[i]) & ~tlb[i].tlb_mask) == ((entryhi & VPN2_MASK) & ~tlb[i].tlb_mask)) && (TLB_IS_GLOBAL(tlb[i]) || (TLB_ASID(tlb[i]) == (entryhi & ASID_MASK)))) { index = i; break; } } kvm_debug("%s: entryhi: %#lx, index: %d lo0: %#lx, lo1: %#lx\n", __func__, entryhi, index, tlb[i].tlb_lo0, tlb[i].tlb_lo1); return index; } int kvm_mips_host_tlb_lookup(struct kvm_vcpu *vcpu, unsigned long vaddr) { unsigned long old_entryhi, flags; volatile int idx; local_irq_save(flags); old_entryhi = read_c0_entryhi(); if (KVM_GUEST_KERNEL_MODE(vcpu)) write_c0_entryhi((vaddr & VPN2_MASK) | kvm_mips_get_kernel_asid(vcpu)); else { write_c0_entryhi((vaddr & VPN2_MASK) | kvm_mips_get_user_asid(vcpu)); } mtc0_tlbw_hazard(); tlb_probe(); tlb_probe_hazard(); idx = read_c0_index(); /* Restore old ASID */ write_c0_entryhi(old_entryhi); mtc0_tlbw_hazard(); tlbw_use_hazard(); local_irq_restore(flags); kvm_debug("Host TLB lookup, %#lx, idx: %2d\n", vaddr, idx); return idx; } int kvm_mips_host_tlb_inv(struct kvm_vcpu *vcpu, unsigned long va) { int idx; unsigned long flags, old_entryhi; local_irq_save(flags); old_entryhi = read_c0_entryhi(); write_c0_entryhi((va & VPN2_MASK) | kvm_mips_get_user_asid(vcpu)); mtc0_tlbw_hazard(); tlb_probe(); tlb_probe_hazard(); idx = read_c0_index(); if (idx >= current_cpu_data.tlbsize) BUG(); if (idx > 0) { write_c0_entryhi(UNIQUE_ENTRYHI(idx)); mtc0_tlbw_hazard(); write_c0_entrylo0(0); mtc0_tlbw_hazard(); write_c0_entrylo1(0); mtc0_tlbw_hazard(); tlb_write_indexed(); mtc0_tlbw_hazard(); } write_c0_entryhi(old_entryhi); mtc0_tlbw_hazard(); tlbw_use_hazard(); local_irq_restore(flags); if (idx > 0) kvm_debug("%s: Invalidated entryhi %#lx @ idx %d\n", __func__, (va & VPN2_MASK) | kvm_mips_get_user_asid(vcpu), idx); return 0; } /* XXXKYMA: Fix Guest USER/KERNEL no longer share the same ASID*/ int kvm_mips_host_tlb_inv_index(struct kvm_vcpu *vcpu, int index) { unsigned long flags, old_entryhi; if (index >= current_cpu_data.tlbsize) BUG(); local_irq_save(flags); old_entryhi = read_c0_entryhi(); write_c0_entryhi(UNIQUE_ENTRYHI(index)); mtc0_tlbw_hazard(); write_c0_index(index); mtc0_tlbw_hazard(); write_c0_entrylo0(0); mtc0_tlbw_hazard(); write_c0_entrylo1(0); mtc0_tlbw_hazard(); tlb_write_indexed(); mtc0_tlbw_hazard(); tlbw_use_hazard(); write_c0_entryhi(old_entryhi); mtc0_tlbw_hazard(); tlbw_use_hazard(); local_irq_restore(flags); return 0; } void kvm_mips_flush_host_tlb(int skip_kseg0) { unsigned long flags; unsigned long old_entryhi, entryhi; unsigned long old_pagemask; int entry = 0; int maxentry = current_cpu_data.tlbsize; local_irq_save(flags); old_entryhi = read_c0_entryhi(); old_pagemask = read_c0_pagemask(); /* Blast 'em all away. */ for (entry = 0; entry < maxentry; entry++) { write_c0_index(entry); mtc0_tlbw_hazard(); if (skip_kseg0) { tlb_read(); tlbw_use_hazard(); entryhi = read_c0_entryhi(); /* Don't blow away guest kernel entries */ if (KVM_GUEST_KSEGX(entryhi) == KVM_GUEST_KSEG0) { continue; } } /* Make sure all entries differ. */ write_c0_entryhi(UNIQUE_ENTRYHI(entry)); mtc0_tlbw_hazard(); write_c0_entrylo0(0); mtc0_tlbw_hazard(); write_c0_entrylo1(0); mtc0_tlbw_hazard(); tlb_write_indexed(); mtc0_tlbw_hazard(); } tlbw_use_hazard(); write_c0_entryhi(old_entryhi); write_c0_pagemask(old_pagemask); mtc0_tlbw_hazard(); tlbw_use_hazard(); local_irq_restore(flags); } void kvm_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu, struct kvm_vcpu *vcpu) { unsigned long asid = asid_cache(cpu); if (!