/* * Copyright 2005-2007 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright (C) 2008 by Sascha Hauer * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "crm_regs.h" #define PRE_DIV_MIN_FREQ 10000000 /* Minimum Frequency after Predivider */ static void __calc_pre_post_dividers(u32 div, u32 *pre, u32 *post) { u32 min_pre, temp_pre, old_err, err; if (div >= 512) { *pre = 8; *post = 64; } else if (div >= 64) { min_pre = (div - 1) / 64 + 1; old_err = 8; for (temp_pre = 8; temp_pre >= min_pre; temp_pre--) { err = div % temp_pre; if (err == 0) { *pre = temp_pre; break; } err = temp_pre - err; if (err < old_err) { old_err = err; *pre = temp_pre; } } *post = (div + *pre - 1) / *pre; } else if (div <= 8) { *pre = div; *post = 1; } else { *pre = 1; *post = div; } } static struct clk mcu_pll_clk; static struct clk serial_pll_clk; static struct clk ipg_clk; static struct clk ckih_clk; static int cgr_enable(struct clk *clk) { u32 reg; if (!clk->enable_reg) return 0; reg = __raw_readl(clk->enable_reg); reg |= 3 << clk->enable_shift; __raw_writel(reg, clk->enable_reg); return 0; } static void cgr_disable(struct clk *clk) { u32 reg; if (!clk->enable_reg) return; reg = __raw_readl(clk->enable_reg); reg &= ~(3 << clk->enable_shift); /* special case for EMI clock */ if (clk->enable_reg == MXC_CCM_CGR2 && clk->enable_shift == 8) reg |= (1 << clk->enable_shift); __raw_writel(reg, clk->enable_reg); } static unsigned long pll_ref_get_rate(void) { unsigned long ccmr; unsigned int prcs; ccmr = __raw_readl(MXC_CCM_CCMR); prcs = (ccmr & MXC_CCM_CCMR_PRCS_MASK) >> MXC_CCM_CCMR_PRCS_OFFSET; if (prcs == 0x1) return CKIL_CLK_FREQ * 1024; else return clk_get_rate(&ckih_clk); } static unsigned long usb_pll_get_rate(struct clk *clk) { unsigned long reg; reg = __raw_readl(MXC_CCM_UPCTL); return mxc_decode_pll(reg, pll_ref_get_rate()); } static unsigned long serial_pll_get_rate(struct clk *clk) { unsigned long reg; reg = __raw_readl(MXC_CCM_SRPCTL); return mxc_decode_pll(reg, pll_ref_get_rate()); } static unsigned long mcu_pll_get_rate(struct clk *clk) { unsigned long reg, ccmr; ccmr = __raw_readl(MXC_CCM_CCMR); if (!(ccmr & MXC_CCM_CCMR_MPE) || (ccmr & MXC_CCM_CCMR_MDS)) return clk_get_rate(&ckih_clk); reg = __raw_readl(MXC_CCM_MPCTL); return mxc_decode_pll(reg, pll_ref_get_rate()); } static int usb_pll_enable(struct clk *clk) { u32 reg; reg = __raw_readl(MXC_CCM_CCMR); reg |= MXC_CCM_CCMR_UPE; __raw_writel(reg, MXC_CCM_CCMR); /* No lock bit on MX31, so using max time from spec */ udelay(80); return 0; } static void usb_pll_disable(struct clk *clk) { u32 reg; reg = __raw_readl(MXC_CCM_CCMR); reg &= ~MXC_CCM_CCMR_UPE; __raw_writel(reg, MXC_CCM_CCMR); } static