/* * Resizable, Scalable, Concurrent Hash Table * * Copyright (c) 2014-2015 Thomas Graf * Copyright (c) 2008-2014 Patrick McHardy * * Based on the following paper: * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf * * Code partially derived from nft_hash * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #define HASH_DEFAULT_SIZE 64UL #define HASH_MIN_SIZE 4UL #define BUCKET_LOCKS_PER_CPU 128UL /* Base bits plus 1 bit for nulls marker */ #define HASH_RESERVED_SPACE (RHT_BASE_BITS + 1) /* The bucket lock is selected based on the hash and protects mutations * on a group of hash buckets. * * A maximum of tbl->size/2 bucket locks is allocated. This ensures that * a single lock always covers both buckets which may both contains * entries which link to the same bucket of the old table during resizing. * This allows to simplify the locking as locking the bucket in both * tables during resize always guarantee protection. * * IMPORTANT: When holding the bucket lock of both the old and new table * during expansions and shrinking, the old bucket lock must always be * acquired first. */ static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash) { return &tbl->locks[hash & tbl->locks_mask]; } static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he) { return (void *) he - ht->p.head_offset; } static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash) { return (hash >> HASH_RESERVED_SPACE) & (tbl->size - 1); } static u32 key_hashfn(struct rhashtable *ht, const struct bucket_table *tbl, const void *key) { return rht_bucket_index(tbl, ht->p.hashfn(key, ht->p.key_len, tbl->hash_rnd)); } static u32 head_hashfn(struct rhashtable *ht, const struct bucket_table *tbl, const struct rhash_head *he) { const char *ptr = rht_obj(ht, he); return likely(ht->p.key_len) ? key_hashfn(ht, tbl, ptr + ht->p.key_offset) : rht_bucket_index(tbl, ht->p.obj_hashfn(ptr, tbl->hash_rnd)); } #ifdef CONFIG_PROVE_LOCKING #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) int lockdep_rht_mutex_is_held(struct rhashtable *ht) { return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; } EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) { spinlock_t *lock = bucket_lock(tbl, hash); return (debug_locks) ? lockdep_is_held(lock) : 1; } EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); #else #define ASSERT_RHT_MUTEX(HT) #endif static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl) { unsigned int i, size; #if defined(CONFIG_PROVE_LOCKING) unsigned int nr_pcpus = 2; #else unsigned int nr_pcpus = num_possible_cpus(); #endif nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL); size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul); /* Never allocate more than 0.5 locks per bucket */ size = min_t(unsigned int, size, tbl->size >> 1); if (sizeof(spinlock_t) != 0) { #ifdef CONFIG_NUMA if (size * sizeof(spinlock_t) > PAGE_SIZE) tbl->locks = vmalloc(size * sizeof(spinlock_t)); else #endif tbl->locks = kmalloc_array(size, sizeof(spinlock_t), GFP_KERNEL); if (!tbl->locks) return -ENOMEM; for (i = 0; i < size; i++) spin_lock_init(&tbl->locks[i]); } tbl->locks_mask = size - 1; return 0; } static void bucket_table_free(const struct bucket_table *tbl) { if (tbl) kvfree(tbl->locks); kvfree(tbl); } static void bucket_table_free_rcu(struct rcu_head *head) { bucket_table_free(container_of(head, struct bucket_table, rcu)); } static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, size_t nbuckets) { struct bucket_table *tbl = NULL; size_t size; int i; size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY); if (tbl == NULL) tbl = vzalloc(size); if (tbl == NULL) return NULL; tbl->size = nbuckets; tbl->shift = ilog2(nbuckets); if (alloc_bucket_locks(ht, tbl) < 0) { bucket_table_free(tbl); return NULL; } INIT_LIST_HEAD(&tbl->walkers); get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); for (i = 0; i < nbuckets; i++) INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); return tbl; } /** * rht_grow_above_75 - returns true if nelems > 0.75 * table-size * @ht: hash table * @tbl: current table */ static bool rht_grow_above_75(const struct rhashtable *ht, const struct bucket_table *tbl) { /* Expand table when exceeding 75% load */ return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) && (!ht->p.max_shift || tbl->shift < ht->p.max_shift); } /** * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size * @ht: hash table * @tbl: current table */ static bool rht_shrink_below_30(const struct rhashtable *ht, const struct bucket_table *tbl) { /* Shrink table beneath 30% load */ return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) && tbl->shift > ht->p.min_shift; } static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); struct