#include #include #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #define DESC_TYPE 27 #define DESC_TYPE_HOST 0x10 #define DESC_TYPE_TEARD 0x13 #define TD_DESC_IS_RX (1 << 16) #define TD_DESC_DMA_NUM 10 #define DESC_LENGTH_BITS_NUM 21 #define DESC_TYPE_USB (5 << 26) #define DESC_PD_COMPLETE (1 << 31) /* DMA engine */ #define DMA_TDFDQ 4 #define DMA_TXGCR(x) (0x800 + (x) * 0x20) #define DMA_RXGCR(x) (0x808 + (x) * 0x20) #define RXHPCRA0 4 #define GCR_CHAN_ENABLE (1 << 31) #define GCR_TEARDOWN (1 << 30) #define GCR_STARV_RETRY (1 << 24) #define GCR_DESC_TYPE_HOST (1 << 14) /* DMA scheduler */ #define DMA_SCHED_CTRL 0 #define DMA_SCHED_CTRL_EN (1 << 31) #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800) #define SCHED_ENTRY0_CHAN(x) ((x) << 0) #define SCHED_ENTRY0_IS_RX (1 << 7) #define SCHED_ENTRY1_CHAN(x) ((x) << 8) #define SCHED_ENTRY1_IS_RX (1 << 15) #define SCHED_ENTRY2_CHAN(x) ((x) << 16) #define SCHED_ENTRY2_IS_RX (1 << 23) #define SCHED_ENTRY3_CHAN(x) ((x) << 24) #define SCHED_ENTRY3_IS_RX (1 << 31) /* Queue manager */ /* 4 KiB of memory for descriptors, 2 for each endpoint */ #define ALLOC_DECS_NUM 128 #define DESCS_AREAS 1 #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS) #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4) #define QMGR_LRAM0_BASE 0x80 #define QMGR_LRAM_SIZE 0x84 #define QMGR_LRAM1_BASE 0x88 #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10) #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10) #define QMGR_MEMCTRL_IDX_SH 16 #define QMGR_MEMCTRL_DESC_SH 8 #define QMGR_NUM_PEND 5 #define QMGR_PEND(x) (0x90 + (x) * 4) #define QMGR_PENDING_SLOT_Q(x) (x / 32) #define QMGR_PENDING_BIT_Q(x) (x % 32) #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10) #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10) #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10) #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10) /* Glue layer specific */ /* USBSS / USB AM335x */ #define USBSS_IRQ_STATUS 0x28 #define USBSS_IRQ_ENABLER 0x2c #define USBSS_IRQ_CLEARR 0x30 #define USBSS_IRQ_PD_COMP (1 << 2) /* Packet Descriptor */ #define PD2_ZERO_LENGTH (1 << 19) struct cppi41_channel { struct dma_chan chan; struct dma_async_tx_descriptor txd; struct cppi41_dd *cdd; struct cppi41_desc *desc; dma_addr_t desc_phys; void __iomem *gcr_reg; int is_tx; u32 residue; unsigned int q_num; unsigned int q_comp_num; unsigned int port_num; unsigned td_retry; unsigned td_queued:1; unsigned td_seen:1; unsigned td_desc_seen:1; }; struct cppi41_desc { u32 pd0; u32 pd1; u32 pd2; u32 pd3; u32 pd4; u32 pd5; u32 pd6; u32 pd7; } __aligned(32); struct chan_queues { u16 submit; u16 complete; }; struct cppi41_dd { struct dma_device ddev; void *qmgr_scratch; dma_addr_t scratch_phys; struct cppi41_desc *cd; dma_addr_t descs_phys; u32 first_td_desc; struct cppi41_channel *chan_busy[ALLOC_DECS_NUM]; void __iomem *usbss_mem; void __iomem *ctrl_mem; void __iomem *sched_mem; void __iomem *qmgr_mem; unsigned int irq; const struct chan_queues *queues_rx; const struct chan_queues *queues_tx; struct chan_queues td_queue; /* context for suspend/resume */ unsigned int dma_tdfdq; }; #define FIST_COMPLETION_QUEUE 93 static struct chan_queues usb_queues_tx[] = { /* USB0 ENDP 1 */ [ 0] = { .submit = 32, .complete = 93}, [ 1] = { .submit = 34, .complete = 94}, [ 2] = { .submit = 36, .complete = 95}, [ 3] = { .submit = 38, .complete = 96}, [ 4] = { .submit = 40, .complete = 97}, [ 5] = { .submit = 42, .complete = 98}, [ 6] = { .submit = 44, .complete = 99}, [ 7] = { .submit = 46, .complete = 100}, [ 8] = { .submit = 48, .complete = 101}, [ 9] = { .submit = 50, .complete = 102}, [10] = { .submit = 52, .complete = 103}, [11] = { .submit = 54, .complete = 104}, [12] = { .submit = 56, .complete = 105}, [13] = { .submit = 58, .complete = 106}, [14] = { .submit = 60, .complete = 107}, /* USB1 ENDP1 */ [15] = { .submit = 62, .complete = 125}, [16] = { .submit = 64, .complete = 126}, [17] = { .submit = 66, .complete = 127}, [18] = { .submit = 68, .complete = 128}, [19] = { .submit = 70, .complete = 129}, [20] = { .submit = 72, .complete = 130}, [21] = { .submit = 74, .complete = 131}, [22] = { .submit = 76, .complete = 132}, [23] = { .submit = 78, .complete = 133}, [24] = { .submit = 80, .complete = 134}, [25] = { .submit = 82, .complete = 135}, [26] = { .submit = 84, .complete = 136}, [27] = { .submit = 86, .complete = 137}, [28] = { .submit = 88, .complete = 138}, [29] = { .submit = 90, .complete = 139}, }; static const struct chan_queues usb_queues_rx[] = { /* USB0 ENDP 1 */ [ 0] = { .submit = 1, .complete = 109}, [ 1] = { .submit = 2, .complete = 110}, [ 2] = { .submit = 3, .complete = 111}, [ 3] = { .submit = 4, .complete = 112}, [ 4] = { .submit = 5, .complete = 113}, [ 5] = { .submit = 6, .complete = 114}, [ 6] = { .submit = 7, .complete = 115}, [ 7] = { .submit = 8, .complete = 116}, [ 8] = { .submit = 9, .complete = 117}, [ 9] = { .submit = 10, .complete = 118}, [10] = { .submit = 11, .complete = 119}, [11] = { .submit = 12, .complete = 120}, [12] = { .submit = 13, .complete = 121}, [13] = { .submit = 14, .complete = 122}, [14] = { .submit = 15, .complete = 123}, /* USB1 ENDP 1 */ [15] = { .submit = 16, .complete = 141}, [16] = { .submit = 17, .complete = 142}, [17] = { .submit = 18, .complete = 143}, [18] = { .submit = 19, .complete = 144}, [19] = { .submit = 20, .complete = 145}, [20] = { .submit = 21, .complete = 146}, [21] = { .submit = 22, .complete = 147}, [22] = { .submit = 23, .complete = 148}, [23] = { .submit = 24, .complete = 149}, [24] = { .submit = 25, .complete = 150}, [25] = { .submit = 26, .complete = 151}, [26] = { .submit = 27, .complete = 152}, [27] = { .submit = 28, .complete = 153}, [28] = { .submit = 29, .complete = 154}, [29] = { .submit = 30, .complete = 155}, }; struct cppi_glue_infos { irqreturn_t (*isr)(int irq, void *data); const struct chan_queues *queues_rx; const struct chan_queues *queues_tx; struct chan_queues td_queue; }; static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c) { return container_of(c, struct cppi41_channel, chan); } static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc) { struct cppi41_channel *c; u32 descs_size; u32 desc_num; descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM; if (!((desc >= cdd->descs_phys) && (desc < (cdd->descs_phys + descs_size)))) { return NULL; } desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc); BUG_ON(desc_num >= ALLOC_DECS_NUM); c = cdd->chan_busy[desc_num]; cdd->chan_busy[desc_num] = NULL; return c; } static void cppi_writel(u32 val, void *__iomem *mem) { __raw_writel(val, mem); } static u32 cppi_readl(void *__iomem *mem) { return __raw_readl(mem); } static u32 pd_trans_len(u32 val) { return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1); } static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num) { u32 desc; desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num)); desc &= ~0x1f; return desc; } static irqreturn_t cppi41_irq(int irq, void *data) { struct cppi41_dd *cdd = data; struct cppi41_channel *c; u32 status; int i; status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS); if (!(status & USBSS_IRQ_PD_COMP)) return IRQ_NONE; cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS); for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND; i++) { u32 val; u32 q_num; val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i)); if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) { u32 mask; /* set corresponding bit for completetion Q 93 */ mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE); /* not set all bits for queues less than Q 93 */ mask--; /* now invert and keep only Q 93+ set */ val &= ~mask; } if (val) __iormb(); while (val) { u32 desc, len; q_num = __fls(val); val &= ~(1 << q_num); q_num += 32 * i; desc = cppi41_pop_desc(cdd, q_num); c = desc_to_chan(cdd, desc); if (WARN_ON(!c)) { pr_err("%s() q %d desc %08x\n", __func__, q_num, desc); continue; } if (c->desc->pd2 & PD2_ZERO_LENGTH) len = 0; else len = pd_trans_len(c->desc->pd0); c->residue = pd_trans_len(c->desc->pd6) - len; dma_cookie_complete(&c->txd); c->txd.callback(c->txd.callback_param); } } return IRQ_HANDLED; } static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx) { dma_cookie_t cookie; cookie = dma_cookie_assign(tx); return cookie; } static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan) { struct cppi41_channel *c = to_cpp41_chan(chan); dma_cookie_init(chan); dma_async_tx_descriptor_init(&c->txd, chan); c->txd.tx_submit = cppi41_tx_submit; if (!c->is_tx) cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0); return 0; } static void cppi41_dma_free_chan_resources(struct dma_chan *chan) { } static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct cppi41_channel *c = to_cpp41_chan(chan); enum dma_status ret; /* lock */ ret = dma_cookie_status(chan, cookie, txstate); if (txstate && ret == DMA_COMPLETE) txstate->residue = c->residue; /* unlock */ return ret; } static void push_desc_queue(struct cppi41_channel *c) { struct cppi41_dd *cdd = c->cdd; u32 desc_num; u32 desc_phys; u32 reg; desc_phys = lower_32_bits(c->desc_phys); desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc); WARN_ON(cdd->chan_busy[desc_num]); cdd->chan_busy[desc_num] = c; reg = (sizeof(struct cppi41_desc) - 24) / 4; reg |= desc_phys; cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num)); } static void cppi41_dma_issue_pending(struct dma_chan *chan) { struct cppi41_channel *c = to_cpp41_chan(chan); u32 reg; c->residue = 0; reg = GCR_CHAN_ENABLE; if (!c->is_tx) { reg |= GCR_STARV_RETRY; reg |= GCR_DESC_TYPE_HOST; reg |= c->q_comp_num; } cppi_writel(reg, c->gcr_reg); /* * We don't use writel() but __raw_writel() so we have to make sure * that the DMA descriptor in coherent memory made to the main memory * before starting the dma engine. */ __iowmb(); push_desc_queue(c); } static u32 get_host_pd0(u32 length) { u32 reg; reg = DESC_TYPE_HOST << DESC_TYPE; reg |= length; return reg; } static u32 get_host_pd1(struct cppi41_channel *c) { u32 reg; reg = 0; return reg; } static u32 get_host_pd2(struct cppi41_channel *c) { u32 reg; reg = DESC_TYPE_USB; reg |= c->q_comp_num; return reg; } static u32 get_host_pd3(u32 length) { u32 reg; /* PD3 = packet size */ reg = length; return reg; } static u32 get_host_pd6(u32 length) { u32 reg; /* PD6 buffer size */ reg = DESC_PD_COMPLETE; reg |= length; return reg; } static u32 get_host_pd4_or_7(u32 addr) { u32 reg; reg = addr; return reg; } static u32 get_host_pd5(void) { u32 reg; reg = 0; return reg; } static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct cppi41_channel *c = to_cpp41_chan(chan); struct cppi41_desc *d; struct scatterlist *sg; unsigned int i; unsigned int num; num = 0; d = c->desc; for_each_sg(sgl, sg, sg_len, i) { u32 addr; u32 len; /* We need to use more than one desc once musb supports sg */ BUG_ON(num > 0); addr = lower_32_bits(sg_dma_address(sg)); len = sg_dma_len(sg); d->pd0 = get_host_pd0(len); d->pd1 = get_host_pd1(c); d->pd2 = get_host_pd2(c); d->pd3 = get_host_pd3(len); d->pd4 = get_host_pd4_or_7(addr); d->pd5 = get_host_pd5(); d->pd6 = get_host_pd6(len); d->pd7 = get_host_pd4_or_7(addr); d++; } return &c->txd; } static int cpp41_cfg_chan(struct cppi41_channel *c, struct dma_slave_config *cfg) { return 0; } static void cppi41_compute_td_desc(struct cppi41_desc *d) { d->pd0 = DESC_TYPE_TEARD << DESC_TYPE; } static int cppi41_tear_down_chan(struct cppi41_channel *c) { struct cppi41_dd *cdd = c->cdd; struct cppi41_desc *td; u32 reg; u32 desc_phys; u32 td_desc_phys; td = cdd->cd; td += cdd->first_td_desc; td_desc_phys = cdd->descs_phys; td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc); if (!c->td_queued) { cppi41_compute_td_desc(td); __iowmb(); reg = (sizeof(struct cppi41_desc) - 24) / 4; reg |= td_desc_phys; cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(cdd->td_queue.submit)); reg = GCR_CHAN_ENABLE; if (!c->is_tx) { reg |= GCR_STARV_RETRY; reg |= GCR_DESC_TYPE_HOST; reg |= c->q_comp_num; } reg |= GCR_TEARDOWN; cppi_writel(reg, c->gcr_reg); c->td_queued = 1; c->td_retry = 500; } if (!c->td_seen || !c->td_desc_seen) { desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete); if (!desc_phys) desc_phys = cppi41_pop_desc(cdd, c->q_comp_num); if (desc_phys == c->desc_phys) { c->td_desc_seen = 1; } else if (desc_phys == td_desc_phys) { u32 pd0; __iormb(); pd0 = td->pd0; WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD); WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX)); WARN_ON((pd0 & 0x1f) != c->port_num); c->td_seen = 1; } else if (desc_phys) { WARN_ON_ONCE(1); } } c->td_retry--; /* * If the TX descriptor / channel is in use, the caller needs to poke * his TD bit multiple times. After that he hardware releases the * transfer descriptor followed by TD descriptor. Waiting seems not to * cause any difference. * RX seems to be thrown out right away. However once the TearDown * descriptor gets through we are done. If we have seens the transfer * descriptor before the TD we fetch it from enqueue, it has to be * there waiting for us. */ if (!c->td_seen && c->td_retry) return -EAGAIN; WARN_ON(!c->td_retry); if (!c->td_desc_seen) { desc_phys = cppi41_pop_desc(cdd, c->q_num); WARN_ON(!desc_phys); } c->td_queued = 0; c->td_seen = 0; c->td_desc_seen = 0; cppi_writel(0, c->gcr_reg); return 0; } static int cppi41_stop_chan(struct dma_chan *chan) { struct cppi41_channel *c = to_cpp41_chan(chan); struct cppi41_dd *cdd = c->cdd; u32 desc_num; u32 desc_phys; int ret; desc_phys = lower_32_bits(c->desc_phys); desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc); if (!cdd->chan_busy[desc_num]) return 0; ret = cppi41_tear_down_chan(c); if (ret) return ret; WARN_ON(!cdd->chan_busy[desc_num]); cdd->chan_busy[desc_num] = NULL; return 0; } static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { struct cppi41_channel *c = to_cpp41_chan(chan); int ret; switch (cmd) { case DMA_SLAVE_CONFIG: ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg); break; case DMA_TERMINATE_ALL: ret = cppi41_stop_chan(chan); break; default: ret = -ENXIO; break; } return ret; } static void cleanup_chans(struct cppi41_dd *cdd) { while (!list_empty(&cdd->ddev.channels)) { struct cppi41_channel *cchan; cchan = list_first_entry(&cdd->ddev.channels, struct cppi41_channel, chan.device_node); list_del(&cchan->chan.device_node); kfree(cchan); } } static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd) { struct cppi41_channel *cchan; int i; int ret; u32 n_chans; ret = of_property_read_u32(dev->of_node, "#dma-channels", &n_chans); if (ret) return ret; /* * The channels can only be used as TX or as RX. So we add twice * that much dma channels because USB can only do RX or TX. */ n_chans *= 2; for (i = 0; i < n_chans; i++) { cchan = kzalloc(sizeof(*cchan), GFP_KERNEL); if (!cchan) goto err; cchan->cdd = cdd; if (i & 1) { cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1); cchan->is_tx = 1; } else { cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1); cchan->is_tx = 0; } cchan->port_num = i >> 1; cchan->desc = &cdd->cd[i]; cchan->desc_phys = cdd->descs_phys; cchan->desc_phys += i * sizeof(struct cppi41_desc); cchan->chan.device = &cdd->ddev; list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels); } cdd->first_td_desc = n_chans; return 0; err: cleanup_chans(cdd); return -ENOMEM; } static void purge_descs(struct device *dev, struct cppi41_dd *cdd) { unsigned int mem_decs; int i; mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc); for (i = 0; i < DESCS_AREAS; i++) { cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i)); cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i)); dma_free_coherent(dev, mem_decs, cdd->cd, cdd->descs_phys); } } static void disable_sched(struct cppi41_dd *cdd) { cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL); } static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd) { disable_sched(cdd); purge_descs(dev, cdd); cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE); cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE); dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch, cdd->scratch_phys); } static