int serial_pll_enable(struct clk *clk) { u32 reg; reg = __raw_readl(MXC_CCM_CCMR); reg |= MXC_CCM_CCMR_SPE; __raw_writel(reg, MXC_CCM_CCMR); /* No lock bit on MX31, so using max time from spec */ udelay(80); return 0; } static void serial_pll_disable(struct clk *clk) { u32 reg; reg = __raw_readl(MXC_CCM_CCMR); reg &= ~MXC_CCM_CCMR_SPE; __raw_writel(reg, MXC_CCM_CCMR); } #define PDR0(mask, off) ((__raw_readl(MXC_CCM_PDR0) & mask) >> off) #define PDR1(mask, off) ((__raw_readl(MXC_CCM_PDR1) & mask) >> off) #define PDR2(mask, off) ((__raw_readl(MXC_CCM_PDR2) & mask) >> off) static unsigned long mcu_main_get_rate(struct clk *clk) { u32 pmcr0 = __raw_readl(MXC_CCM_PMCR0); if ((pmcr0 & MXC_CCM_PMCR0_DFSUP1) == MXC_CCM_PMCR0_DFSUP1_SPLL) return clk_get_rate(&serial_pll_clk); else return clk_get_rate(&mcu_pll_clk); } static unsigned long ahb_get_rate(struct clk *clk) { unsigned long max_pdf; max_pdf = PDR0(MXC_CCM_PDR0_MAX_PODF_MASK, MXC_CCM_PDR0_MAX_PODF_OFFSET); return clk_get_rate(clk->parent) / (max_pdf + 1); } static unsigned long ipg_get_rate(struct clk *clk) { unsigned long ipg_pdf; ipg_pdf = PDR0(MXC_CCM_PDR0_IPG_PODF_MASK, MXC_CCM_PDR0_IPG_PODF_OFFSET); return clk_get_rate(clk->parent) / (ipg_pdf + 1); } static unsigned long nfc_get_rate(struct clk *clk) { unsigned long nfc_pdf; nfc_pdf = PDR0(MXC_CCM_PDR0_NFC_PODF_MASK, MXC_CCM_PDR0_NFC_PODF_OFFSET); return clk_get_rate(clk->parent) / (nfc_pdf + 1); } static unsigned long hsp_get_rate(struct clk *clk) { unsigned long hsp_pdf; hsp_pdf = PDR0(MXC_CCM_PDR0_HSP_PODF_MASK, MXC_CCM_PDR0_HSP_PODF_OFFSET); return clk_get_rate(clk->parent) / (hsp_pdf + 1); } static unsigned long usb_get_rate(struct clk *clk) { unsigned long usb_pdf, usb_prepdf; usb_pdf = PDR1(MXC_CCM_PDR1_USB_PODF_MASK, MXC_CCM_PDR1_USB_PODF_OFFSET); usb_prepdf = PDR1(MXC_CCM_PDR1_USB_PRDF_MASK, MXC_CCM_PDR1_USB_PRDF_OFFSET); return clk_get_rate(clk->parent) / (usb_prepdf + 1) / (usb_pdf + 1); } static unsigned long csi_get_rate(struct clk *clk) { u32 reg, pre, post; reg = __raw_readl(MXC_CCM_PDR0); pre = (reg & MXC_CCM_PDR0_CSI_PRDF_MASK) >> MXC_CCM_PDR0_CSI_PRDF_OFFSET; pre++; post = (reg & MXC_CCM_PDR0_CSI_PODF_MASK) >> MXC_CCM_PDR0_CSI_PODF_OFFSET; post++; return clk_get_rate(clk->parent) / (pre * post); } static unsigned long csi_round_rate(struct clk *clk, unsigned long rate) { u32 pre, post, parent = clk_get_rate(clk->parent); u32 div = parent / rate; if (parent % rate) div++; __calc_pre_post_dividers(div, &pre, &post); return parent / (pre * post); } static int csi_set_rate(struct clk *clk, unsigned long rate) { u32 reg, div, pre, post, parent = clk_get_rate(clk->parent); div = parent / rate; if ((parent / div) != rate) return -EINVAL; __calc_pre_post_dividers(div, &pre, &post); /* Set CSI clock divider */ reg = __raw_readl(MXC_CCM_PDR0) & ~(MXC_CCM_PDR0_CSI_PODF_MASK | MXC_CCM_PDR0_CSI_PRDF_MASK); reg |= (post - 1) << MXC_CCM_PDR0_CSI_PODF_OFFSET; reg |= (pre - 1) << MXC_CCM_PDR0_CSI_PRDF_OFFSET; __raw_writel(reg, MXC_CCM_PDR0); return 0; } static unsigned long ssi1_get_rate(struct clk *clk) { unsigned long ssi1_pdf, ssi1_prepdf; ssi1_pdf = PDR1(MXC_CCM_PDR1_SSI1_PODF_MASK, MXC_CCM_PDR1_SSI1_PODF_OFFSET); ssi1_prepdf = PDR1(MXC_CCM_PDR1_SSI1_PRE_PODF_MASK, MXC_CCM_PDR1_SSI1_PRE_PODF_OFFSET); return clk_get_rate(clk->parent) / (ssi1_prepdf + 1) / (ssi1_pdf + 1); } static unsigned long ssi2_get_rate(struct clk *clk) { unsigned long ssi2_pdf, ssi2_prepdf; ssi2_pdf = PDR1(MXC_CCM_PDR1_SSI2_PODF_MASK, MXC_CCM_PDR1_SSI2_PODF_OFFSET); ssi2_prepdf = PDR1(MXC_CCM_PDR1_SSI2_PRE_PODF_MASK, MXC_CCM_PDR1_SSI2_PRE_PODF_OFFSET); return clk_get_rate(clk->parent) / (ssi2_prepdf + 1) / (ssi2_pdf + 1); } static unsigned long firi_get_rate(struct clk *clk) { unsigned long firi_pdf, firi_prepdf; firi_pdf = PDR1(MXC_CCM_PDR1_FIRI_PODF_MASK, MXC_CCM_PDR1_FIRI_PODF_OFFSET); firi_prepdf = PDR1(MXC_CCM_PDR1_FIRI_PRE_PODF_MASK, MXC_CCM_PDR1_FIRI_PRE_PODF_OFFSET); return clk_get_rate(clk->parent) / (firi_prepdf + 1) / (firi_pdf + 1); } static unsigned long firi_round_rate(struct clk *clk, unsigned long rate) { u32 pre, post; u32 parent = clk_get_rate(clk->parent); u32 div = parent / rate; if (parent % rate) div++; __calc_pre_post_dividers(div, &pre, &post); return parent / (pre * post); } static int firi_set_rate(struct clk *clk, unsigned long rate) { u32 reg, div, pre, post, parent = clk_get_rate(clk->parent); div = parent / rate; if ((parent / div) != rate) return -EINVAL; __calc_pre_post_dividers(div, &pre, &post); /* Set FIRI clock divider */ reg = __raw_readl(MXC_CCM_PDR1) & ~(MXC_CCM_PDR1_FIRI_PODF_MASK | MXC_CCM_PDR1_FIRI_PRE_PODF_MASK); reg |= (pre - 1) << MXC_CCM_PDR1_FIRI_PRE_PODF_OFFSET; reg |= (post - 1) << MXC_CCM_PDR1_FIRI_PODF_OFFSET; __raw_writel(reg, MXC_CCM_PDR1); return 0; } static unsigned long mbx_get_rate(struct clk *clk) { return clk_get_rate(clk->parent) / 2; } static unsigned long mstick1_get_rate(struct clk *clk) { unsigned long msti_pdf; msti_pdf = PDR2(MXC_CCM_PDR2_MST1_PDF_MASK, MXC_CCM_PDR2_MST1_PDF_OFFSET); return clk_get_rate(clk->parent) / (msti_pdf + 1); } static unsigned long mstick2_get_rate(struct clk *clk) { unsigned long msti_pdf; msti_pdf = PDR2(MXC_CCM_PDR2_MST2_PDF_MASK, MXC_CCM_PDR2_MST2_PDF_OFFSET); return clk_get_rate(clk->parent) / (msti_pdf + 1); } static unsigned long ckih_rate; static unsigned long clk_ckih_get_rate(struct