bucket_table *new_tbl = rht_dereference(old_tbl->future_tbl, ht) ?: old_tbl; struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash]; int err = -ENOENT; struct rhash_head *head, *next, *entry; spinlock_t *new_bucket_lock; unsigned new_hash; rht_for_each(entry, old_tbl, old_hash) { err = 0; next = rht_dereference_bucket(entry->next, old_tbl, old_hash); if (rht_is_a_nulls(next)) break; pprev = &entry->next; } if (err) goto out; new_hash = head_hashfn(ht, new_tbl, entry); new_bucket_lock = bucket_lock(new_tbl, new_hash); spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING); head = rht_dereference_bucket(new_tbl->buckets[new_hash], new_tbl, new_hash); if (rht_is_a_nulls(head)) INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash); else RCU_INIT_POINTER(entry->next, head); rcu_assign_pointer(new_tbl->buckets[new_hash], entry); spin_unlock(new_bucket_lock); rcu_assign_pointer(*pprev, next); out: return err; } static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); spinlock_t *old_bucket_lock; old_bucket_lock = bucket_lock(old_tbl, old_hash); spin_lock_bh(old_bucket_lock); while (!rhashtable_rehash_one(ht, old_hash)) ; old_tbl->rehash++; spin_unlock_bh(old_bucket_lock); } static void rhashtable_rehash(struct rhashtable *ht, struct bucket_table *new_tbl) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); struct rhashtable_walker *walker; unsigned old_hash; /* Make insertions go into the new, empty table right away. Deletions * and lookups will be attempted in both tables until we synchronize. */ rcu_assign_pointer(old_tbl->future_tbl, new_tbl); /* Ensure the new table is visible to readers. */ smp_wmb(); for (old_hash = 0; old_hash < old_tbl->size; old_hash++) rhashtable_rehash_chain(ht, old_hash); /* Publish the new table pointer. */ rcu_assign_pointer(ht->tbl, new_tbl); list_for_each_entry(walker, &old_tbl->walkers, list) walker->tbl = NULL; /* Wait for readers. All new readers will see the new * table, and thus no references to the old table will * remain. */ call_rcu(&old_tbl->rcu, bucket_table_free_rcu); } /** * rhashtable_expand - Expand hash table while allowing concurrent lookups * @ht: the hash table to expand * * A secondary bucket array is allocated and the hash entries are migrated. * * This function may only be called in a context where it is safe to call * synchronize_rcu(), e.g. not within a rcu_read_lock() section. * * The caller must ensure that no concurrent resizing occurs by holding * ht->mutex. * * It is valid to have concurrent insertions and deletions protected by per * bucket locks or concurrent RCU protected lookups and traversals. */ int rhashtable_expand(struct rhashtable *ht) { struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); ASSERT_RHT_MUTEX(ht); new_tbl = bucket_table_alloc(ht, old_tbl->size * 2); if (new_tbl == NULL) return -ENOMEM; rhashtable_rehash(ht, new_tbl); return 0; } EXPORT_SYMBOL_GPL(rhashtable_expand); /** * rhashtable_shrink - Shrink hash table while allowing concurrent lookups * @ht: the hash table to shrink * * This function may only be called in a context where it is safe to call * synchronize_rcu(), e.g. not within a rcu_read_lock() section. * * The caller must ensure that no concurrent resizing occurs by holding * ht->mutex. * * The caller must ensure that no concurrent table mutations take place. * It is however valid to have concurrent lookups if they are RCU protected. * * It is valid to have concurrent insertions and deletions protected by per * bucket locks or concurrent RCU protected lookups and traversals. */ int rhashtable_shrink(struct rhashtable *ht) { struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); ASSERT_RHT_MUTEX(ht); new_tbl = bucket_table_alloc(ht, old_tbl->size / 2); if (new_tbl == NULL) return -ENOMEM; rhashtable_rehash(ht, new_tbl); return 0; } EXPORT_SYMBOL_GPL(rhashtable_shrink); static void rht_deferred_worker(struct work_struct *work) { struct rhashtable *ht; struct bucket_table *tbl; ht = container_of(work, struct rhashtable, run_work); mutex_lock(&ht->mutex); if (ht->being_destroyed) goto unlock; tbl = rht_dereference(ht->tbl, ht); if (rht_grow_above_75(ht, tbl)) rhashtable_expand(ht); else if (rht_shrink_below_30(ht, tbl)) rhashtable_shrink(ht); unlock: mutex_unlock(&ht->mutex); } static bool __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj, bool (*compare)(void *, void *), void *arg) { struct bucket_table *tbl, *old_tbl; struct rhash_head *head; bool no_resize_running; unsigned hash; bool success = true; rcu_read_lock(); old_tbl = rht_dereference_rcu(ht->tbl, ht); hash = head_hashfn(ht, old_tbl, obj); spin_lock_bh(bucket_lock(old_tbl, hash)); /* Because we have already taken the bucket lock in old_tbl, * if we find