int init_descs(struct device *dev, struct cppi41_dd *cdd) { unsigned int desc_size; unsigned int mem_decs; int i; u32 reg; u32 idx; BUILD_BUG_ON(sizeof(struct cppi41_desc) & (sizeof(struct cppi41_desc) - 1)); BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32); BUILD_BUG_ON(ALLOC_DECS_NUM < 32); desc_size = sizeof(struct cppi41_desc); mem_decs = ALLOC_DECS_NUM * desc_size; idx = 0; for (i = 0; i < DESCS_AREAS; i++) { reg = idx << QMGR_MEMCTRL_IDX_SH; reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH; reg |= ilog2(ALLOC_DECS_NUM) - 5; BUILD_BUG_ON(DESCS_AREAS != 1); cdd->cd = dma_alloc_coherent(dev, mem_decs, &cdd->descs_phys, GFP_KERNEL); if (!cdd->cd) return -ENOMEM; cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i)); cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i)); idx += ALLOC_DECS_NUM; } return 0; } static void init_sched(struct cppi41_dd *cdd) { unsigned ch; unsigned word; u32 reg; word = 0; cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL); for (ch = 0; ch < 15 * 2; ch += 2) { reg = SCHED_ENTRY0_CHAN(ch); reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX; reg |= SCHED_ENTRY2_CHAN(ch + 1); reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX; cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word)); word++; } reg = 15 * 2 * 2 - 1; reg |= DMA_SCHED_CTRL_EN; cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL); } static int init_cppi41(struct device *dev, struct cppi41_dd *cdd) { int ret; BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1)); cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE, &cdd->scratch_phys, GFP_KERNEL); if (!cdd->qmgr_scratch) return -ENOMEM; cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE); cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE); cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE); ret = init_descs(dev, cdd); if (ret) goto err_td; cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ); init_sched(cdd); return 0; err_td: deinit_cppi41(dev, cdd); return ret; } static struct platform_driver cpp41_dma_driver; /* * The param format is: * X Y * X: Port * Y: 0 = RX else TX */ #define INFO_PORT 0 #define INFO_IS_TX 1 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param) { struct cppi41_channel *cchan; struct cppi41_dd *cdd; const struct chan_queues *queues; u32 *num = param; if (chan->device->dev->driver != &cpp41_dma_driver.driver) return false; cchan = to_cpp41_chan(chan); if (cchan->port_num != num[INFO_PORT]) return false; if (cchan->is_tx && !num[INFO_IS_TX]) return false; cdd = cchan->cdd; if (cchan->is_tx) queues = cdd->queues_tx; else queues = cdd->queues_rx; BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx)); if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx))) return false; cchan->q_num = queues[cchan->port_num].submit; cchan->q_comp_num = queues[cchan->port_num].complete; return true; } static struct of_dma_filter_info cpp41_dma_info = { .filter_fn = cpp41_dma_filter_fn, }; static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { int count = dma_spec->args_count; struct of_dma_filter_info *info = ofdma->of_dma_data; if (!info || !info->filter_fn) return NULL; if (count != 2) return NULL; return dma_request_channel(info->dma_cap, info->filter_fn, &dma_spec->args[0]); } static const struct cppi_glue_infos usb_infos = { .isr = cppi41_irq, .queues_rx = usb_queues_rx, .queues_tx = usb_queues_tx, .td_queue = { .submit = 31, .complete = 0 }, }; static const struct of_device_id cppi41_dma_ids[] = { { .compatible = "ti,am3359-cppi41", .data = &usb_infos}, {}, }; MODULE_DEVICE_TABLE(of, cppi41_dma_ids); static const struct cppi_glue_infos *get_glue_info(struct device *dev) { const struct of_device_id *of_id; of_id = of_match_node(cppi41_dma_ids, dev->of_node); if (!of_id) return NULL; return of_id->data; } static int cppi41_dma_probe(struct platform_device *pdev) { struct