clk *clk) { return ckih_rate; } static unsigned long clk_ckil_get_rate(struct clk *clk) { return CKIL_CLK_FREQ; } static struct clk ckih_clk = { .get_rate = clk_ckih_get_rate, }; static struct clk mcu_pll_clk = { .parent = &ckih_clk, .get_rate = mcu_pll_get_rate, }; static struct clk mcu_main_clk = { .parent = &mcu_pll_clk, .get_rate = mcu_main_get_rate, }; static struct clk serial_pll_clk = { .parent = &ckih_clk, .get_rate = serial_pll_get_rate, .enable = serial_pll_enable, .disable = serial_pll_disable, }; static struct clk usb_pll_clk = { .parent = &ckih_clk, .get_rate = usb_pll_get_rate, .enable = usb_pll_enable, .disable = usb_pll_disable, }; static struct clk ahb_clk = { .parent = &mcu_main_clk, .get_rate = ahb_get_rate, }; #define DEFINE_CLOCK(name, i, er, es, gr, s, p) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = gr, \ .enable = cgr_enable, \ .disable = cgr_disable, \ .secondary = s, \ .parent = p, \ } #define DEFINE_CLOCK1(name, i, er, es, getsetround, s, p) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = getsetround##_get_rate, \ .set_rate = getsetround##_set_rate, \ .round_rate = getsetround##_round_rate, \ .enable = cgr_enable, \ .disable = cgr_disable, \ .secondary = s, \ .parent = p, \ } DEFINE_CLOCK(perclk_clk, 0, NULL, 0, NULL, NULL, &ipg_clk); DEFINE_CLOCK(sdhc1_clk, 0, MXC_CCM_CGR0, 0, NULL, NULL, &perclk_clk); DEFINE_CLOCK(sdhc2_clk, 1, MXC_CCM_CGR0, 2, NULL, NULL, &perclk_clk); DEFINE_CLOCK(gpt_clk, 0, MXC_CCM_CGR0, 4, NULL, NULL, &perclk_clk); DEFINE_CLOCK(epit1_clk, 0, MXC_CCM_CGR0, 6, NULL, NULL, &perclk_clk); DEFINE_CLOCK(epit2_clk, 1, MXC_CCM_CGR0, 8, NULL, NULL, &perclk_clk); DEFINE_CLOCK(iim_clk, 0, MXC_CCM_CGR0, 10, NULL, NULL, &ipg_clk); DEFINE_CLOCK(ata_clk, 0, MXC_CCM_CGR0, 12, NULL, NULL, &ipg_clk); DEFINE_CLOCK(sdma_clk1, 0, MXC_CCM_CGR0, 14, NULL, &sdma_clk1, &ahb_clk); DEFINE_CLOCK(cspi3_clk, 2, MXC_CCM_CGR0, 16, NULL, NULL, &ipg_clk); DEFINE_CLOCK(rng_clk, 0, MXC_CCM_CGR0, 18, NULL, NULL, &ipg_clk); DEFINE_CLOCK(uart1_clk, 0, MXC_CCM_CGR0, 20, NULL, NULL, &perclk_clk); DEFINE_CLOCK(uart2_clk, 1, MXC_CCM_CGR0, 22, NULL, NULL, &perclk_clk); DEFINE_CLOCK(ssi1_clk, 0, MXC_CCM_CGR0, 24, ssi1_get_rate, NULL, &serial_pll_clk); DEFINE_CLOCK(i2c1_clk, 0, MXC_CCM_CGR0, 26, NULL, NULL, &perclk_clk); DEFINE_CLOCK(i2c2_clk, 1, MXC_CCM_CGR0, 28, NULL, NULL, &perclk_clk); DEFINE_CLOCK(i2c3_clk, 2, MXC_CCM_CGR0, 30, NULL, NULL, &perclk_clk); DEFINE_CLOCK(mpeg4_clk, 0, MXC_CCM_CGR1, 0, NULL, NULL, &ahb_clk); DEFINE_CLOCK(mstick1_clk, 0, MXC_CCM_CGR1, 2, mstick1_get_rate, NULL, &usb_pll_clk); DEFINE_CLOCK(mstick2_clk, 1, MXC_CCM_CGR1, 4, mstick2_get_rate, NULL, &usb_pll_clk); DEFINE_CLOCK1(csi_clk, 