/* * Copyright (C) 2008 * Guennadi Liakhovetski, DENX Software Engineering, * * Copyright (C) 2005-2007 Freescale Semiconductor, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "ipu_intern.h" #define FS_VF_IN_VALID 0x00000002 #define FS_ENC_IN_VALID 0x00000001 static int ipu_disable_channel(struct idmac *idmac, struct idmac_channel *ichan, bool wait_for_stop); /* * There can be only one, we could allocate it dynamically, but then we'd have * to add an extra parameter to some functions, and use something as ugly as * struct ipu *ipu = to_ipu(to_idmac(ichan->dma_chan.device)); * in the ISR */ static struct ipu ipu_data; #define to_ipu(id) container_of(id, struct ipu, idmac) static u32 __idmac_read_icreg(struct ipu *ipu, unsigned long reg) { return __raw_readl(ipu->reg_ic + reg); } #define idmac_read_icreg(ipu, reg) __idmac_read_icreg(ipu, reg - IC_CONF) static void __idmac_write_icreg(struct ipu *ipu, u32 value, unsigned long reg) { __raw_writel(value, ipu->reg_ic + reg); } #define idmac_write_icreg(ipu, v, reg) __idmac_write_icreg(ipu, v, reg - IC_CONF) static u32 idmac_read_ipureg(struct ipu *ipu, unsigned long reg) { return __raw_readl(ipu->reg_ipu + reg); } static void idmac_write_ipureg(struct ipu *ipu, u32 value, unsigned long reg) { __raw_writel(value, ipu->reg_ipu + reg); } /***************************************************************************** * IPU / IC common functions */ static void dump_idmac_reg(struct ipu *ipu) { dev_dbg(ipu->dev, "IDMAC_CONF 0x%x, IC_CONF 0x%x, IDMAC_CHA_EN 0x%x, " "IDMAC_CHA_PRI 0x%x, IDMAC_CHA_BUSY 0x%x\n", idmac_read_icreg(ipu, IDMAC_CONF), idmac_read_icreg(ipu, IC_CONF), idmac_read_icreg(ipu, IDMAC_CHA_EN), idmac_read_icreg(ipu, IDMAC_CHA_PRI), idmac_read_icreg(ipu, IDMAC_CHA_BUSY)); dev_dbg(ipu->dev, "BUF0_RDY 0x%x, BUF1_RDY 0x%x, CUR_BUF 0x%x, " "DB_MODE 0x%x, TASKS_STAT 0x%x\n", idmac_read_ipureg(ipu, IPU_CHA_BUF0_RDY), idmac_read_ipureg(ipu, IPU_CHA_BUF1_RDY), idmac_read_ipureg(ipu, IPU_CHA_CUR_BUF), idmac_read_ipureg(ipu, IPU_CHA_DB_MODE_SEL), idmac_read_ipureg(ipu, IPU_TASKS_STAT)); } static uint32_t bytes_per_pixel(enum pixel_fmt fmt) { switch (fmt) { case IPU_PIX_FMT_GENERIC: /* generic data */ case IPU_PIX_FMT_RGB332: case IPU_PIX_FMT_YUV420P: case IPU_PIX_FMT_YUV422P: default: return 1; case IPU_PIX_FMT_RGB565: case IPU_PIX_FMT_YUYV: case IPU_PIX_FMT_UYVY: return 2; case IPU_PIX_FMT_BGR24: case IPU_PIX_FMT_RGB24: return 3; case IPU_PIX_FMT_GENERIC_32: /* generic data */ case IPU_PIX_FMT_BGR32: case IPU_PIX_FMT_RGB32: case IPU_PIX_FMT_ABGR32: return 4; } } /* Enable direct write to memory by the Camera Sensor Interface */ static void ipu_ic_enable_task(struct ipu *ipu, enum ipu_channel channel) { uint32_t ic_conf, mask; switch (channel) { case IDMAC_IC_0: mask = IC_CONF_PRPENC_EN; break; case IDMAC_IC_7: mask = IC_CONF_RWS_EN | IC_CONF_PRPENC_EN; break; default: return; } ic_conf = idmac_read_icreg(ipu, IC_CONF) | mask; idmac_write_icreg(ipu, ic_conf, IC_CONF); } /* Called under spin_lock_irqsave(&ipu_data.lock) */ static void ipu_ic_disable_task(struct ipu *ipu, enum ipu_channel channel) { uint32_t ic_conf, mask; switch (channel) { case IDMAC_IC_0: mask = IC_CONF_PRPENC_EN; break; case IDMAC_IC_7: mask = IC_CONF_RWS_EN | IC_CONF_PRPENC_EN; break; default: return; } ic_conf = idmac_read_icreg(ipu, IC_CONF) & ~mask; idmac_write_icreg(ipu, ic_conf, IC_CONF); } static uint32_t ipu_channel_status(struct ipu *ipu, enum ipu_channel channel) { uint32_t stat = TASK_STAT_IDLE; uint32_t task_stat_reg = idmac_read_ipureg(ipu, IPU_TASKS_STAT); switch (channel) { case IDMAC_IC_7: stat = (task_stat_reg & TSTAT_CSI2MEM_MASK) >> TSTAT_CSI2MEM_OFFSET; break; case IDMAC_IC_0: case IDMAC_SDC_0: case IDMAC_SDC_1: default: break; } return stat; } struct chan_param_mem_planar { /* Word 0 */ u32 xv:10; u32 yv:10; u32 xb:12; u32 yb:12; u32 res1:2; u32 nsb:1; u32 lnpb:6; u32 ubo_l:11; u32 ubo_h:15; u32 vbo_l:17; u32 vbo_h:9; u32 res2:3; u32 fw:12; u32 fh_l:8; u32 fh_h:4; u32 res3:28; /* Word 1 */ u32 eba0; u32 eba1; u32 bpp:3; u32 sl:14; u32 pfs:3; u32 bam:3; u32 res4:2; u32 npb:6; u32 res5:1; u32 sat:2; u32 res6:30; } __attribute__ ((packed)); struct chan_param_mem_interleaved { /* Word 0 */ u32 xv:10; u32 yv:10; u32 xb:12; u32 yb:12; u32 sce:1; u32 res1:1; u32 nsb:1; u32 lnpb:6; u32 sx:10; u32 sy_l:1; u32 sy_h:9; u32 ns:10; u32 sm:10; u32 sdx_l:3; u32 sdx_h:2; u32 sdy:5; u32 sdrx:1; u32 sdry:1; u32 sdr1:1; u32 res2:2; u32 fw:12; u32 fh_l:8; u32 fh_h:4; u32 res3:28; /* Word 1 */ u32 eba0; u32 eba1; u32 bpp:3; u32 sl:14; u32 pfs:3; u32 bam:3; u32 res4:2; u32 npb:6; u32 res5:1; u32 sat:2; u32 scc:1; u32 ofs0:5; u32 ofs1:5; u32 ofs2:5; u32 ofs3:5; u32 wid0:3; u32 wid1:3; u32 wid2:3; u32 wid3:3; u32 dec_sel:1; u32 res6:28; } __attribute__ ((packed)); union chan_param_mem { struct chan_param_mem_planar pp; struct chan_param_mem_interleaved ip; }; static void ipu_ch_param_set_plane_offset(union chan_param_mem *params, u32 u_offset, u32 v_offset) { params->pp.ubo_l = u_offset & 0x7ff; params->pp.ubo_h = u_offset >> 11; params->pp.vbo_l = v_offset & 0x1ffff; params->pp.vbo_h = v_offset >> 17; } static void ipu_ch_param_set_size(union chan_param_mem *params, uint32_t pixel_fmt, uint16_t width, uint16_t height, uint16_t stride) { u32 u_offset; u32 v_offset; params->pp.fw = width - 1; params->pp.fh_l = height - 1; params->pp.fh_h = (height - 1) >> 8; params->pp.sl = stride - 1; switch (pixel_fmt) { case IPU_PIX_FMT_GENERIC: /*Represents 8-bit Generic data */ params->pp.bpp = 3; params->pp.pfs = 7; params->pp.npb = 31; params->pp.sat = 2; /* SAT = use 32-bit access */ break; case IPU_PIX_FMT_GENERIC_32: /*Represents 32-bit Generic data */ params->pp.bpp = 0; params->pp.pfs = 7; params->pp.npb = 7; params->pp.sat = 2; /* SAT = use 32-bit