that future_tbl is not yet visible then that * guarantees all other insertions of the same entry will * also grab the bucket lock in old_tbl because until the * rehash completes ht->tbl won't be changed. */ tbl = rht_dereference_rcu(old_tbl->future_tbl, ht) ?: old_tbl; if (tbl != old_tbl) { hash = head_hashfn(ht, tbl, obj); spin_lock_nested(bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING); } if (compare && rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset, compare, arg)) { success = false; goto exit; } no_resize_running = tbl == old_tbl; head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash); if (rht_is_a_nulls(head)) INIT_RHT_NULLS_HEAD(obj->next, ht, hash); else RCU_INIT_POINTER(obj->next, head); rcu_assign_pointer(tbl->buckets[hash], obj); atomic_inc(&ht->nelems); if (no_resize_running && rht_grow_above_75(ht, tbl)) schedule_work(&ht->run_work); exit: if (tbl != old_tbl) { hash = head_hashfn(ht, tbl, obj); spin_unlock(bucket_lock(tbl, hash)); } hash = head_hashfn(ht, old_tbl, obj); spin_unlock_bh(bucket_lock(old_tbl, hash)); rcu_read_unlock(); return success; } /** * rhashtable_insert - insert object into hash table * @ht: hash table * @obj: pointer to hash head inside object * * Will take a per bucket spinlock to protect against mutual mutations * on the same bucket. Multiple insertions may occur in parallel unless * they map to the same bucket lock. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if the size grows * beyond the watermark indicated by grow_decision() which can be passed * to rhashtable_init(). */ void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj) { __rhashtable_insert(ht, obj, NULL, NULL); } EXPORT_SYMBOL_GPL(rhashtable_insert); static bool __rhashtable_remove(struct rhashtable *ht, struct bucket_table *tbl, struct rhash_head *obj) { struct rhash_head __rcu **pprev; struct rhash_head *he; spinlock_t * lock; unsigned hash; bool ret = false; hash = head_hashfn(ht, tbl, obj); lock = bucket_lock(tbl, hash); spin_lock_bh(lock); pprev = &tbl->buckets[hash]; rht_for_each(he, tbl, hash) { if (he != obj) { pprev = &he->next; continue; } rcu_assign_pointer(*pprev, obj->next); ret = true; break; } spin_unlock_bh(lock); return ret; } /** * rhashtable_remove - remove object from hash table * @ht: hash table * @obj: pointer to hash head inside object * * Since the hash chain is single linked, the removal operation needs to * walk the bucket chain upon removal. The removal operation is thus * considerable slow if the hash table is not correctly sized. * * Will automatically shrink the table via rhashtable_expand() if the * shrink_decision function specified at rhashtable_init() returns true. * * The caller must ensure that no concurrent table mutations occur. It is * however valid to have concurrent lookups if they are RCU protected. */ bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj) { struct bucket_table *tbl; bool ret; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); /* Because we have already taken (and released) the bucket * lock in old_tbl, if we find that future_tbl is not yet * visible then that guarantees the entry to still be in * the old tbl if it exists. */ while (!(ret = __rhashtable_remove(ht, tbl, obj)) && (tbl = rht_dereference_rcu(tbl->future_tbl, ht))) ; if (ret) { atomic_dec(&ht->nelems); if (rht_shrink_below_30(ht, tbl)) schedule_work(&ht->run_work); } rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rhashtable_remove); struct rhashtable_compare_arg { struct rhashtable *ht; const void *key; }; static bool rhashtable_compare(void *ptr, void *arg) { struct rhashtable_compare_arg *x = arg; struct rhashtable *ht = x->ht; return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len); } /** * rhashtable_lookup - lookup key in hash table * @ht: hash table * @key: pointer to key * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. The first matching entry is returned. * * This lookup function may only be used for fixed key hash table (key_len * parameter set). It will BUG() if used inappropriately. * * Lookups may occur in parallel with hashtable mutations and resizing. */ void *rhashtable_lookup(struct rhashtable *ht, const void *key) { struct rhashtable_compare_arg arg = { .ht = ht, .key = key, }; BUG_ON(!ht->p.key_len); return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg); } EXPORT_SYMBOL_GPL(rhashtable_lookup); /** * rhashtable_lookup_compare - search hash table with compare function * @ht: hash table * @key: the pointer to the key * @compare: compare function, must return true on match * @arg: argument passed on to compare function * * Traverses the bucket chain behind the provided hash value and calls the * specified compare function for each