0, MXC_CCM_CGR1, 6, csi, NULL, &serial_pll_clk); DEFINE_CLOCK(rtc_clk, 0, MXC_CCM_CGR1, 8, NULL, NULL, &ipg_clk); DEFINE_CLOCK(wdog_clk, 0, MXC_CCM_CGR1, 10, NULL, NULL, &ipg_clk); DEFINE_CLOCK(pwm_clk, 0, MXC_CCM_CGR1, 12, NULL, NULL, &perclk_clk); DEFINE_CLOCK(usb_clk2, 0, MXC_CCM_CGR1, 18, usb_get_rate, NULL, &ahb_clk); DEFINE_CLOCK(kpp_clk, 0, MXC_CCM_CGR1, 20, NULL, NULL, &ipg_clk); DEFINE_CLOCK(ipu_clk, 0, MXC_CCM_CGR1, 22, hsp_get_rate, NULL, &mcu_main_clk); DEFINE_CLOCK(uart3_clk, 2, MXC_CCM_CGR1, 24, NULL, NULL, &perclk_clk); DEFINE_CLOCK(uart4_clk, 3, MXC_CCM_CGR1, 26, NULL, NULL, &perclk_clk); DEFINE_CLOCK(uart5_clk, 4, MXC_CCM_CGR1, 28, NULL, NULL, &perclk_clk); DEFINE_CLOCK(owire_clk, 0, MXC_CCM_CGR1, 30, NULL, NULL, &perclk_clk); DEFINE_CLOCK(ssi2_clk, 1, MXC_CCM_CGR2, 0, ssi2_get_rate, NULL, &serial_pll_clk); DEFINE_CLOCK(cspi1_clk, 0, MXC_CCM_CGR2, 2, NULL, NULL, &ipg_clk); DEFINE_CLOCK(cspi2_clk, 1, MXC_CCM_CGR2, 4, NULL, NULL, &ipg_clk); DEFINE_CLOCK(mbx_clk, 0, MXC_CCM_CGR2, 6, mbx_get_rate, NULL, &ahb_clk); DEFINE_CLOCK(emi_clk, 0, MXC_CCM_CGR2, 8, NULL, NULL, &ahb_clk); DEFINE_CLOCK(rtic_clk, 0, MXC_CCM_CGR2, 10, NULL, NULL, &ahb_clk); DEFINE_CLOCK1(firi_clk, 0, MXC_CCM_CGR2, 12, firi, NULL, &usb_pll_clk); DEFINE_CLOCK(sdma_clk2, 0, NULL, 0, NULL, NULL, &ipg_clk); DEFINE_CLOCK(usb_clk1, 0, NULL, 0, usb_get_rate, NULL, &usb_pll_clk); DEFINE_CLOCK(nfc_clk, 0, NULL, 0, nfc_get_rate, NULL, &ahb_clk); DEFINE_CLOCK(scc_clk, 0, NULL, 0, NULL, NULL, &ipg_clk); DEFINE_CLOCK(ipg_clk, 0, NULL, 0, ipg_get_rate, NULL, &ahb_clk); DEFINE_CLOCK(ckil_clk, 0, NULL, 0, clk_ckil_get_rate, NULL, NULL); #define _REGISTER_CLOCK(d, n, c) \ { \ .dev_id = d, \ .con_id = n, \ .clk = &c, \ }, static struct clk_lookup lookups[] = { _REGISTER_CLOCK(NULL, "emi", emi_clk) _REGISTER_CLOCK("spi_imx.0", NULL, cspi1_clk) _REGISTER_CLOCK("spi_imx.1", NULL, cspi2_clk) _REGISTER_CLOCK("spi_imx.2", NULL, cspi3_clk) _REGISTER_CLOCK(NULL, "gpt", gpt_clk) _REGISTER_CLOCK(NULL, "pwm", pwm_clk) _REGISTER_CLOCK("imx-wdt.0", NULL, wdog_clk) _REGISTER_CLOCK(NULL, "rtc", rtc_clk) _REGISTER_CLOCK(NULL, "epit", epit1_clk) _REGISTER_CLOCK(NULL, "epit", epit2_clk) _REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk) _REGISTER_CLOCK("ipu-core", NULL, ipu_clk) _REGISTER_CLOCK("mx3_sdc_fb", NULL, ipu_clk) _REGISTER_CLOCK(NULL, "kpp", kpp_clk) _REGISTER_CLOCK("mxc-ehci.0", "usb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.0", "usb_ahb", usb_clk2) _REGISTER_CLOCK("mxc-ehci.1", "usb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.1", "usb_ahb", usb_clk2) _REGISTER_CLOCK("mxc-ehci.2", "usb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.2