access */ break; case IPU_PIX_FMT_RGB565: params->ip.bpp = 2; params->ip.pfs = 4; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ params->ip.ofs0 = 0; /* Red bit offset */ params->ip.ofs1 = 5; /* Green bit offset */ params->ip.ofs2 = 11; /* Blue bit offset */ params->ip.ofs3 = 16; /* Alpha bit offset */ params->ip.wid0 = 4; /* Red bit width - 1 */ params->ip.wid1 = 5; /* Green bit width - 1 */ params->ip.wid2 = 4; /* Blue bit width - 1 */ break; case IPU_PIX_FMT_BGR24: params->ip.bpp = 1; /* 24 BPP & RGB PFS */ params->ip.pfs = 4; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ params->ip.ofs0 = 0; /* Red bit offset */ params->ip.ofs1 = 8; /* Green bit offset */ params->ip.ofs2 = 16; /* Blue bit offset */ params->ip.ofs3 = 24; /* Alpha bit offset */ params->ip.wid0 = 7; /* Red bit width - 1 */ params->ip.wid1 = 7; /* Green bit width - 1 */ params->ip.wid2 = 7; /* Blue bit width - 1 */ break; case IPU_PIX_FMT_RGB24: params->ip.bpp = 1; /* 24 BPP & RGB PFS */ params->ip.pfs = 4; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ params->ip.ofs0 = 16; /* Red bit offset */ params->ip.ofs1 = 8; /* Green bit offset */ params->ip.ofs2 = 0; /* Blue bit offset */ params->ip.ofs3 = 24; /* Alpha bit offset */ params->ip.wid0 = 7; /* Red bit width - 1 */ params->ip.wid1 = 7; /* Green bit width - 1 */ params->ip.wid2 = 7; /* Blue bit width - 1 */ break; case IPU_PIX_FMT_BGRA32: case IPU_PIX_FMT_BGR32: params->ip.bpp = 0; params->ip.pfs = 4; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ params->ip.ofs0 = 8; /* Red bit offset */ params->ip.ofs1 = 16; /* Green bit offset */ params->ip.ofs2 = 24; /* Blue bit offset */ params->ip.ofs3 = 0; /* Alpha bit offset */ params->ip.wid0 = 7; /* Red bit width - 1 */ params->ip.wid1 = 7; /* Green bit width - 1 */ params->ip.wid2 = 7; /* Blue bit width - 1 */ params->ip.wid3 = 7; /* Alpha bit width - 1 */ break; case IPU_PIX_FMT_RGBA32: case IPU_PIX_FMT_RGB32: params->ip.bpp = 0; params->ip.pfs = 4; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ params->ip.ofs0 = 24; /* Red bit offset */ params->ip.ofs1 = 16; /* Green bit offset */ params->ip.ofs2 = 8; /* Blue bit offset */ params->ip.ofs3 = 0; /* Alpha bit offset */ params->ip.wid0 = 7; /* Red bit width - 1 */ params->ip.wid1 = 7; /* Green bit width - 1 */ params->ip.wid2 = 7; /* Blue bit width - 1 */ params->ip.wid3 = 7; /* Alpha bit width - 1 */ break; case IPU_PIX_FMT_ABGR32: params->ip.bpp = 0; params->ip.pfs = 4; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ params->ip.ofs0 = 8; /* Red bit offset */ params->ip.ofs1 = 16; /* Green bit offset */ params->ip.ofs2 = 24; /* Blue bit offset */ params->ip.ofs3 = 0; /* Alpha bit offset */ params->ip.wid0 = 7; /* Red bit width - 1 */ params->ip.wid1 = 7; /* Green bit width - 1 */ params->ip.wid2 = 7; /* Blue bit width - 1 */ params->ip.wid3 = 7; /* Alpha bit width - 1 */ break; case IPU_PIX_FMT_UYVY: params->ip.bpp = 2; params->ip.pfs = 6; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ break; case IPU_PIX_FMT_YUV420P2: case IPU_PIX_FMT_YUV420P: params->ip.bpp = 3; params->ip.pfs = 3; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ u_offset = stride * height; v_offset = u_offset + u_offset / 4; ipu_ch_param_set_plane_offset(params, u_offset, v_offset); break; case IPU_PIX_FMT_YVU422P: params->ip.bpp = 3; params->ip.pfs = 2; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ v_offset = stride * height; u_offset = v_offset + v_offset / 2; ipu_ch_param_set_plane_offset(params, u_offset, v_offset); break; case IPU_PIX_FMT_YUV422P: params->ip.bpp = 3; params->ip.pfs = 2; params->ip.npb = 7; params->ip.sat = 2; /* SAT = 32-bit access */ u_offset = stride * height; v_offset = u_offset + u_offset / 2; ipu_ch_param_set_plane_offset(params, u_offset, v_offset); break; default: dev_err(ipu_data.dev, "mx3 ipu: unimplemented pixel format %d\n", pixel_fmt); break; } params->pp.nsb = 1; } static void ipu_ch_param_set_burst_size(union chan_param_mem *params, uint16_t burst_pixels) { params->pp.npb = burst_pixels - 1; } static void ipu_ch_param_set_buffer(union chan_param_mem *params, dma_addr_t buf0, dma_addr_t buf1) { params->pp.eba0 = buf0; params->pp.eba1 = buf1; } static void ipu_ch_param_set_rotation(union chan_param_mem *params, enum ipu_rotate_mode rotate) { params->pp.bam = rotate; } static void ipu_write_param_mem(uint32_t addr, uint32_t *data, uint32_t num_words) { for (; num_words > 0; num_words--) { dev_dbg(ipu_data.dev, "write param mem - addr = 0x%08X, data = 0x%08X\n", addr, *data); idmac_write_ipureg(&ipu_data, addr, IPU_IMA_ADDR); idmac_write_ipureg(&ipu_data, *data++, IPU_IMA_DATA); addr++; if ((addr & 0x7) == 5) { addr &= ~0x7; /* set to word 0 */ addr += 8; /* increment to next row */ } } } static int calc_resize_coeffs(uint32_t in_size, uint32_t out_size, uint32_t *resize_coeff, uint32_t *downsize_coeff) { uint32_t temp_size; uint32_t temp_downsize; *resize_coeff = 1 << 13; *downsize_coeff = 1 << 13; /* Cannot downsize more than 8:1 */ if (out_size << 3 < in_size) return -EINVAL; /* compute downsizing coefficient */ temp_downsize = 0; temp_size = in_size; while (temp_size >= out_size * 2 && temp_downsize < 2) { temp_size >>= 1; temp_downsize++; } *downsize_coeff = temp_downsize; /* * compute resizing coefficient using the following formula: * resize_coeff = M*(SI -1)/(SO - 1) * where M = 2^13, SI - input size, SO - output size */ *resize_coeff = (8192L * (temp_size - 1)) / (out_size - 1); if (*resize_coeff >= 16384L) { dev_err(ipu_data.dev, "Warning! Overflow on resize coeff.\n"); *resize_coeff = 0x3FFF; } dev_dbg(ipu_data.dev, "resizing from %u -> %u pixels, " "downsize=%u, resize=%u.%lu (reg=%u)\n", in_size, out_size, *downsize_coeff, *resize_coeff >= 8192L ? 