((asid += ASID_INC) & ASID_MASK)) { if (cpu_has_vtag_icache) { flush_icache_all(); } kvm_local_flush_tlb_all(); /* start new asid cycle */ if (!asid) /* fix version if needed */ asid = ASID_FIRST_VERSION; } cpu_context(cpu, mm) = asid_cache(cpu) = asid; } void kvm_local_flush_tlb_all(void) { unsigned long flags; unsigned long old_ctx; int entry = 0; local_irq_save(flags); /* Save old context and create impossible VPN2 value */ old_ctx = read_c0_entryhi(); write_c0_entrylo0(0); write_c0_entrylo1(0); /* Blast 'em all away. */ while (entry < current_cpu_data.tlbsize) { /* Make sure all entries differ. */ write_c0_entryhi(UNIQUE_ENTRYHI(entry)); write_c0_index(entry); mtc0_tlbw_hazard(); tlb_write_indexed(); entry++; } tlbw_use_hazard(); write_c0_entryhi(old_ctx); mtc0_tlbw_hazard(); local_irq_restore(flags); } /** * kvm_mips_migrate_count() - Migrate timer. * @vcpu: Virtual CPU. * * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it * if it was running prior to being cancelled. * * Must be called when the VCPU is migrated to a different CPU to ensure that * timer expiry during guest execution interrupts the guest and causes the * interrupt to be delivered in a timely manner. */ static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu) { if (hrtimer_cancel(&vcpu->arch.comparecount_timer)) hrtimer_restart(&vcpu->arch.comparecount_timer); } /* Restore ASID once we are scheduled back after preemption */ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { unsigned long flags; int newasid = 0; kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu); /* Alocate new kernel and user ASIDs if needed */ local_irq_save(flags); if (((vcpu->arch. guest_kernel_asid[cpu] ^ asid_cache(cpu)) & ASID_VERSION_MASK)) { kvm_get_new_mmu_context(&vcpu->arch.guest_kernel_mm, cpu, vcpu); vcpu->arch.guest_kernel_asid[cpu] = vcpu->arch.guest_kernel_mm.context.asid[cpu]; kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu, vcpu); vcpu->arch.guest_user_asid[cpu] = vcpu->arch.guest_user_mm.context.asid[cpu]; newasid++; kvm_debug("[%d]: cpu_context: %#lx\n", cpu, cpu_context(cpu, current->mm)); kvm_debug("[%d]: Allocated new ASID for Guest Kernel: %#x\n", cpu, vcpu->arch.guest_kernel_asid[cpu]); kvm_debug("[%d]: Allocated new ASID for Guest User: %#x\n", cpu, vcpu->arch.guest_user_asid[cpu]); } if (vcpu->arch.last_sched_cpu != cpu) { kvm_debug("[%d->%d]KVM VCPU[%d] switch\n", vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id); /* * Migrate the timer interrupt to the current CPU so that it * always interrupts the guest and synchronously triggers