", "usb_ahb", usb_clk2) _REGISTER_CLOCK("fsl-usb2-udc", "usb", usb_clk1) _REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usb_clk2) _REGISTER_CLOCK("mx3-camera.0", NULL, csi_clk) _REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk) _REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk) _REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk) _REGISTER_CLOCK("imx-uart.3", NULL, uart4_clk) _REGISTER_CLOCK("imx-uart.4", NULL, uart5_clk) _REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk) _REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk) _REGISTER_CLOCK("imx-i2c.2", NULL, i2c3_clk) _REGISTER_CLOCK("mxc_w1.0", NULL, owire_clk) _REGISTER_CLOCK("mxc-mmc.0", NULL, sdhc1_clk) _REGISTER_CLOCK("mxc-mmc.1", NULL, sdhc2_clk) _REGISTER_CLOCK(NULL, "ssi", ssi1_clk) _REGISTER_CLOCK(NULL, "ssi", ssi2_clk) _REGISTER_CLOCK(NULL, "firi", firi_clk) _REGISTER_CLOCK(NULL, "ata", ata_clk) _REGISTER_CLOCK(NULL, "rtic", rtic_clk) _REGISTER_CLOCK(NULL, "rng", rng_clk) _REGISTER_CLOCK(NULL, "sdma_ahb", sdma_clk1) _REGISTER_CLOCK(NULL, "sdma_ipg", sdma_clk2) _REGISTER_CLOCK(NULL, "mstick", mstick1_clk) _REGISTER_CLOCK(NULL, "mstick", mstick2_clk) _REGISTER_CLOCK(NULL, "scc", scc_clk) _REGISTER_CLOCK(NULL, "iim", iim_clk) _REGISTER_CLOCK(NULL, "mpeg4", mpeg4_clk) _REGISTER_CLOCK(NULL, "mbx", mbx_clk) _REGISTER_CLOCK("mxc_rtc", NULL, ckil_clk) }; int __init mx31_clocks_init(unsigned long fref) { u32 reg; int i; ckih_rate = fref; for (i = 0; i < ARRAY_SIZE(lookups); i++) clkdev_add(&lookups[i]); /* change the csi_clk parent if necessary */ reg = __raw_readl(MXC_CCM_CCMR); if (!(reg & MXC_CCM_CCMR_CSCS)) if (clk_set_parent(&csi_clk, &usb_pll_clk)) pr_err("%s: error changing csi_clk parent\n", __func__); /* Turn off all possible clocks */ __raw_writel((3 << 4), MXC_CCM_CGR0); __raw_writel(0, MXC_CCM_CGR1); __raw_writel((3 << 8) | (3 << 14) | (3 << 16)| 1 << 27 | 1 << 28, /* Bit 27 and 28 are not defined for MX32, but still required to be set */ MXC_CCM_CGR2); /* * Before turning off usb_pll make sure ipg_per_clk is generated * by ipg_clk and not usb_pll. */ __raw_writel(__raw_readl(MXC_CCM_CCMR) | (1 << 24), MXC_CCM_CCMR); usb_pll_disable(&usb_pll_clk); pr_info("Clock input source is %ld\n", clk_get_rate(&ckih_clk)); clk_enable(&gpt_clk); clk_enable(&emi_clk); clk_enable(&iim_clk); clk_enable(&serial_pll_clk); mx31_read_cpu_rev(); if (mx31_revision() >= CHIP_REV_2_0) { reg = __raw_readl(MXC_CCM_PMCR1); /* No PLL restart on DVFS switch; enable auto EMI handshake */ reg |= MXC_CCM_PMCR1_PLLRDIS | MXC_CCM_PMCR1_EMIRQ_EN; __raw_writel(reg, MXC_CCM_PMCR1); } mxc_timer_init(&ipg_clk, IO_ADDRESS(GPT1_BASE_ADDR), MXC_INT_GPT); return 0; }