/* * Copyright (c) 2013-2015, Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/time.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/phy/phy.h> #include <linux/phy/phy-qcom-ufs.h> #include "ufshcd.h" #include "ufshcd-pltfrm.h" #include "unipro.h" #include "ufs-qcom.h" #include "ufshci.h" static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS]; static void ufs_qcom_get_speed_mode(struct ufs_pa_layer_attr *p, char *result); static int ufs_qcom_get_bus_vote(struct ufs_qcom_host *host, const char *speed_mode); static int ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote); static int ufs_qcom_get_connected_tx_lanes(struct ufs_hba *hba, u32 *tx_lanes) { int err = 0; err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), tx_lanes); if (err) dev_err(hba->dev, "%s: couldn't read PA_CONNECTEDTXDATALANES %d\n", __func__, err); return err; } static int ufs_qcom_host_clk_get(struct device *dev, const char *name, struct clk **clk_out) { struct clk *clk; int err = 0; clk = devm_clk_get(dev, name); if (IS_ERR(clk)) { err = PTR_ERR(clk); dev_err(dev, "%s: failed to get %s err %d", __func__, name, err); } else { *clk_out = clk; } return err; } static int ufs_qcom_host_clk_enable(struct device *dev, const char *name, struct clk *clk) { int err = 0; err = clk_prepare_enable(clk); if (err) dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err); return err; } static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host) { if (!host->is_lane_clks_enabled) return; clk_disable_unprepare(host->tx_l1_sync_clk); clk_disable_unprepare(host->tx_l0_sync_clk); clk_disable_unprepare(host->rx_l1_sync_clk); clk_disable_unprepare(host->rx_l0_sync_clk); host->is_lane_clks_enabled = false; } static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host) { int err = 0; struct device *dev = host->hba->dev; if (host->is_lane_clks_enabled) return 0; err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk", host->rx_l0_sync_clk); if (err) goto out; err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk", host->tx_l0_sync_clk); if (err) goto disable_rx_l0; err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk", host->rx_l1_sync_clk); if (err) goto disable_tx_l0; err = ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk", host->tx_l1_sync_clk); if (err) goto disable_rx_l1; host->is_lane_clks_enabled = true; goto out; disable_rx_l1: clk_disable_unprepare(host->rx_l1_sync_clk); disable_tx_l0: clk_disable_unprepare(host->tx_l0_sync_clk); disable_rx_l0: clk_disable_unprepare(host->rx_l0_sync_clk); out: return err; } static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host) { int err = 0; struct device *dev = host->hba->dev; err = ufs_qcom_host_clk_get(dev, "rx_lane0_sync_clk", &host->rx_l0_sync_clk); if (err) goto out; err = ufs_qcom_host_clk_get(dev, "tx_lane0_sync_clk", &host->tx_l0_sync_clk); if (err) goto out; err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk", &host->rx_l1_sync_clk); if (err) goto out; err = ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk", &host->tx_l1_sync_clk); out: return err; } static int ufs_qcom_link_startup_post_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; u32 tx_lanes; int err = 0; err = ufs_qcom_get_connected_tx_lanes(hba, &tx_lanes); if (err) goto out; err = ufs_qcom_phy_set_tx_lane_enable(phy, tx_lanes); if (err) dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable failed\n", __func__); out: return err; } static int ufs_qcom_check_hibern8(struct ufs_hba *hba) { int err; u32 tx_fsm_val = 0; unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS); do { err = ufshcd_dme_get(hba, UIC_ARG_MIB(MPHY_TX_FSM_STATE), &tx_fsm_val); if (err || tx_fsm_val == TX_FSM_HIBERN8) break; /* sleep for max. 200us */ usleep_range(100, 200); } while (time_before(jiffies, timeout)); /* * we might have scheduled out for long during polling so * check the state again. */ if (time_after(jiffies, timeout)) err = ufshcd_dme_get(hba, UIC_ARG_MIB(MPHY_TX_FSM_STATE), &tx_fsm_val); if (err) { dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n", __func__, err); } else if (tx_fsm_val != TX_FSM_HIBERN8) { err = tx_fsm_val; dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n", __func__, err); } return err; } static int ufs_qcom_power_up_sequence(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int ret = 0; bool is_rate_B = (UFS_QCOM_LIMIT_HS_RATE == PA_HS_MODE_B) ? true : false; /* Assert PHY reset and apply PHY calibration values */ ufs_qcom_assert_reset(hba); /* provide 1ms delay to let the reset pulse propagate */ usleep_range(1000, 1100); ret = ufs_qcom_phy_calibrate_phy(phy, is_rate_B); if (ret) { dev_err(hba->dev, "%s: ufs_qcom_phy_calibrate_phy() failed, ret = %d\n", __func__, ret); goto out; } /* De-assert PHY reset and start serdes */ ufs_qcom_deassert_reset(hba); /* * after reset deassertion, phy will need all ref clocks, * voltage, current to settle down before starting serdes. */ usleep_range(1000, 1100); ret = ufs_qcom_phy_start_serdes(phy); if (ret) { dev_err(hba->dev, "%s: ufs_qcom_phy_start_serdes() failed, ret = %d\n", __func__, ret); goto out; } ret = ufs_qcom_phy_is_pcs_ready(phy); if (ret) dev_err(hba->dev, "%s: is_physical_coding_sublayer_ready() failed, ret = %d\n", __func__, ret); out: return ret; } /* * The UTP controller has a number of internal clock gating cells (CGCs). * Internal hardware sub-modules within the UTP controller control the CGCs. * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved * in a specific operation, UTP controller CGCs are by default disabled and * this function enables them (after every UFS link startup) to save some power * leakage. */ static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba) { ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2); /* Ensure that HW clock gating is enabled before next operations */ mb(); } static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba, bool status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; switch (status) { case PRE_CHANGE: ufs_qcom_power_up_sequence(hba); /* * The PHY PLL output is the source of tx/rx lane symbol * clocks, hence, enable the lane clocks only after PHY * is initialized. */ err = ufs_qcom_enable_lane_clks(host); break; case POST_CHANGE: /* check if UFS PHY moved from DISABLED to HIBERN8 */ err = ufs_qcom_check_hibern8(hba); ufs_qcom_enable_hw_clk_gating(hba); break; default: dev_err(hba->dev, "%s: invalid status %d\n", __func__, status); err = -EINVAL; break; } return err; } /** * Returns non-zero for success (which rate of core_clk) and 0 * in case of a failure */ static unsigned long ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear, u32 hs, u32 rate) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_clk_info *clki; u32 core_clk_period_in_ns; u32 tx_clk_cycles_per_us = 0; unsigned long core_clk_rate = 0; u32 core_clk_cycles_per_us = 0; static u32 pwm_fr_table[][2] = { {UFS_PWM_G1, 0x1}, {UFS_PWM_G2, 0x1}, {UFS_PWM_G3, 0x1}, {UFS_PWM_G4, 0x1}, }; static u32 hs_fr_table_rA[][2] = { {UFS_HS_G1, 0x1F}, {UFS_HS_G2, 0x3e}, }; static u32 hs_fr_table_rB[][2] = { {UFS_HS_G1, 0x24}, {UFS_HS_G2, 0x49}, }; /* * The Qunipro controller does not use following registers: * SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG & * UFS_REG_PA_LINK_STARTUP_TIMER * But UTP controller uses SYS1CLK_1US_REG register for Interrupt * Aggregation logic. */ if (ufs_qcom_cap_qunipro(host) && !ufshcd_is_intr_aggr_allowed(hba)) goto out; if (gear == 0) { dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear); goto out_error; } list_for_each_entry(clki, &hba->clk_list_head, list) { if (!strcmp(clki->name, "core_clk")) core_clk_rate = clk_get_rate(clki->clk); } /* If frequency is smaller than 1MHz, set to 1MHz */ if (core_clk_rate < DEFAULT_CLK_RATE_HZ) core_clk_rate = DEFAULT_CLK_RATE_HZ; core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC; ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US); core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate; core_clk_period_in_ns <<= OFFSET_CLK_NS_REG; core_clk_period_in_ns &= MASK_CLK_NS_REG; switch (hs) { case FASTAUTO_MODE: case FAST_MODE: if (rate == PA_HS_MODE_A) { if (gear > ARRAY_SIZE(hs_fr_table_rA)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(hs_fr_table_rA)); goto out_error; } tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1]; } else if (rate == PA_HS_MODE_B) { if (gear > ARRAY_SIZE(hs_fr_table_rB)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(hs_fr_table_rB)); goto out_error; } tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1]; } else { dev_err(hba->dev, "%s: invalid rate = %d\n", __func__, rate); goto out_error; } break; case SLOWAUTO_MODE: case SLOW_MODE: if (gear > ARRAY_SIZE(pwm_fr_table)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(pwm_fr_table)); goto out_error; } tx_clk_cycles_per_us = pwm_fr_table[gear-1][1]; break; case UNCHANGED: default: dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs); goto out_error; } /* this register 2 fields shall be written at once */ ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us, REG_UFS_TX_SYMBOL_CLK_NS_US); goto out; out_error: core_clk_rate = 0; out: return core_clk_rate; } static int ufs_qcom_link_startup_notify(struct ufs_hba *hba, bool status) { unsigned long core_clk_rate = 0; u32 core_clk_cycles_per_100ms; switch (status) { case PRE_CHANGE: core_clk_rate = ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE, 0); if (!core_clk_rate) { dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); return -EINVAL; } core_clk_cycles_per_100ms = (core_clk_rate / MSEC_PER_SEC) * 100; ufshcd_writel(hba, core_clk_cycles_per_100ms, REG_UFS_PA_LINK_STARTUP_TIMER); break; case POST_CHANGE: ufs_qcom_link_startup_post_change(hba); break; default: break; } return 0; } static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int ret = 0; if (ufs_qcom_is_link_off(hba)) { /* * Disable the tx/rx lane symbol clocks before PHY is * powered down as the PLL source should be disabled * after downstream clocks are disabled. */ ufs_qcom_disable_lane_clks(host); phy_power_off(phy); /* Assert PHY soft reset */ ufs_qcom_assert_reset(hba); goto out; } /* * If UniPro link is not active, PHY ref_clk, main PHY analog power * rail and low noise analog power rail for PLL can be switched off. */ if (!ufs_qcom_is_link_active(hba)) phy_power_off(phy); out: return ret; } static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int err; err = phy_power_on(phy); if (err) { dev_err(hba->dev, "%s: failed enabling regs, err = %d\n", __func__, err); goto out; } hba->is_sys_suspended = false; out: return err; } struct ufs_qcom_dev_params { u32 pwm_rx_gear; /* pwm rx gear to work in */ u32 pwm_tx_gear; /* pwm tx gear to work in */ u32 hs_rx_gear; /* hs rx gear to work in */ u32 hs_tx_gear; /* hs tx gear to work in */ u32 rx_lanes; /* number of rx lanes */ u32 tx_lanes; /* number of tx lanes */ u32 rx_pwr_pwm; /* rx pwm working pwr */ u32 tx_pwr_pwm; /* tx pwm working pwr */ u32 rx_pwr_hs; /* rx hs working pwr */ u32 tx_pwr_hs; /* tx hs working pwr */ u32 hs_rate; /* rate A/B to work in HS */ u32 desired_working_mode; }; static int ufs_qcom_get_pwr_dev_param(struct ufs_qcom_dev_params *qcom_param, struct ufs_pa_layer_attr *dev_max, struct ufs_pa_layer_attr *agreed_pwr) { int min_qcom_gear; int min_dev_gear; bool is_dev_sup_hs = false; bool is_qcom_max_hs = false; if (dev_max->pwr_rx == FAST_MODE) is_dev_sup_hs = true; if (qcom_param->desired_working_mode == FAST) { is_qcom_max_hs = true; min_qcom_gear = min_t(u32, qcom_param->hs_rx_gear, qcom_param->hs_tx_gear); } else { min_qcom_gear = min_t(u32, qcom_param->pwm_rx_gear, qcom_param->pwm_tx_gear); } /* * device doesn't support HS but qcom_param->desired_working_mode is * HS, thus device and qcom_param don't agree */ if (!is_dev_sup_hs && is_qcom_max_hs) { pr_err("%s: failed to agree on power mode (device doesn't support HS but requested power is HS)\n", __func__); return -ENOTSUPP; } else if (is_dev_sup_hs && is_qcom_max_hs) { /* * since device supports HS, it supports FAST_MODE. * since qcom_param->desired_working_mode is also HS * then final decision (FAST/FASTAUTO) is done according * to qcom_params as it is the restricting factor */ agreed_pwr->pwr_rx = agreed_pwr->pwr_tx = qcom_param->rx_pwr_hs; } else { /* * here qcom_param->desired_working_mode is PWM. * it doesn't matter whether device supports HS or PWM, * in both cases qcom_param->desired_working_mode will * determine the mode */ agreed_pwr->pwr_rx = agreed_pwr->pwr_tx = qcom_param->rx_pwr_pwm; } /* * we would like tx to work in the minimum number of lanes * between device capability and vendor preferences. * the same decision will be made for rx */ agreed_pwr->lane_tx = min_t(u32, dev_max->lane_tx, qcom_param->tx_lanes); agreed_pwr->lane_rx = min_t(u32, dev_max->lane_rx, qcom_param->rx_lanes); /* device maximum gear is the minimum between device rx and tx gears */ min_dev_gear = min_t(u32, dev_max->gear_rx, dev_max->gear_tx); /* * if both device capabilities and vendor pre-defined preferences are * both HS or both PWM then set the minimum gear to be the chosen * working gear. * if one is PWM and one is HS then the one that is PWM get to decide * what is the gear, as it is the one that also decided previously what * pwr the device will be configured to. */ if ((is_dev_sup_hs && is_qcom_max_hs) || (!is_dev_sup_hs && !is_qcom_max_hs)) agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_t(u32, min_dev_gear, min_qcom_gear); else if (!is_dev_sup_hs) agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_dev_gear; else agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_qcom_gear; agreed_pwr->hs_rate = qcom_param->hs_rate; return 0; } static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host) { int vote; int err = 0; char mode[BUS_VECTOR_NAME_LEN]; ufs_qcom_get_speed_mode(&host->dev_req_params, mode); vote = ufs_qcom_get_bus_vote(host, mode); if (vote >= 0) err = ufs_qcom_set_bus_vote(host, vote); else err = vote; if (err) dev_err(host->hba->dev, "%s: failed %d\n", __func__, err); else host->bus_vote.saved_vote = vote; return err; } static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba, bool status, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { u32 val; struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; struct ufs_qcom_dev_params ufs_qcom_cap; int ret = 0; int res = 0; if (!dev_req_params) { pr_err("%s: incoming dev_req_params is NULL\n", __func__); ret = -EINVAL; goto out; } switch (status) { case PRE_CHANGE: ufs_qcom_cap.tx_lanes = UFS_QCOM_LIMIT_NUM_LANES_TX; ufs_qcom_cap.rx_lanes = UFS_QCOM_LIMIT_NUM_LANES_RX; ufs_qcom_cap.hs_rx_gear = UFS_QCOM_LIMIT_HSGEAR_RX; ufs_qcom_cap.hs_tx_gear = UFS_QCOM_LIMIT_HSGEAR_TX; ufs_qcom_cap.pwm_rx_gear = UFS_QCOM_LIMIT_PWMGEAR_RX; ufs_qcom_cap.pwm_tx_gear = UFS_QCOM_LIMIT_PWMGEAR_TX; ufs_qcom_cap.rx_pwr_pwm = UFS_QCOM_LIMIT_RX_PWR_PWM; ufs_qcom_cap.tx_pwr_pwm = UFS_QCOM_LIMIT_TX_PWR_PWM; ufs_qcom_cap.rx_pwr_hs = UFS_QCOM_LIMIT_RX_PWR_HS; ufs_qcom_cap.tx_pwr_hs = UFS_QCOM_LIMIT_TX_PWR_HS; ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE; ufs_qcom_cap.desired_working_mode = UFS_QCOM_LIMIT_DESIRED_MODE; ret = ufs_qcom_get_pwr_dev_param(&ufs_qcom_cap, dev_max_params, dev_req_params); if (ret) { pr_err("%s: failed to determine capabilities\n", __func__); goto out; } break; case POST_CHANGE: if (!ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx, dev_req_params->pwr_rx, dev_req_params->hs_rate)) { dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); /* * we return error code at the end of the routine, * but continue to configure UFS_PHY_TX_LANE_ENABLE * and bus voting as usual */ ret = -EINVAL; } val = ~(MAX_U32 << dev_req_params->lane_tx); res = ufs_qcom_phy_set_tx_lane_enable(phy, val); if (res) { dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable() failed res = %d\n", __func__, res); ret = res; } /* cache the power mode parameters to use internally */ memcpy(&host->dev_req_params, dev_req_params, sizeof(*dev_req_params)); ufs_qcom_update_bus_bw_vote(host); break; default: ret = -EINVAL; break; } out: return ret; } static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x1) return UFSHCI_VERSION_11; else return UFSHCI_VERSION_20; } /** * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks * @hba: host controller instance * * QCOM UFS host controller might have some non standard behaviours (quirks) * than what is specified by UFSHCI specification. Advertise all such * quirks to standard UFS host controller driver so standard takes them into * account. */ static void ufs_qcom_advertise_quirks(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x01) { hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS | UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP | UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE; if (host->hw_ver.minor == 0x0001 && host->hw_ver.step == 0x0001) hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR; } if (host->hw_ver.major >= 0x2) { hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC; hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION; if (!ufs_qcom_cap_qunipro(host)) /* Legacy UniPro mode still need following quirks */ hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS | UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE | UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP); } } static void ufs_qcom_set_caps(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major >= 0x2) host->caps = UFS_QCOM_CAP_QUNIPRO; } static int ufs_qcom_get_bus_vote(struct ufs_qcom_host *host, const char *speed_mode) { struct device *dev = host->hba->dev; struct device_node *np = dev->of_node; int err; const char *key = "qcom,bus-vector-names"; if (!speed_mode) { err = -EINVAL; goto out; } if (host->bus_vote.is_max_bw_needed && !!strcmp(speed_mode, "MIN")) err = of_property_match_string(np, key, "MAX"); else err = of_property_match_string(np, key, speed_mode); out: if (err < 0) dev_err(dev, "%s: Invalid %s mode %d\n", __func__, speed_mode, err); return err; } static int ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote) { int err = 0; if (vote != host->bus_vote.curr_vote) host->bus_vote.curr_vote = vote; return err; } static void ufs_qcom_get_speed_mode(struct ufs_pa_layer_attr *p, char *result) { int gear = max_t(u32, p->gear_rx, p->gear_tx); int lanes = max_t(u32, p->lane_rx, p->lane_tx); int pwr; /* default to PWM Gear 1, Lane 1 if power mode is not initialized */ if (!gear) gear = 1; if (!lanes) lanes = 1; if (!p->pwr_rx && !p->pwr_tx) { pwr = SLOWAUTO_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "MIN"); } else if (p->pwr_rx == FAST_MODE || p->pwr_rx == FASTAUTO_MODE || p->pwr_tx == FAST_MODE || p->pwr_tx == FASTAUTO_MODE) { pwr = FAST_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "%s_R%s_G%d_L%d", "HS", p->hs_rate == PA_HS_MODE_B ? "B" : "A", gear, lanes); } else { pwr = SLOW_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "%s_G%d_L%d", "PWM", gear, lanes); } } static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; int vote = 0; /* * In case ufs_qcom_init() is not yet done, simply ignore. * This ufs_qcom_setup_clocks() shall be called from * ufs_qcom_init() after init is done. */ if (!host) return 0; if (on) { err = ufs_qcom_phy_enable_iface_clk(host->generic_phy); if (err) goto out; err = ufs_qcom_phy_enable_ref_clk(host->generic_phy); if (err) { dev_err(hba->dev, "%s enable phy ref clock failed, err=%d\n", __func__, err); ufs_qcom_phy_disable_iface_clk(host->generic_phy); goto out; } /* enable the device ref clock */ ufs_qcom_phy_enable_dev_ref_clk(host->generic_phy); vote = host->bus_vote.saved_vote; if (vote == host->bus_vote.min_bw_vote) ufs_qcom_update_bus_bw_vote(host); } else { /* M-PHY RMMI interface clocks can be turned off */ ufs_qcom_phy_disable_iface_clk(host->generic_phy); if (!ufs_qcom_is_link_active(hba)) { /* turn off UFS local PHY ref_clk */ ufs_qcom_phy_disable_ref_clk(host->generic_phy); /* disable device ref_clk */ ufs_qcom_phy_disable_dev_ref_clk(host->generic_phy); } vote = host->bus_vote.min_bw_vote; } err = ufs_qcom_set_bus_vote(host, vote); if (err) dev_err(hba->dev, "%s: set bus vote failed %d\n", __func__, err); out: return err; } static ssize_t show_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_qcom_host *host = ufshcd_get_variant(hba); return snprintf(buf, PAGE_SIZE, "%u\n", host->bus_vote.is_max_bw_needed); } static ssize_t store_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_qcom_host *host = ufshcd_get_variant(hba); uint32_t value; if (!kstrtou32(buf, 0, &value)) { host->bus_vote.is_max_bw_needed = !!value; ufs_qcom_update_bus_bw_vote(host); } return count; } static int ufs_qcom_bus_register(struct ufs_qcom_host *host) { int err; struct device *dev = host->hba->dev; struct device_node *np = dev->of_node; err = of_property_count_strings(np, "qcom,bus-vector-names"); if (err < 0 ) { dev_err(dev, "%s: qcom,bus-vector-names not specified correctly %d\n", __func__, err); goto out; } /* cache the vote index for minimum and maximum bandwidth */ host->bus_vote.min_bw_vote = ufs_qcom_get_bus_vote(host, "MIN"); host->bus_vote.max_bw_vote = ufs_qcom_get_bus_vote(host, "MAX"); host->bus_vote.max_bus_bw.show = show_ufs_to_mem_max_bus_bw; host->bus_vote.max_bus_bw.store = store_ufs_to_mem_max_bus_bw; sysfs_attr_init(&host->bus_vote.max_bus_bw.attr); host->bus_vote.max_bus_bw.attr.name = "max_bus_bw"; host->bus_vote.max_bus_bw.attr.mode = S_IRUGO | S_IWUSR; err = device_create_file(dev, &host->bus_vote.max_bus_bw); out: return err; } #define ANDROID_BOOT_DEV_MAX 30 static char android_boot_dev[ANDROID_BOOT_DEV_MAX]; #ifndef MODULE static int __init get_android_boot_dev(char *str) { strlcpy(android_boot_dev, str, ANDROID_BOOT_DEV_MAX); return 1; } __setup("androidboot.bootdevice=", get_android_boot_dev); #endif /** * ufs_qcom_init - bind phy with controller * @hba: host controller instance * * Binds PHY with controller and powers up PHY enabling clocks * and regulators. * * Returns -EPROBE_DEFER if binding fails, returns negative error * on phy power up failure and returns zero on success. */ static int ufs_qcom_init(struct ufs_hba *hba) { int err; struct device *dev = hba->dev; struct ufs_qcom_host *host; if (strlen(android_boot_dev) && strcmp(android_boot_dev, dev_name(dev))) return -ENODEV; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { err = -ENOMEM; dev_err(dev, "%s: no memory for qcom ufs