cppi41_dd *cdd; struct device *dev = &pdev->dev; const struct cppi_glue_infos *glue_info; int irq; int ret; glue_info = get_glue_info(dev); if (!glue_info) return -EINVAL; cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL); if (!cdd) return -ENOMEM; dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask); cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources; cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources; cdd->ddev.device_tx_status = cppi41_dma_tx_status; cdd->ddev.device_issue_pending = cppi41_dma_issue_pending; cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg; cdd->ddev.device_control = cppi41_dma_control; cdd->ddev.dev = dev; INIT_LIST_HEAD(&cdd->ddev.channels); cpp41_dma_info.dma_cap = cdd->ddev.cap_mask; cdd->usbss_mem = of_iomap(dev->of_node, 0); cdd->ctrl_mem = of_iomap(dev->of_node, 1); cdd->sched_mem = of_iomap(dev->of_node, 2); cdd->qmgr_mem = of_iomap(dev->of_node, 3); if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem || !cdd->qmgr_mem) return -ENXIO; pm_runtime_enable(dev); ret = pm_runtime_get_sync(dev); if (ret < 0) goto err_get_sync; cdd->queues_rx = glue_info->queues_rx; cdd->queues_tx = glue_info->queues_tx; cdd->td_queue = glue_info->td_queue; ret = init_cppi41(dev, cdd); if (ret) goto err_init_cppi; ret = cppi41_add_chans(dev, cdd); if (ret) goto err_chans; irq = irq_of_parse_and_map(dev->of_node, 0); if (!irq) { ret = -EINVAL; goto err_irq; } cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER); ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED, dev_name(dev), cdd); if (ret) goto err_irq; cdd->irq = irq; ret = dma_async_device_register(&cdd->ddev); if (ret) goto err_dma_reg; ret = of_dma_controller_register(dev->of_node, cppi41_dma_xlate, &cpp41_dma_info); if (ret) goto err_of; platform_set_drvdata(pdev, cdd); return 0; err_of: dma_async_device_unregister(&cdd->ddev); err_dma_reg: err_irq: cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR); cleanup_chans(cdd); err_chans: deinit_cppi41(dev, cdd); err_init_cppi: pm_runtime_put(dev); err_get_sync: pm_runtime_disable(dev); iounmap(cdd->usbss_mem); iounmap(cdd->ctrl_mem); iounmap(cdd->sched_mem); iounmap(cdd->qmgr_mem); return ret; } static int cppi41_dma_remove(struct platform_device *pdev) { struct cppi41_dd *cdd = platform_get_drvdata(pdev); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&cdd->ddev); cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR); devm_free_irq(&pdev->dev, cdd->irq, cdd); cleanup_chans(cdd); deinit_cppi41(&pdev->dev, cdd); iounmap(cdd->usbss_mem); iounmap(cdd->ctrl_mem); iounmap(cdd->sched_mem); iounmap(cdd->qmgr_mem); pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int cppi41_suspend(struct device *dev) { struct cppi41_dd *cdd = dev_get_drvdata(dev); cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ); cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR); disable_sched(cdd); return 0; } static int cppi41_resume(struct device *dev) { struct cppi41_dd *cdd = dev_get_drvdata(dev); struct cppi41_channel *c; int i; for (i = 0; i < DESCS_AREAS; i++) cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i)); list_for_each_entry(c, &cdd->ddev.channels, chan.device_node) if (!c->is_tx) cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0); init_sched(cdd); cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ); cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE); cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE); cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE); cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER); return 0; } #endif static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume); static struct platform_driver cpp41_dma_driver = { .probe = cppi41_dma_probe, .remove = cppi41_dma_remove, .driver = { .name = "cppi41-dma-engine", .pm = &cppi41_pm_ops, .of_match_table = of_match_ptr(cppi41_dma_ids), }, }; module_platform_driver(cpp41_dma_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Sebastian Andrzej Siewior ");