entry. * * Lookups may occur in parallel with hashtable mutations and resizing. * * Returns the first entry on which the compare function returned true. */ void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key, bool (*compare)(void *, void *), void *arg) { const struct bucket_table *tbl; struct rhash_head *he; u32 hash; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); restart: hash = key_hashfn(ht, tbl, key); rht_for_each_rcu(he, tbl, hash) { if (!compare(rht_obj(ht, he), arg)) continue; rcu_read_unlock(); return rht_obj(ht, he); } /* Ensure we see any new tables. */ smp_rmb(); tbl = rht_dereference_rcu(tbl->future_tbl, ht); if (unlikely(tbl)) goto restart; rcu_read_unlock(); return NULL; } EXPORT_SYMBOL_GPL(rhashtable_lookup_compare); /** * rhashtable_lookup_insert - lookup and insert object into hash table * @ht: hash table * @obj: pointer to hash head inside object * * Locks down the bucket chain in both the old and new table if a resize * is in progress to ensure that writers can't remove from the old table * and can't insert to the new table during the atomic operation of search * and insertion. Searches for duplicates in both the old and new table if * a resize is in progress. * * This lookup function may only be used for fixed key hash table (key_len * parameter set). It will BUG() if used inappropriately. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if the size grows * beyond the watermark indicated by grow_decision() which can be passed * to rhashtable_init(). */ bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj) { struct rhashtable_compare_arg arg = { .ht = ht, .key = rht_obj(ht, obj) + ht->p.key_offset, }; BUG_ON(!ht->p.key_len); return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare, &arg); } EXPORT_SYMBOL_GPL(rhashtable_lookup_insert); /** * rhashtable_lookup_compare_insert - search and insert object to hash table * with compare function * @ht: hash table * @obj: pointer to hash head inside object * @compare: compare function, must return true on match * @arg: argument passed on to compare function * * Locks down the bucket chain in both the old and new table if a resize * is in progress to ensure that writers can't remove from the old table * and can't insert to the new table during the atomic operation of search * and insertion. Searches for duplicates in both the old and new table if * a resize is in progress. * * Lookups may occur in parallel with hashtable mutations and resizing. * * Will trigger an automatic deferred table resizing if the size grows * beyond the watermark indicated by grow_decision() which can be passed * to rhashtable_init(). */ bool rhashtable_lookup_compare_insert(struct rhashtable *ht, struct rhash_head *obj, bool (*compare)(void *, void *), void *arg) { BUG_ON(!ht->p.key_len); return __rhashtable_insert(ht, obj, compare, arg); } EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert); /** * rhashtable_walk_init - Initialise an iterator * @ht: Table to walk over * @iter: Hash table Iterator * * This function prepares a hash table walk. * * Note that if you restart a walk after rhashtable_walk_stop you * may see the same object twice. Also, you may miss objects if * there are removals in between rhashtable_walk_stop and the next * call to rhashtable_walk_start. * * For a completely stable walk you should construct your own data * structure outside the hash table. * * This function may sleep so you must not call it from interrupt * context or with spin locks held. * * You must call rhashtable_walk_exit if this function returns * successfully. */ int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter) { iter->ht = ht; iter->p = NULL; iter->slot = 0; iter->skip = 0; iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL); if (!iter->walker) return -ENOMEM; mutex_lock(&ht->mutex); iter->walker->tbl = rht_dereference(ht->tbl, ht); list_add(&iter->walker->list, &iter->walker->tbl->walkers); mutex_unlock(&ht->mutex); return 0; } EXPORT_SYMBOL_GPL(rhashtable_walk_init); /** * rhashtable_walk_exit - Free an iterator * @iter: Hash table Iterator * * This function frees resources allocated by rhashtable_walk_init. */ void rhashtable_walk_exit(struct rhashtable_iter *iter) { mutex_lock(&iter->ht->mutex); if (iter->walker->tbl) list_del(&iter->walker->list); mutex_unlock(&iter->ht->mutex); kfree(iter->walker); } EXPORT_SYMBOL_GPL(rhashtable_walk_exit); /** * rhashtable_walk_start - Start a hash table walk * @iter: Hash table iterator * * Start a hash table walk. Note that we take the RCU lock in all * cases including when we return an error. So you must always call * rhashtable_walk_stop to clean up. * * Returns zero if successful. * * Returns -EAGAIN if resize event occured. Note