host\n", __func__); goto out; } host->hba = hba; ufshcd_set_variant(hba, host); host->generic_phy = devm_phy_get(dev, "ufsphy"); if (IS_ERR(host->generic_phy)) { err = PTR_ERR(host->generic_phy); dev_err(dev, "%s: PHY get failed %d\n", __func__, err); goto out; } err = ufs_qcom_bus_register(host); if (err) goto out_host_free; ufs_qcom_get_controller_revision(hba, &host->hw_ver.major, &host->hw_ver.minor, &host->hw_ver.step); /* update phy revision information before calling phy_init() */ ufs_qcom_phy_save_controller_version(host->generic_phy, host->hw_ver.major, host->hw_ver.minor, host->hw_ver.step); phy_init(host->generic_phy); err = phy_power_on(host->generic_phy); if (err) goto out_unregister_bus; err = ufs_qcom_init_lane_clks(host); if (err) goto out_disable_phy; ufs_qcom_set_caps(hba); ufs_qcom_advertise_quirks(hba); hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_CLK_SCALING; hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND; ufs_qcom_setup_clocks(hba, true); if (hba->dev->id < MAX_UFS_QCOM_HOSTS) ufs_qcom_hosts[hba->dev->id] = host; goto out; out_disable_phy: phy_power_off(host->generic_phy); out_unregister_bus: phy_exit(host->generic_phy); out_host_free: devm_kfree(dev, host); ufshcd_set_variant(hba, NULL); out: return err; } static void ufs_qcom_exit(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); ufs_qcom_disable_lane_clks(host); phy_power_off(host->generic_phy); } static void ufs_qcom_clk_scale_notify(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_pa_layer_attr *dev_req_params = &host->dev_req_params; if (!dev_req_params) return; ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx, dev_req_params->pwr_rx, dev_req_params->hs_rate); } /** * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations * * The variant operations configure the necessary controller and PHY * handshake during initialization. */ static struct ufs_hba_variant_ops ufs_hba_qcom_vops = { .name = "qcom", .init = ufs_qcom_init, .exit = ufs_qcom_exit, .get_ufs_hci_version = ufs_qcom_get_ufs_hci_version, .clk_scale_notify = ufs_qcom_clk_scale_notify, .setup_clocks = ufs_qcom_setup_clocks, .hce_enable_notify = ufs_qcom_hce_enable_notify, .link_startup_notify = ufs_qcom_link_startup_notify, .pwr_change_notify = ufs_qcom_pwr_change_notify, .suspend = ufs_qcom_suspend, .resume = ufs_qcom_resume, }; /** * ufs_qcom_probe - probe routine of the driver * @pdev: pointer to Platform device handle * * Return zero for success and non-zero for failure */ static int ufs_qcom_probe(struct platform_device *pdev) { int err; struct device *dev = &pdev->dev; /* Perform generic probe */ err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops); if (err) dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err); return err; } /** * ufs_qcom_remove - set driver_data of the device to NULL * @pdev: pointer to platform device handle * * Always return 0 */ static int ufs_qcom_remove(struct platform_device *pdev) { struct ufs_hba *hba = platform_get_drvdata(pdev); pm_runtime_get_sync(&(pdev)->dev); ufshcd_remove(hba); return 0; } static const struct of_device_id ufs_qcom_of_match[] = { { .compatible = "qcom,ufshc"}, {}, }; static const struct dev_pm_ops ufs_qcom_pm_ops = { .suspend = ufshcd_pltfrm_suspend, .resume = ufshcd_pltfrm_resume, .runtime_suspend = ufshcd_pltfrm_runtime_suspend, .runtime_resume = ufshcd_pltfrm_runtime_resume, .runtime_idle = ufshcd_pltfrm_runtime_idle, }; static struct platform_driver ufs_qcom_pltform = { .probe = ufs_qcom_probe, .remove = ufs_qcom_remove, .shutdown = ufshcd_pltfrm_shutdown, .driver = { .name = "ufshcd-qcom", .pm = &ufs_qcom_pm_ops, .of_match_table = of_match_ptr(ufs_qcom_of_match), }, }; module_platform_driver(ufs_qcom_pltform); MODULE_LICENSE("GPL v2");