/* * History: * Started: Aug 9 by Lawrence Foard (entropy@world.std.com), * to allow user process control of SCSI devices. * Development Sponsored by Killy Corp. NY NY * * Original driver (sg.c): * Copyright (C) 1992 Lawrence Foard * Version 2 and 3 extensions to driver: * Copyright (C) 1998 - 2014 Douglas Gilbert * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * */ static int sg_version_num = 30536; /* 2 digits for each component */ #define SG_VERSION_STR "3.5.36" /* * D. P. Gilbert (dgilbert@interlog.com), notes: * - scsi logging is available via SCSI_LOG_TIMEOUT macros. First * the kernel/module needs to be built with CONFIG_SCSI_LOGGING * (otherwise the macros compile to empty statements). * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "scsi.h" #include #include #include #include #include #include "scsi_logging.h" #ifdef CONFIG_SCSI_PROC_FS #include static char *sg_version_date = "20140603"; static int sg_proc_init(void); static void sg_proc_cleanup(void); #endif #define SG_ALLOW_DIO_DEF 0 #define SG_MAX_DEVS 32768 /* SG_MAX_CDB_SIZE should be 260 (spc4r37 section 3.1.30) however the type * of sg_io_hdr::cmd_len can only represent 255. All SCSI commands greater * than 16 bytes are "variable length" whose length is a multiple of 4 */ #define SG_MAX_CDB_SIZE 252 /* * Suppose you want to calculate the formula muldiv(x,m,d)=int(x * m / d) * Then when using 32 bit integers x * m may overflow during the calculation. * Replacing muldiv(x) by muldiv(x)=((x % d) * m) / d + int(x / d) * m * calculates the same, but prevents the overflow when both m and d * are "small" numbers (like HZ and USER_HZ). * Of course an overflow is inavoidable if the result of muldiv doesn't fit * in 32 bits. */ #define MULDIV(X,MUL,DIV) ((((X % DIV) * MUL) / DIV) + ((X / DIV) * MUL)) #define SG_DEFAULT_TIMEOUT MULDIV(SG_DEFAULT_TIMEOUT_USER, HZ, USER_HZ) int sg_big_buff = SG_DEF_RESERVED_SIZE; /* N.B. This variable is readable and writeable via /proc/scsi/sg/def_reserved_size . Each time sg_open() is called a buffer of this size (or less if there is not enough memory) will be reserved for use by this file descriptor. [Deprecated usage: this variable is also readable via /proc/sys/kernel/sg-big-buff if the sg driver is built into the kernel (i.e. it is not a module).] */ static int def_reserved_size = -1; /* picks up init parameter */ static int sg_allow_dio = SG_ALLOW_DIO_DEF; static int scatter_elem_sz = SG_SCATTER_SZ; static int scatter_elem_sz_prev = SG_SCATTER_SZ; #define SG_SECTOR_SZ 512 static int sg_add_device(struct device *, struct class_interface *); static void sg_remove_device(struct device *, struct class_interface *); static DEFINE_IDR(sg_index_idr); static DEFINE_RWLOCK(sg_index_lock); /* Also used to lock file descriptor list for device */ static struct class_interface sg_interface = { .add_dev = sg_add_device, .remove_dev = sg_remove_device, }; typedef struct sg_scatter_hold { /* holding area for scsi scatter gather info */ unsigned short k_use_sg; /* Count of kernel scatter-gather pieces */ unsigned sglist_len; /* size of malloc'd scatter-gather list ++ */ unsigned bufflen; /* Size of (aggregate) data buffer */ struct page **pages; int page_order; char dio_in_use; /* 0->indirect IO (or mmap), 1->dio */ unsigned char cmd_opcode; /* first byte of command */ } Sg_scatter_hold; struct sg_device; /* forward declarations */ struct sg_fd; typedef struct sg_request { /* SG_MAX_QUEUE requests outstanding per file */ struct sg_request *nextrp; /* NULL -> tail request (slist) */ struct sg_fd *parentfp; /* NULL -> not