1 : 0, ((*resize_coeff & 0x1FFF) * 10000L) / 8192L, *resize_coeff); return 0; } static enum ipu_color_space format_to_colorspace(enum pixel_fmt fmt) { switch (fmt) { case IPU_PIX_FMT_RGB565: case IPU_PIX_FMT_BGR24: case IPU_PIX_FMT_RGB24: case IPU_PIX_FMT_BGR32: case IPU_PIX_FMT_RGB32: return IPU_COLORSPACE_RGB; default: return IPU_COLORSPACE_YCBCR; } } static int ipu_ic_init_prpenc(struct ipu *ipu, union ipu_channel_param *params, bool src_is_csi) { uint32_t reg, ic_conf; uint32_t downsize_coeff, resize_coeff; enum ipu_color_space in_fmt, out_fmt; /* Setup vertical resizing */ calc_resize_coeffs(params->video.in_height, params->video.out_height, &resize_coeff, &downsize_coeff); reg = (downsize_coeff << 30) | (resize_coeff << 16); /* Setup horizontal resizing */ calc_resize_coeffs(params->video.in_width, params->video.out_width, &resize_coeff, &downsize_coeff); reg |= (downsize_coeff << 14) | resize_coeff; /* Setup color space conversion */ in_fmt = format_to_colorspace(params->video.in_pixel_fmt); out_fmt = format_to_colorspace(params->video.out_pixel_fmt); /* * Colourspace conversion unsupported yet - see _init_csc() in * Freescale sources */ if (in_fmt != out_fmt) { dev_err(ipu->dev, "Colourspace conversion unsupported!\n"); return -EOPNOTSUPP; } idmac_write_icreg(ipu, reg, IC_PRP_ENC_RSC); ic_conf = idmac_read_icreg(ipu, IC_CONF); if (src_is_csi) ic_conf &= ~IC_CONF_RWS_EN; else ic_conf |= IC_CONF_RWS_EN; idmac_write_icreg(ipu, ic_conf, IC_CONF); return 0; } static uint32_t dma_param_addr(uint32_t dma_ch) { /* Channel Parameter Memory */ return 0x10000 | (dma_ch << 4); } static void ipu_channel_set_priority(struct ipu *ipu, enum ipu_channel channel, bool prio) { u32 reg = idmac_read_icreg(ipu, IDMAC_CHA_PRI); if (prio) reg |= 1UL << channel; else reg &= ~(1UL << channel); idmac_write_icreg(ipu, reg, IDMAC_CHA_PRI); dump_idmac_reg(ipu); } static uint32_t ipu_channel_conf_mask(enum ipu_channel channel) { uint32_t mask; switch (channel) { case IDMAC_IC_0: case IDMAC_IC_7: mask = IPU_CONF_CSI_EN | IPU_CONF_IC_EN; break; case IDMAC_SDC_0: case IDMAC_SDC_1: mask = IPU_CONF_SDC_EN | IPU_CONF_DI_EN; break; default: mask = 0; break; } return mask; } /** * ipu_enable_channel() - enable an IPU channel. * @idmac: IPU DMAC context. * @ichan: IDMAC channel. * @return: 0 on success or negative error code on failure. */ static int ipu_enable_channel(struct idmac *idmac, struct idmac_channel *ichan) { struct ipu *ipu = to_ipu(idmac); enum ipu_channel channel = ichan->dma_chan.chan_id; uint32_t reg; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); /* Reset to buffer 0 */ idmac_write_ipureg(ipu, 1UL << channel, IPU_CHA_CUR_BUF); ichan->active_buffer = 0; ichan->status = IPU_CHANNEL_ENABLED; switch (channel) { case IDMAC_SDC_0: case IDMAC_SDC_1: case IDMAC_IC_7: ipu_channel_set_priority(ipu, channel, true); default: break; } reg = idmac_read_icreg(ipu, IDMAC_CHA_EN); idmac_write_icreg(ipu, reg | (1UL << channel), IDMAC_CHA_EN); ipu_ic_enable_task(ipu, channel); spin_unlock_irqrestore(&ipu->lock, flags); return 0; } /** * ipu_init_channel_buffer() - initialize a buffer for logical IPU channel. * @ichan: IDMAC channel. * @pixel_fmt: pixel format of buffer. Pixel format is a FOURCC ASCII code. * @width: width of buffer in pixels. * @height: height of buffer in pixels. * @stride: stride length of buffer in pixels. * @rot_mode: rotation mode of buffer. A rotation setting other than * IPU_ROTATE_VERT_FLIP should only be used for input buffers of * rotation channels. * @phyaddr_0: buffer 0 physical address. * @phyaddr_1: buffer 1 physical address. Setting this to a value other than * NULL enables double buffering mode. * @return: 0 on success or negative error code on failure. */ static int ipu_init_channel_buffer(struct idmac_channel *ichan, enum pixel_fmt pixel_fmt, uint16_t width, uint16_t height, uint32_t stride, enum ipu_rotate_mode rot_mode, dma_addr_t phyaddr_0, dma_addr_t phyaddr_1) { enum ipu_channel channel = ichan->dma_chan.chan_id; struct idmac *idmac = to_idmac(ichan->dma_chan.device); struct ipu *ipu = to_ipu(idmac); union chan_param_mem params = {}; unsigned long flags; uint32_t reg; uint32_t stride_bytes; stride_bytes = stride * bytes_per_pixel(pixel_fmt); if (stride_bytes % 4) { dev_err(ipu->dev, "Stride length must be 32-bit aligned, stride = %d, bytes = %d\n", stride, stride_bytes); return -EINVAL; } /* IC channel's stride must be a multiple of 8 pixels */ if ((channel <= IDMAC_IC_13) && (stride % 8)) { dev_err(ipu->dev, "Stride must be 8 pixel multiple\n"); return -EINVAL; } /* Build parameter memory data for DMA channel */ ipu_ch_param_set_size(¶ms, pixel_fmt, width, height, stride_bytes); ipu_ch_param_set_buffer(¶ms, phyaddr_0, phyaddr_1); ipu_ch_param_set_rotation(¶ms, rot_mode); /* Some channels (rotation) have restriction on burst length */ switch (channel) { case IDMAC_IC_7: /* Hangs with burst 8, 16, other values invalid - Table 44-30 */ /* ipu_ch_param_set_burst_size(¶ms, 8); */ break; case IDMAC_SDC_0: case IDMAC_SDC_1: /* In original code only IPU_PIX_FMT_RGB565 was setting burst */ ipu_ch_param_set_burst_size(¶ms, 16); break; case IDMAC_IC_0: default: break; } spin_lock_irqsave(&ipu->lock, flags); ipu_write_param_mem(dma_param_addr(channel), (uint32_t *)¶ms, 10); reg = idmac_read_ipureg(ipu, IPU_CHA_DB_MODE_SEL); if (phyaddr_1) reg |= 1UL << channel; else reg &= ~(1UL << channel); idmac_write_ipureg(ipu, reg, IPU_CHA_DB_MODE_SEL); ichan->status = IPU_CHANNEL_READY; spin_unlock_irqrestore(&ipu->lock, flags); return 0; } /** * ipu_select_buffer() - mark a channel's buffer as ready. * @channel: channel ID. * @buffer_n: buffer number to mark ready. */ static void ipu_select_buffer(enum ipu_channel channel, int buffer_n) { /* No locking - this is a write-one-to-set