a * guest timer interrupt. */ kvm_mips_migrate_count(vcpu); } if (!newasid) { /* If we preempted while the guest was executing, then reload the pre-empted ASID */ if (current->flags & PF_VCPU) { write_c0_entryhi(vcpu->arch. preempt_entryhi & ASID_MASK); ehb(); } } else { /* New ASIDs were allocated for the VM */ /* Were we in guest context? If so then the pre-empted ASID is no longer * valid, we need to set it to what it should be based on the mode of * the Guest (Kernel/User) */ if (current->flags & PF_VCPU) { if (KVM_GUEST_KERNEL_MODE(vcpu)) write_c0_entryhi(vcpu->arch. guest_kernel_asid[cpu] & ASID_MASK); else write_c0_entryhi(vcpu->arch. guest_user_asid[cpu] & ASID_MASK); ehb(); } } local_irq_restore(flags); } /* ASID can change if another task is scheduled during preemption */ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { unsigned long flags; uint32_t cpu; local_irq_save(flags); cpu = smp_processor_id(); vcpu->arch.preempt_entryhi = read_c0_entryhi(); vcpu->arch.last_sched_cpu = cpu; if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) & ASID_VERSION_MASK)) { kvm_debug("%s: Dropping MMU Context: %#lx\n", __func__, cpu_context(cpu, current->mm)); drop_mmu_context(current->mm, cpu); } write_c0_entryhi(cpu_asid(cpu, current->mm)); ehb(); local_irq_restore(flags); } uint32_t kvm_get_inst(uint32_t *opc, struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; unsigned long paddr, flags; uint32_t inst; int index; if (KVM_GUEST_KSEGX((unsigned long) opc) < KVM_GUEST_KSEG0 || KVM_GUEST_KSEGX((unsigned long) opc) == KVM_GUEST_KSEG23) { local_irq_save(flags); index = kvm_mips_host_tlb_lookup(vcpu, (unsigned long) opc); if (index >= 0) { inst = *(opc); } else { index = kvm_mips_guest_tlb_lookup(vcpu, ((unsigned long) opc & VPN2_MASK) | (kvm_read_c0_guest_entryhi (cop0) & ASID_MASK)); if (index < 0) { kvm_err ("%s: get_user_failed for %p, vcpu: %p, ASID: %#lx\n", __func__, opc, vcpu, read_c0_entryhi()); kvm_mips_dump_host_tlbs(); local_irq_restore(flags); return KVM_INVALID_INST; } kvm_mips_handle_mapped_seg_tlb_fault(vcpu, &vcpu->arch. guest_tlb[index], NULL, NULL); inst = *(opc); } local_irq_restore(flags); } else if (KVM_GUEST_KSEGX(opc) == KVM_GUEST_KSEG0) { paddr = kvm_mips_translate_guest_kseg0_to_hpa(vcpu, (unsigned long) opc); inst = *(uint32_t *) CKSEG0ADDR(paddr); } else { kvm_err("%s: illegal address: %p\n", __func__, opc); return KVM_INVALID_INST; } return inst; } EXPORT_SYMBOL(kvm_local_flush_tlb_all); EXPORT_SYMBOL(kvm_mips_handle_mapped_seg_tlb_fault); EXPORT_SYMBOL(kvm_mips_handle_commpage_tlb_fault); EXPORT_SYMBOL(kvm_mips_dump_host_tlbs); EXPORT_SYMBOL(kvm_mips_handle_kseg0_tlb_fault); EXPORT_SYMBOL(kvm_mips_host_tlb_lookup); EXPORT_SYMBOL(kvm_mips_flush_host_tlb); EXPORT_SYMBOL(kvm_mips_guest_tlb_lookup); EXPORT_SYMBOL(kvm_mips_host_tlb_inv); EXPORT_SYMBOL(kvm_mips_translate_guest_kseg0_to_hpa); EXPORT_SYMBOL(kvm_mips_dump_guest_tlbs); EXPORT_SYMBOL(kvm_get_inst); EXPORT_SYMBOL(kvm_arch_vcpu_load); EXPORT_SYMBOL(kvm_arch_vcpu_put);