that the iterator * will rewind back to the beginning and you may use it immediately * by calling rhashtable_walk_next. */ int rhashtable_walk_start(struct rhashtable_iter *iter) { struct rhashtable *ht = iter->ht; mutex_lock(&ht->mutex); if (iter->walker->tbl) list_del(&iter->walker->list); rcu_read_lock(); mutex_unlock(&ht->mutex); if (!iter->walker->tbl) { iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht); return -EAGAIN; } return 0; } EXPORT_SYMBOL_GPL(rhashtable_walk_start); /** * rhashtable_walk_next - Return the next object and advance the iterator * @iter: Hash table iterator * * Note that you must call rhashtable_walk_stop when you are finished * with the walk. * * Returns the next object or NULL when the end of the table is reached. * * Returns -EAGAIN if resize event occured. Note that the iterator * will rewind back to the beginning and you may continue to use it. */ void *rhashtable_walk_next(struct rhashtable_iter *iter) { struct bucket_table *tbl = iter->walker->tbl; struct rhashtable *ht = iter->ht; struct rhash_head *p = iter->p; void *obj = NULL; if (p) { p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot); goto next; } for (; iter->slot < tbl->size; iter->slot++) { int skip = iter->skip; rht_for_each_rcu(p, tbl, iter->slot) { if (!skip) break; skip--; } next: if (!rht_is_a_nulls(p)) { iter->skip++; iter->p = p; obj = rht_obj(ht, p); goto out; } iter->skip = 0; } iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht); if (iter->walker->tbl) { iter->slot = 0; iter->skip = 0; return ERR_PTR(-EAGAIN); } iter->p = NULL; out: return obj; } EXPORT_SYMBOL_GPL(rhashtable_walk_next); /** * rhashtable_walk_stop - Finish a hash table walk * @iter: Hash table iterator * * Finish a hash table walk. */ void rhashtable_walk_stop(struct rhashtable_iter *iter) { struct rhashtable *ht; struct bucket_table *tbl = iter->walker->tbl; if (!tbl) goto out; ht = iter->ht; mutex_lock(&ht->mutex); if (tbl->rehash < tbl->size) list_add(&iter->walker->list, &tbl->walkers); else iter->walker->tbl = NULL; mutex_unlock(&ht->mutex); iter->p = NULL; out: rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rhashtable_walk_stop); static size_t rounded_hashtable_size(struct rhashtable_params *params) { return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 1UL << params->min_shift); } /** * rhashtable_init - initialize a new hash table * @ht: hash table to be initialized * @params: configuration parameters * * Initializes a new hash table based on the provided configuration * parameters. A table can be configured either with a variable or * fixed length key: * * Configuration Example 1: Fixed length keys * struct test_obj { * int key; * void * my_member; * struct rhash_head node; * }; * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .key_offset = offsetof(struct test_obj, key), * .key_len = sizeof(int), * .hashfn = jhash, * .nulls_base = (1U << RHT_BASE_SHIFT), * }; * * Configuration Example 2: Variable length keys * struct test_obj { * [...] * struct rhash_head node; * }; * * u32 my_hash_fn(const void *data, u32 seed) * { * struct test_obj *obj = data; * * return [... hash ...]; * } * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .hashfn = jhash, * .obj_hashfn = my_hash_fn, * }; */ int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params) { struct bucket_table *tbl; size_t size; size = HASH_DEFAULT_SIZE; if ((params->key_len && !params->hashfn) || (!params->key_len && !params->obj_hashfn)) return -EINVAL; if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) return -EINVAL; params->min_shift = max_t(size_t, params->min_shift, ilog2(HASH_MIN_SIZE)); if (params->nelem_hint) size = rounded_hashtable_size(params); memset(ht, 0, sizeof(*ht)); mutex_init(&ht->mutex); memcpy(&ht->p, params, sizeof(*params)); if (params->locks_mul) ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); else ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; tbl = bucket_table_alloc(ht, size); if (tbl == NULL) return -ENOMEM; atomic_set(&ht->nelems, 0); RCU_INIT_POINTER(ht->tbl, tbl); INIT_WORK(&ht->run_work, rht_deferred_worker); return 0; } EXPORT_SYMBOL_GPL(rhashtable_init); /** * rhashtable_destroy - destroy hash table * @ht: the hash table to destroy * * Frees the bucket array. This function is not rcu safe, therefore the caller * has to make sure that no resizing may happen by unpublishing the hashtable * and waiting for the quiescent cycle before releasing the bucket array. */ void rhashtable_destroy(struct rhashtable *ht) { ht->being_destroyed = true; cancel_work_sync(&ht->run_work); mutex_lock(&ht->mutex); bucket_table_free(rht_dereference(ht->tbl, ht)); mutex_unlock(&ht->mutex); } EXPORT_SYMBOL_GPL(rhashtable_destroy);