register, cleared by IPU */ if (buffer_n == 0) /* Mark buffer 0 as ready. */ idmac_write_ipureg(&ipu_data, 1UL << channel, IPU_CHA_BUF0_RDY); else /* Mark buffer 1 as ready. */ idmac_write_ipureg(&ipu_data, 1UL << channel, IPU_CHA_BUF1_RDY); } /** * ipu_update_channel_buffer() - update physical address of a channel buffer. * @ichan: IDMAC channel. * @buffer_n: buffer number to update. * 0 or 1 are the only valid values. * @phyaddr: buffer physical address. * @return: Returns 0 on success or negative error code on failure. This * function will fail if the buffer is set to ready. */ /* Called under spin_lock(_irqsave)(&ichan->lock) */ static int ipu_update_channel_buffer(struct idmac_channel *ichan, int buffer_n, dma_addr_t phyaddr) { enum ipu_channel channel = ichan->dma_chan.chan_id; uint32_t reg; unsigned long flags; spin_lock_irqsave(&ipu_data.lock, flags); if (buffer_n == 0) { reg = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF0_RDY); if (reg & (1UL << channel)) { ipu_ic_disable_task(&ipu_data, channel); ichan->status = IPU_CHANNEL_READY; } /* 44.3.3.1.9 - Row Number 1 (WORD1, offset 0) */ idmac_write_ipureg(&ipu_data, dma_param_addr(channel) + 0x0008UL, IPU_IMA_ADDR); idmac_write_ipureg(&ipu_data, phyaddr, IPU_IMA_DATA); } else { reg = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF1_RDY); if (reg & (1UL << channel)) { ipu_ic_disable_task(&ipu_data, channel); ichan->status = IPU_CHANNEL_READY; } /* Check if double-buffering is already enabled */ reg = idmac_read_ipureg(&ipu_data, IPU_CHA_DB_MODE_SEL); if (!(reg & (1UL << channel))) idmac_write_ipureg(&ipu_data, reg | (1UL << channel), IPU_CHA_DB_MODE_SEL); /* 44.3.3.1.9 - Row Number 1 (WORD1, offset 1) */ idmac_write_ipureg(&ipu_data, dma_param_addr(channel) + 0x0009UL, IPU_IMA_ADDR); idmac_write_ipureg(&ipu_data, phyaddr, IPU_IMA_DATA); } spin_unlock_irqrestore(&ipu_data.lock, flags); return 0; } /* Called under spin_lock_irqsave(&ichan->lock) */ static int ipu_submit_buffer(struct idmac_channel *ichan, struct idmac_tx_desc *desc, struct scatterlist *sg, int buf_idx) { unsigned int chan_id = ichan->dma_chan.chan_id; struct device *dev = &ichan->dma_chan.dev->device; int ret; if (async_tx_test_ack(&desc->txd)) return -EINTR; /* * On first invocation this shouldn't be necessary, the call to * ipu_init_channel_buffer() above will set addresses for us, so we * could make it conditional on status >= IPU_CHANNEL_ENABLED, but * doing it again shouldn't hurt either. */ ret = ipu_update_channel_buffer(ichan, buf_idx, sg_dma_address(sg)); if (ret < 0) { dev_err(dev, "Updating sg %p on channel 0x%x buffer %d failed!\n", sg, chan_id, buf_idx); return ret; } ipu_select_buffer(chan_id, buf_idx); dev_dbg(dev, "Updated sg %p on channel 0x%x buffer %d\n", sg, chan_id, buf_idx); return 0; } /* Called under spin_lock_irqsave(&ichan->lock) */ static int ipu_submit_channel_buffers(struct idmac_channel *ichan, struct idmac_tx_desc *desc) { struct scatterlist *sg; int i, ret = 0; for (i = 0, sg = desc->sg; i < 2 && sg; i++) { if (!ichan->sg[i]) { ichan->sg[i] = sg; ret = ipu_submit_buffer(ichan, desc, sg, i); if (ret < 0) return ret; sg = sg_next(sg); } } return ret; } static dma_cookie_t idmac_tx_submit(struct dma_async_tx_descriptor *tx) { struct idmac_tx_desc *desc = to_tx_desc(tx); struct idmac_channel *ichan = to_idmac_chan(tx->chan); struct idmac *idmac = to_idmac(tx->chan->device); struct ipu *ipu = to_ipu(idmac); struct device *dev = &ichan->dma_chan.dev->device; dma_cookie_t cookie; unsigned long flags; int ret; /* Sanity check */ if (!list_empty(&desc->list)) { /* The descriptor doesn't belong to client */ dev_err(dev, "Descriptor %p not prepared!\n", tx); return -EBUSY; } mutex_lock(&ichan->chan_mutex); async_tx_clear_ack(tx); if (ichan->status < IPU_CHANNEL_READY) { struct idmac_video_param *video = &ichan->params.video; /* * Initial buffer assignment - the first two sg-entries from * the descriptor will end up in the IDMAC buffers */ dma_addr_t dma_1 = sg_is_last(desc->sg) ? 0 : sg_dma_address(&desc->sg[1]); WARN_ON(ichan->sg[0] || ichan->sg[1]); cookie = ipu_init_channel_buffer(ichan, video->out_pixel_fmt, video->out_width, video->out_height, video->out_stride, IPU_ROTATE_NONE, sg_dma_address(&desc->sg[0]), dma_1); if (cookie < 0) goto out; } dev_dbg(dev, "Submitting sg %p\n", &desc->sg[0]); cookie = ichan->dma_chan.cookie; if (++cookie < 0) cookie = 1; /* from dmaengine.h: "last cookie value returned to client" */ ichan->dma_chan.cookie = cookie; tx->cookie = cookie; /* ipu->lock can be taken under ichan->lock, but not v.v. */ spin_lock_irqsave(&ichan->lock, flags); list_add_tail(&desc->list, &ichan->queue); /* submit_buffers() atomically verifies and fills empty sg slots */ ret = ipu_submit_channel_buffers(ichan, desc); spin_unlock_irqrestore(&ichan->lock, flags); if (ret < 0) { cookie = ret; goto dequeue; } if (ichan->status < IPU_CHANNEL_ENABLED) { ret = ipu_enable_channel(idmac, ichan); if (ret < 0) { cookie = ret; goto dequeue; } } dump_idmac_reg(ipu); dequeue: if (cookie < 0) { spin_lock_irqsave(&ichan->lock, flags); list_del_init(&desc->list); spin_unlock_irqrestore(&ichan->lock, flags); tx->cookie = cookie; ichan->dma_chan.cookie = cookie; } out: mutex_unlock(&ichan->chan_mutex); return cookie; } /* Called with ichan->chan_mutex held */ static int idmac_desc_alloc(struct idmac_channel *ichan, int n) { struct idmac_tx_desc *desc = vmalloc(n * sizeof(struct idmac_tx_desc)); struct idmac *idmac = to_idmac(ichan->dma_chan.device); if (!desc) return -ENOMEM; /* No interrupts, just disable the tasklet for a moment */ tasklet_disable(&to_ipu(idmac)->tasklet); ichan->n_tx_desc = n; ichan->desc = desc; INIT_LIST_HEAD(&ichan->queue); INIT_LIST_HEAD(&ichan->free_list); while (n--) { struct dma_async_tx_descriptor *txd = &desc->txd; memset(txd, 0, sizeof(*txd)); dma_async_tx_descriptor_init(txd, &ichan->dma_chan); txd->tx_submit = idmac_tx_submit; list_add(&desc->list, &ichan->free_list); desc++; } tasklet_enable(&to_ipu(idmac)->tasklet); return 0; } /** * ipu_init_channel() - initialize an IPU channel. * @idmac: IPU DMAC context. * @ichan: pointer to the channel object. * @return 0 on success or negative error code on failure. */ static int ipu_init_channel(struct idmac *idmac, struct idmac_channel *ichan) { union ipu_channel_param *params = &ichan->params; uint32_t ipu_conf; enum ipu_channel channel = ichan->dma_chan.chan_id; unsigned long flags; uint32_t reg; struct ipu *ipu = to_ipu(idmac); int ret = 0, n_desc = 0; dev_dbg(ipu->dev, "init channel = %d\n", channel); if (channel != IDMAC_SDC_0 && channel != IDMAC_SDC_1 && channel != IDMAC_IC_7) return -EINVAL; spin_lock_irqsave(&ipu->lock, flags); switch (channel) { case IDMAC_IC_7: n_desc = 16; reg = idmac_read_icreg(ipu, IC_CONF); idmac_write_icreg(ipu, reg & ~IC_CONF_CSI_MEM_WR_EN, IC_CONF); break; case IDMAC_IC_0: n_desc = 16; reg = idmac_read_ipureg(ipu, IPU_FS_PROC_FLOW); idmac_write_ipureg(ipu, reg & ~FS_ENC_IN_VALID, IPU_FS_PROC_FLOW); ret = ipu_ic_init_prpenc(ipu, params, true); break; case IDMAC_SDC_0: case IDMAC_SDC_1: n_desc = 4; default: break; } ipu->channel_init_mask |= 1L << channel; /* Enable IPU sub module */ ipu_conf = idmac_read_ipureg(ipu, IPU_CONF) | ipu_channel_conf_mask(channel); idmac_write_ipureg(ipu, ipu_conf, IPU_CONF); spin_unlock_irqrestore(&ipu->lock, flags); if (n_desc && !ichan->desc) ret = idmac_desc_alloc(ichan, n_desc); dump_idmac_reg(ipu); return ret; } /** * ipu_uninit_channel() - uninitialize an IPU channel. * @idmac: IPU DMAC context. * @ichan: pointer to the channel object. */ static void ipu_uninit_channel(struct idmac *idmac, struct idmac_channel *ichan) { enum ipu_channel channel = ichan->dma_chan.chan_id; unsigned long flags; uint32_t reg; unsigned long chan_mask = 1UL << channel; uint32_t ipu_conf; struct ipu *ipu = to_ipu(idmac); spin_lock_irqsave(&ipu->lock, flags); if (!(ipu->channel_init_mask & chan_mask)) { dev_err(ipu->dev, "Channel already uninitialized %d\n", channel); spin_unlock_irqrestore(&ipu->lock, flags); return; } /* Reset the double buffer */ reg = idmac_read_ipureg(ipu, IPU_CHA_DB_MODE_SEL); idmac_write_ipureg(ipu, reg & ~chan_mask, IPU_CHA_DB_MODE_SEL); ichan->sec_chan_en = false; switch (channel) { case IDMAC_IC_7: reg = idmac_read_icreg(ipu, IC_CONF); idmac_write_icreg(ipu, reg & ~(IC_CONF_RWS_EN | IC_CONF_PRPENC_EN), IC_CONF); break; case IDMAC_IC_0: reg = idmac_read_icreg(ipu, IC_CONF); idmac_write_icreg(ipu, reg & ~(IC_CONF_PRPENC_EN | IC_CONF_PRPENC_CSC1), IC_CONF); break; case IDMAC_SDC_0: case IDMAC_SDC_1: default: break; } ipu->channel_init_mask &= ~(1L << channel); ipu_conf = idmac_read_ipureg(ipu, IPU_CONF) & ~ipu_channel_conf_mask(channel); idmac_write_ipureg(ipu, ipu_conf, IPU_CONF); spin_unlock_irqrestore(&ipu->lock, flags); ichan->n_tx_desc = 0; vfree(ichan->desc); ichan->desc = NULL; } /** * ipu_disable_channel() - disable an IPU channel. * @idmac: IPU DMAC context. * @ichan: channel object pointer. * @wait_for_stop: flag to set whether to wait for channel end of frame or * return immediately. * @return: 0 on success or negative error code on failure. */ static int ipu_disable_channel(struct idmac *idmac, struct idmac_channel *ichan, bool wait_for_stop) { enum ipu_channel channel = ichan->dma_chan.chan_id; struct ipu *ipu = to_ipu(idmac); uint32_t reg; unsigned long flags; unsigned long chan_mask = 1UL << channel; unsigned int timeout; if (wait_for_stop && channel != IDMAC_SDC_1 && channel != IDMAC_SDC_0) { timeout = 40; /* This waiting always fails. Related to spurious irq problem */ while ((idmac_read_icreg(ipu, IDMAC_CHA_BUSY) & chan_mask) || (ipu_channel_status(ipu, channel) == TASK_STAT_ACTIVE)) { timeout--; msleep(10); if (!timeout) { dev_dbg(ipu->dev, "Warning: timeout waiting for channel %u to " "stop: buf0_rdy = 0x%08X, buf1_rdy = 0x%08X, " "busy = 0x%08X, tstat = 0x%08X\n", channel, idmac_read_ipureg(ipu, IPU_CHA_BUF0_RDY), idmac_read_ipureg(ipu, IPU_CHA_BUF1_RDY), idmac_read_icreg(ipu, IDMAC_CHA_BUSY), idmac_read_ipureg(ipu, IPU_TASKS_STAT)); break; } } dev_dbg(ipu->dev, "timeout = %d * 10ms\n", 40 - timeout); } /* SDC BG and FG must be disabled before DMA is disabled */ if (wait_for_stop && (channel == IDMAC_SDC_0 || channel == IDMAC_SDC_1)) { for (timeout = 5; timeout && !ipu_irq_status(ichan->eof_irq); timeout--) msleep(5); } spin_lock_irqsave(&ipu->lock, flags); /* Disable IC task */ ipu_ic_disable_task(ipu, channel); /* Disable DMA channel(s) */ reg = idmac_read_icreg(ipu, IDMAC_CHA_EN); idmac_write_icreg(ipu, reg & ~chan_mask, IDMAC_CHA_EN); /* * Problem (observed with channel DMAIC_7): after enabling the channel * and initialising buffers, there comes an interrupt with current still * pointing at buffer 0, whereas it should use buffer 0 first and only * generate an interrupt when it is done, then current should already * point to buffer 1. This spurious interrupt also comes on channel * DMASDC_0. With DMAIC_7 normally, is we just leave the ISR after the * first interrupt, there comes the second with current correctly * pointing to buffer 1 this time. But sometimes this second interrupt * doesn't come and the channel hangs. Clearing BUFx_RDY when disabling * the channel seems to prevent the channel from hanging, but it doesn't * prevent the spurious interrupt. This might also be unsafe. Think * about the IDMAC controller trying to switch to a buffer, when we * clear the ready bit, and re-enable it a moment later. */ reg = idmac_read_ipureg(ipu, IPU_CHA_BUF0_RDY); idmac_write_ipureg(ipu, 0, IPU_CHA_BUF0_RDY); idmac_write_ipureg(ipu, reg & ~(1UL << channel), IPU_CHA_BUF0_RDY); reg = idmac_read_ipureg(ipu, IPU_CHA_BUF1_RDY); idmac_write_ipureg(ipu, 0, IPU_CHA_BUF1_RDY); idmac_write_ipureg(ipu, reg & ~(1UL << channel), IPU_CHA_BUF1_RDY); spin_unlock_irqrestore(&ipu->lock, flags); return 0; } static struct scatterlist *idmac_sg_next(struct idmac_channel *ichan, struct idmac_tx_desc **desc, struct scatterlist *sg) { struct scatterlist *sgnew = sg ? sg_next(sg) : NULL; if (sgnew) /* next sg-element in this list */ return sgnew; if ((*desc)->list.next == &ichan->queue) /* No more descriptors on the queue */ return NULL; /* Fetch next descriptor */ *desc = list_entry((*desc)->list.next, struct idmac_tx_desc, list); return (*desc)->sg; } /* * We have several possibilities here: * current BUF next BUF * * not last sg next not last sg * not last sg next last sg * last sg first sg from next descriptor * last sg NULL * * Besides, the descriptor queue might be empty or not. We process all these * cases carefully. */ static irqreturn_t idmac_interrupt(int irq, void *dev_id) { struct idmac_channel *ichan = dev_id; struct device *dev = &ichan->dma_chan.dev->device; unsigned int chan_id = ichan->dma_chan.chan_id; struct scatterlist **sg, *sgnext, *sgnew = NULL; /* Next transfer descriptor */ struct idmac_tx_desc *desc, *descnew; dma_async_tx_callback callback; void *callback_param; bool done = false; u32 ready0, ready1, curbuf, err; unsigned long flags; /* IDMAC has cleared the respective BUFx_RDY bit, we manage the buffer */ dev_dbg(dev, "IDMAC irq %d, buf %d\n", irq, ichan->active_buffer); spin_lock_irqsave(&ipu_data.lock, flags); ready0 = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF0_RDY); ready1 = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF1_RDY); curbuf = idmac_read_ipureg(&ipu_data, IPU_CHA_CUR_BUF); err = idmac_read_ipureg(&ipu_data, IPU_INT_STAT_4); if (err & (1 << chan_id)) { idmac_write_ipureg(&ipu_data, 1 << chan_id, IPU_INT_STAT_4); spin_unlock_irqrestore(&ipu_data.lock, flags); /* * Doing this * ichan->sg[0] = ichan->sg[1] = NULL; * you can force channel re-enable on the next tx_submit(), but * this is dirty - think about descriptors with multiple * sg elements. */ dev_warn(dev, "NFB4EOF on channel %d, ready %x, %x, cur %x\n", chan_id, ready0, ready1, curbuf); return IRQ_HANDLED; } spin_unlock_irqrestore(&ipu_data.lock, flags); /* Other interrupts do not interfere with this channel */ spin_lock(&ichan->lock); if (unlikely(chan_id != IDMAC_SDC_0 && chan_id != IDMAC_SDC_1 && ((curbuf >> chan_id) & 1) == ichan->active_buffer)) { int i = 100; /* This doesn't help. See comment in ipu_disable_channel() */ while (--i) { curbuf = idmac_read_ipureg(&ipu_data, IPU_CHA_CUR_BUF); if (((curbuf >> chan_id) & 1) != ichan->active_buffer) break; cpu_relax(); } if (!i) { spin_unlock(&ichan->lock); dev_dbg(dev, "IRQ on active buffer on channel %x, active " "%d, ready %x, %x, current %x!\n", chan_id, ichan->active_buffer, ready0, ready1, curbuf); return IRQ_NONE; } else dev_dbg(dev, "Buffer deactivated on channel %x, active " "%d, ready %x, %x, current %x, rest %d!\n", chan_id, ichan->active_buffer, ready0, ready1, curbuf, i); } if (unlikely((ichan->active_buffer && (ready1 >> chan_id) & 1) || (!ichan->active_buffer && (ready0 >> chan_id) & 1) )) { spin_unlock(&ichan->lock); dev_dbg(dev, "IRQ with active buffer still ready on channel %x, " "active %d, ready %x, %x!\n", chan_id, ichan->active_buffer, ready0, ready1); return IRQ_NONE; } if (unlikely(list_empty(&ichan->queue))) { ichan->sg[ichan->active_buffer] = NULL; spin_unlock(&ichan->lock); dev_err(dev, "IRQ without queued buffers on channel %x, active %d, " "ready %x, %x!\n", chan_id, ichan->active_buffer, ready0, ready1); return IRQ_NONE; } /* * active_buffer is a software flag, it shows which buffer we are * currently expecting back from the hardware, IDMAC should be * processing the other buffer already */ sg = &ichan->sg[ichan->active_buffer]; sgnext = ichan->sg[!ichan->active_buffer]; if (!*sg) { spin_unlock(&ichan->lock); return IRQ_HANDLED; } desc = list_entry(ichan->queue.next, struct idmac_tx_desc, list); descnew = desc; dev_dbg(dev, "IDMAC irq %d, dma 0x%08x, next dma 0x%08x, current %d, curbuf 0x%08x\n", irq, sg_dma_address(*sg), sgnext ? sg_dma_address(sgnext) : 0, ichan->active_buffer, curbuf); /* Find the descriptor of sgnext */ sgnew = idmac_sg_next(ichan, &descnew, *sg); if (sgnext != sgnew) dev_err(dev, "Submitted buffer %p, next buffer %p\n", sgnext, sgnew); /* * if sgnext == NULL sg must be the last element in a scatterlist and * queue must be empty */ if (unlikely(!sgnext)) { if (!WARN_ON(sg_next(*sg))) dev_dbg(dev, "Underrun on channel %x\n", chan_id); ichan->sg[!ichan->active_buffer] = sgnew; if (unlikely(sgnew)) { ipu_submit_buffer(ichan, descnew, sgnew, !ichan->active_buffer); } else { spin_lock_irqsave(&ipu_data.lock, flags); ipu_ic_disable_task(&ipu_data, chan_id); spin_unlock_irqrestore(&ipu_data.lock, flags); ichan->status = IPU_CHANNEL_READY; /* Continue to check for complete descriptor */ } } /* Calculate and submit the next sg element */ sgnew = idmac_sg_next(ichan, &descnew, sgnew); if (unlikely(!sg_next(*sg)) || !sgnext) { /* * Last element in scatterlist done, remove from the queue, * _init for debugging */ list_del_init(&desc->list); done = true; } *sg = sgnew; if (likely(sgnew) && ipu_submit_buffer(ichan, descnew, sgnew, ichan->active_buffer) < 0) { callback = desc->txd.callback; callback_param = desc->txd.callback_param; spin_unlock(&ichan->lock); callback(callback_param); spin_lock(&ichan->lock); } /* Flip the active buffer - even if update above failed */ ichan->active_buffer = !ichan->active_buffer; if (done) ichan->completed = desc->txd.cookie; callback = desc->txd.callback; callback_param = desc->txd.callback_param; spin_unlock(&ichan->lock); if (done && (desc->txd.flags & DMA_PREP_INTERRUPT) && callback) callback(callback_param); return IRQ_HANDLED; } static void ipu_gc_tasklet(unsigned long arg) { struct ipu *ipu = (struct ipu *)arg; int i; for (i = 0; i < IPU_CHANNELS_NUM; i++) { struct idmac_channel *ichan = ipu->channel + i; struct idmac_tx_desc *desc; unsigned long flags; struct scatterlist *sg; int j, k; for (j = 0; j < ichan->n_tx_desc; j++) { desc = ichan->desc + j; spin_lock_irqsave(&ichan->lock, flags); if (async_tx_test_ack(&desc->txd)) { list_move(&desc->list, &ichan->free_list); for_each_sg(desc->sg, sg, desc->sg_len, k) { if (ichan->sg[0] == sg) ichan->sg[0] = NULL; else if (ichan->sg[1] == sg) ichan->sg[1] = NULL; } async_tx_clear_ack(&desc->txd); } spin_unlock_irqrestore(&ichan->lock, flags); } } } /* Allocate and initialise a transfer descriptor. */ static struct dma_async_tx_descriptor *idmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_data_direction direction, unsigned long tx_flags) { struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac_tx_desc *desc = NULL; struct dma_async_tx_descriptor *txd = NULL; unsigned long flags; /* We only can handle these three channels so far */ if (chan->chan_id != IDMAC_SDC_0 && chan->chan_id != IDMAC_SDC_1 && chan->chan_id != IDMAC_IC_7) return NULL; if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE) { dev_err(chan->device->dev, "Invalid DMA direction %d!\n", direction); return NULL; } mutex_lock(&ichan->chan_mutex); spin_lock_irqsave(&ichan->lock, flags); if (!list_empty(&ichan->free_list)) { desc = list_entry(ichan->free_list.next, struct idmac_tx_desc, list); list_del_init(&desc->list); desc->sg_len = sg_len; desc->sg = sgl; txd = &desc->txd; txd->flags = tx_flags; } spin_unlock_irqrestore(&ichan->lock, flags); mutex_unlock(&ichan->chan_mutex); tasklet_schedule(&to_ipu(to_idmac(chan->device))->tasklet); return txd; } /* Re-select the current buffer and re-activate the channel */ static void idmac_issue_pending(struct dma_chan *chan) { struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac *idmac = to_idmac(chan->device); struct ipu *ipu = to_ipu(idmac); unsigned long flags; /* This is not always needed, but doesn't hurt either */ spin_lock_irqsave(&ipu->lock, flags); ipu_select_buffer(chan->chan_id, ichan->active_buffer); spin_unlock_irqrestore(&ipu->lock, flags); /* * Might need to perform some parts of initialisation from * ipu_enable_channel(), but not all, we do not want to reset to buffer * 0, don't need to set priority again either, but re-enabling the task * and the channel might be a good idea. */ } static void __idmac_terminate_all(struct dma_chan *chan) { struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac *idmac = to_idmac(chan->device); unsigned long flags; int i; ipu_disable_channel(idmac, ichan, ichan->status >= IPU_CHANNEL_ENABLED); tasklet_disable(&to_ipu(idmac)->tasklet); /* ichan->queue is modified in ISR, have to spinlock */ spin_lock_irqsave(&ichan->lock, flags); list_splice_init(&ichan->queue, &ichan->free_list); if (ichan->desc) for (i = 0; i < ichan->n_tx_desc; i++) { struct idmac_tx_desc *desc = ichan->desc + i; if (list_empty(&desc->list)) /* Descriptor was prepared, but not submitted */ list_add(&desc->list, &ichan->free_list); async_tx_clear_ack(&desc->txd); } ichan->sg[0] = NULL; ichan->sg[1] = NULL; spin_unlock_irqrestore(&ichan->lock, flags); tasklet_enable(&to_ipu(idmac)->tasklet); ichan->status = IPU_CHANNEL_INITIALIZED; } static void idmac_terminate_all(struct dma_chan *chan) { struct idmac_channel *ichan = to_idmac_chan(chan); mutex_lock(&ichan->chan_mutex); __idmac_terminate_all(chan); mutex_unlock(&ichan->chan_mutex); } #ifdef DEBUG static irqreturn_t ic_sof_irq(int irq, void *dev_id) { struct idmac_channel *ichan = dev_id; printk(KERN_DEBUG "Got SOF IRQ %d on Channel %d\n", irq, ichan->dma_chan.chan_id); disable_irq_nosync(irq); return IRQ_HANDLED; } static irqreturn_t ic_eof_irq(int irq, void *dev_id) { struct idmac_channel *ichan = dev_id; printk(KERN_DEBUG "Got EOF IRQ %d on Channel %d\n", irq, ichan->dma_chan.chan_id); disable_irq_nosync(irq); return IRQ_HANDLED; } static int ic_sof = -EINVAL, ic_eof = -EINVAL; #endif static int idmac_alloc_chan_resources(struct dma_chan *chan) { struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac *idmac = to_idmac(chan->device); int ret; /* dmaengine.c now guarantees to only offer free channels */ BUG_ON(chan->client_count > 1); WARN_ON(ichan->status != IPU_CHANNEL_FREE); chan->cookie = 1; ichan->completed = -ENXIO; ret = ipu_irq_map(chan->chan_id); if (ret < 0) goto eimap; ichan->eof_irq = ret; /* * Important to first disable the channel, because maybe someone * used it before us, e.g., the bootloader */ ipu_disable_channel(idmac, ichan, true); ret = ipu_init_channel(idmac, ichan); if (ret < 0) goto eichan; ret = request_irq(ichan->eof_irq, idmac_interrupt, 0, ichan->eof_name, ichan); if (ret < 0) goto erirq; #ifdef DEBUG if (chan->chan_id == IDMAC_IC_7) { ic_sof = ipu_irq_map(69); if (ic_sof > 0) request_irq(ic_sof, ic_sof_irq, 0, "IC SOF", ichan); ic_eof = ipu_irq_map(70); if (ic_eof > 0) request_irq(ic_eof, ic_eof_irq, 0, "IC EOF", ichan); } #endif ichan->status = IPU_CHANNEL_INITIALIZED; dev_dbg(&chan->dev->device, "Found channel 0x%x, irq %d\n", chan->chan_id, ichan->eof_irq); return ret; erirq: ipu_uninit_channel(idmac, ichan); eichan: ipu_irq_unmap(chan->chan_id); eimap: return ret; } static void idmac_free_chan_resources(struct dma_chan *chan) { struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac *idmac = to_idmac(chan->device); mutex_lock(&ichan->chan_mutex); __idmac_terminate_all(chan); if (ichan->status > IPU_CHANNEL_FREE) { #ifdef DEBUG if (chan->chan_id == IDMAC_IC_7) { if (ic_sof > 0) { free_irq(ic_sof, ichan); ipu_irq_unmap(69); ic_sof = -EINVAL; } if (ic_eof > 0) { free_irq(ic_eof, ichan); ipu_irq_unmap(70); ic_eof = -EINVAL; } } #endif free_irq(ichan->eof_irq, ichan); ipu_irq_unmap(chan->chan_id); } ichan->status = IPU_CHANNEL_FREE; ipu_uninit_channel(idmac, ichan); mutex_unlock(&ichan->chan_mutex); tasklet_schedule(&to_ipu(idmac)->tasklet); } static enum dma_status idmac_is_tx_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) { struct idmac_channel *ichan = to_idmac_chan(chan); if (done) *done = ichan->completed; if (used) *used = chan->cookie; if (cookie != chan->cookie) return DMA_ERROR; return DMA_SUCCESS; } static int __init ipu_idmac_init(struct ipu *ipu) { struct idmac *idmac = &ipu->idmac; struct dma_device *dma = &idmac->dma; int i; dma_cap_set(DMA_SLAVE, dma->cap_mask); dma_cap_set(DMA_PRIVATE, dma->cap_mask); /* Compulsory common fields */ dma->dev = ipu->dev; dma->device_alloc_chan_resources = idmac_alloc_chan_resources; dma->device_free_chan_resources = idmac_free_chan_resources; dma->device_is_tx_complete = idmac_is_tx_complete; dma->device_issue_pending = idmac_issue_pending; /* Compulsory for DMA_SLAVE fields */ dma->device_prep_slave_sg = idmac_prep_slave_sg; dma->device_terminate_all = idmac_terminate_all; INIT_LIST_HEAD(&dma->channels); for (i = 0; i < IPU_CHANNELS_NUM; i++) { struct idmac_channel *ichan = ipu->channel + i; struct dma_chan *dma_chan = &ichan->dma_chan; spin_lock_init(&ichan->lock); mutex_init(&ichan->chan_mutex); ichan->status = IPU_CHANNEL_FREE; ichan->sec_chan_en = false; ichan->completed = -ENXIO; snprintf(ichan->eof_name, sizeof(ichan->eof_name), "IDMAC EOF %d", i); dma_chan->device = &idmac->dma; dma_chan->cookie = 1; dma_chan->chan_id = i; list_add_tail(&dma_chan->device_node, &dma->channels); } idmac_write_icreg(ipu, 0x00000070, IDMAC_CONF); return dma_async_device_register(&idmac->dma); } static void __exit ipu_idmac_exit(struct ipu *ipu) { int i; struct idmac *idmac = &ipu->idmac; for (i = 0; i < IPU_CHANNELS_NUM; i++) { struct idmac_channel *ichan = ipu->channel + i; idmac_terminate_all(&ichan->dma_chan); idmac_prep_slave_sg(&ichan->dma_chan, NULL, 0, DMA_NONE, 0); } dma_async_device_unregister(&idmac->dma); } /***************************************************************************** * IPU common probe / remove */ static int __init ipu_probe(struct platform_device *pdev) { struct ipu_platform_data *pdata = pdev->dev.platform_data; struct resource *mem_ipu, *mem_ic; int ret; spin_lock_init(&ipu_data.lock); mem_ipu = platform_get_resource(pdev, IORESOURCE_MEM, 0); mem_ic = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!pdata || !mem_ipu || !mem_ic) return -EINVAL; ipu_data.dev = &pdev->dev; platform_set_drvdata(pdev, &ipu_data); ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_noirq; ipu_data.irq_fn = ret; ret = platform_get_irq(pdev, 1); if (ret < 0) goto err_noirq; ipu_data.irq_err = ret; ipu_data.irq_base = pdata->irq_base; dev_dbg(&pdev->dev, "fn irq %u, err irq %u, irq-base %u\n", ipu_data.irq_fn, ipu_data.irq_err, ipu_data.irq_base); /* Remap IPU common registers */ ipu_data.reg_ipu = ioremap(mem_ipu->start, mem_ipu->end - mem_ipu->start + 1); if (!ipu_data.reg_ipu) { ret = -ENOMEM; goto err_ioremap_ipu; } /* Remap Image Converter and Image DMA Controller registers */ ipu_data.reg_ic = ioremap(mem_ic->start, mem_ic->end - mem_ic->start + 1); if (!ipu_data.reg_ic) { ret = -ENOMEM; goto err_ioremap_ic; } /* Get IPU clock */ ipu_data.ipu_clk = clk_get(&pdev->dev, NULL); if (IS_ERR(ipu_data.ipu_clk)) { ret = PTR_ERR(ipu_data.ipu_clk); goto err_clk_get; } /* Make sure IPU HSP clock is running */ clk_enable(ipu_data.ipu_clk); /* Disable all interrupts */ idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_1); idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_2); idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_3); idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_4); idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_5); dev_dbg(&pdev->dev, "%s @ 0x%08lx, fn irq %u, err irq %u\n", pdev->name, (unsigned long)mem_ipu->start, ipu_data.irq_fn, ipu_data.irq_err); ret = ipu_irq_attach_irq(&ipu_data, pdev); if (ret < 0) goto err_attach_irq; /* Initialize DMA engine */ ret = ipu_idmac_init(&ipu_data); if (ret < 0) goto err_idmac_init; tasklet_init(&ipu_data.tasklet, ipu_gc_tasklet, (unsigned long)&ipu_data); ipu_data.dev = &pdev->dev; dev_dbg(ipu_data.dev, "IPU initialized\n"); return 0; err_idmac_init: err_attach_irq: ipu_irq_detach_irq(&ipu_data, pdev); clk_disable(ipu_data.ipu_clk); clk_put(ipu_data.ipu_clk); err_clk_get: iounmap(ipu_data.reg_ic); err_ioremap_ic: iounmap(ipu_data.reg_ipu); err_ioremap_ipu: err_noirq: dev_err(&pdev->dev, "Failed to probe IPU: %d\n", ret); return ret; } static int __exit ipu_remove(struct platform_device *pdev) { struct ipu *ipu = platform_get_drvdata(pdev); ipu_idmac_exit(ipu); ipu_irq_detach_irq(ipu, pdev); clk_disable(ipu->ipu_clk); clk_put(ipu->ipu_clk); iounmap(ipu->reg_ic); iounmap(ipu->reg_ipu); tasklet_kill(&ipu->tasklet); platform_set_drvdata(pdev, NULL); return 0; } /* * We need two MEM resources - with IPU-common and Image Converter registers, * including PF_CONF and IDMAC_* registers, and two IRQs - function and error */ static struct platform_driver ipu_platform_driver = { .driver = { .name = "ipu-core", .owner = THIS_MODULE, }, .remove = __exit_p(ipu_remove), }; static int __init ipu_init(void) { return platform_driver_probe(&ipu_platform_driver, ipu_probe); } subsys_initcall(ipu_init); MODULE_DESCRIPTION("IPU core driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Guennadi Liakhovetski "); MODULE_ALIAS("platform:ipu-core");