in use */ Sg_scatter_hold data; /* hold buffer, perhaps scatter list */ sg_io_hdr_t header; /* scsi command+info, see */ unsigned char sense_b[SCSI_SENSE_BUFFERSIZE]; char res_used; /* 1 -> using reserve buffer, 0 -> not ... */ char orphan; /* 1 -> drop on sight, 0 -> normal */ char sg_io_owned; /* 1 -> packet belongs to SG_IO */ /* done protected by rq_list_lock */ char done; /* 0->before bh, 1->before read, 2->read */ struct request *rq; struct bio *bio; struct execute_work ew; } Sg_request; typedef struct sg_fd { /* holds the state of a file descriptor */ struct list_head sfd_siblings; /* protected by device's sfd_lock */ struct sg_device *parentdp; /* owning device */ wait_queue_head_t read_wait; /* queue read until command done */ rwlock_t rq_list_lock; /* protect access to list in req_arr */ int timeout; /* defaults to SG_DEFAULT_TIMEOUT */ int timeout_user; /* defaults to SG_DEFAULT_TIMEOUT_USER */ Sg_scatter_hold reserve; /* buffer held for this file descriptor */ unsigned save_scat_len; /* original length of trunc. scat. element */ Sg_request *headrp; /* head of request slist, NULL->empty */ struct fasync_struct *async_qp; /* used by asynchronous notification */ Sg_request req_arr[SG_MAX_QUEUE]; /* used as singly-linked list */ char low_dma; /* as in parent but possibly overridden to 1 */ char force_packid; /* 1 -> pack_id input to read(), 0 -> ignored */ char cmd_q; /* 1 -> allow command queuing, 0 -> don't */ unsigned char next_cmd_len; /* 0: automatic, >0: use on next write() */ char keep_orphan; /* 0 -> drop orphan (def), 1 -> keep for read() */ char mmap_called; /* 0 -> mmap() never called on this fd */ struct kref f_ref; struct execute_work ew; } Sg_fd; typedef struct sg_device { /* holds the state of each scsi generic device */ struct scsi_device *device; wait_queue_head_t open_wait; /* queue open() when O_EXCL present */ struct mutex open_rel_lock; /* held when in open() or release() */ int sg_tablesize; /* adapter's max scatter-gather table size */ u32 index; /* device index number */ struct list_head sfds; rwlock_t sfd_lock; /* protect access to sfd list */ atomic_t detaching; /* 0->device usable, 1->device detaching */ bool exclude; /* 1->open(O_EXCL) succeeded and is active */ int open_cnt; /* count of opens (perhaps < num(sfds) ) */ char sgdebug; /* 0->off, 1->sense, 9->dump dev, 10-> all devs */ struct gendisk *disk; struct cdev * cdev; /* char_dev [sysfs: /sys/cdev/major/sg] */ struct kref d_ref; } Sg_device; /* tasklet or soft irq callback */ static void sg_rq_end_io(struct request *rq, int uptodate); static int sg_start_req(Sg_request *srp, unsigned char *cmd); static int sg_finish_rem_req(Sg_request * srp); static int sg_build_indirect(Sg_scatter_hold * schp, Sg_fd * sfp, int buff_size); static ssize_t sg_new_read(Sg_fd * sfp, char __user *buf, size_t count, Sg_request * srp); static ssize_t sg_new_write(Sg_fd *sfp, struct file *file, const char __user *buf, size_t count, int blocking, int read_only, int sg_io_owned, Sg_request **o_srp); static int sg_common_write(Sg_fd * sfp, Sg_request * srp, unsigned char *cmnd, int timeout, int blocking); static int sg_read_oxfer(Sg_request * srp, char __user *outp, int num_read_xfer); static void sg_remove_scat(Sg_fd * sfp, Sg_scatter_hold * schp); static void sg_build_reserve(Sg_fd * sfp, int req_size); static void sg_link_reserve(Sg_fd * sfp, Sg_request * srp, int size); static void sg_unlink_reserve(Sg_fd * sfp, Sg_request * srp); static Sg_fd *sg_add_sfp(Sg_device * sdp); static void sg_remove_sfp(struct kref *); static Sg_request *sg_get_rq_mark(Sg_fd * sfp, int pack_id); static Sg_request *sg_add_request(Sg_fd * sfp); static int sg_remove_request(Sg_fd * sfp, Sg_request * srp); static int sg_res_in_use(Sg_fd * sfp); static Sg_device *sg_get_dev(int dev); static void sg_device_destroy(struct kref *kref); #define SZ_SG_HEADER sizeof(struct sg_header) #define SZ_SG_IO_HDR sizeof(sg_io_hdr_t) #define SZ_SG_IOVEC sizeof(sg_iovec_t) #define SZ_SG_REQ_INFO sizeof(sg_req_info_t) #define sg_printk(prefix, sdp, fmt, a...) \ sdev_prefix_printk(prefix, (sdp)->device, \ (sdp)->disk->disk_name, fmt, ##a) static int sg_allow_access(struct file *filp, unsigned char *cmd) { struct sg_fd *sfp = filp->private_data; if (sfp->parentdp->device->type == TYPE_SCANNER) return 0; return blk_verify_command(cmd, filp->f_mode & FMODE_WRITE); } static int open_wait(Sg_device *sdp, int flags) { int retval = 0; if (flags & O_EXCL) { while (sdp->open_cnt > 0) { mutex_unlock(&sdp->open_rel_lock); retval = wait_event_interruptible(sdp->open_wait, (atomic_read(&sdp->detaching) || !sdp->open_cnt)); mutex_lock(&sdp->open_rel_lock); if (retval) /* -ERESTARTSYS */ return retval; if (atomic_read(&sdp->detaching)) return -ENODEV; } } else { while (sdp->exclude) { mutex_unlock(&sdp->open_rel_lock); retval = wait_event_interruptible(sdp->open_wait, (atomic_read(&sdp->detaching) || !sdp->exclude)); mutex_lock(&sdp->open_rel_lock); if (retval) /* -ERESTARTSYS */ return retval; if (atomic_read(&sdp->detaching)) return -ENODEV; } } return retval; } /* Returns 0 on success, else a negated errno value */ static int sg_open(struct inode *inode, struct file *filp) { int dev = iminor(inode); int flags = filp->f_flags; struct request_queue *q; Sg_device *sdp; Sg_fd *sfp; int retval; nonseekable_open(inode, filp); if ((flags & O_EXCL) && (O_RDONLY == (flags & O_ACCMODE))) return -EPERM; /* Can't lock it with read only access */ sdp = sg_get_dev(dev); if (IS_ERR(sdp)) return PTR_ERR(sdp); SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_open: flags=0x%x\n", flags)); /* This driver's module count bumped by fops_get in */ /* Prevent the device driver from vanishing while we sleep */ retval = scsi_device_get(sdp->device); if (retval) goto sg_put; retval = scsi_autopm_get_device(sdp->device); if (retval) goto sdp_put; /* scsi_block_when_processing_errors() may block so bypass * check if O_NONBLOCK. Permits SCSI commands to be issued * during error recovery. Tread carefully. */ if (!((flags & O_NONBLOCK) || scsi_block_when_processing_errors(sdp->device))) { retval = -ENXIO; /* we are in error recovery for this device */ goto error_out; } mutex_lock(&sdp->open_rel_lock); if (flags & O_NONBLOCK) { if (flags & O_EXCL) { if (sdp->open_cnt > 0) { retval = -EBUSY; goto error_mutex_locked; } } else { if (sdp->exclude) { retval = -EBUSY; goto error_mutex_locked; } } } else { retval = open_wait(sdp, flags); if (retval) /* -ERESTARTSYS or -ENODEV */ goto error_mutex_locked; } /* N.B. at this point we are holding the open_rel_lock */ if (flags & O_EXCL) sdp->exclude = true; if (sdp->open_cnt < 1) { /* no existing opens */ sdp->sgdebug = 0; q = sdp->device->request_queue; sdp->sg_tablesize = queue_max_segments(q); } sfp = sg_add_sfp(sdp); if (IS_ERR(sfp)) { retval = PTR_ERR(sfp); goto out_undo; } filp->private_data = sfp; sdp->open_cnt++; mutex_unlock(&sdp->open_rel_lock); retval = 0; sg_put: kref_put(&sdp->d_ref, sg_device_destroy); return retval; out_undo: if (flags & O_EXCL) { sdp->exclude = false; /* undo if error */ wake_up_interruptible(&sdp->open_wait); } error_mutex_locked: mutex_unlock(&sdp->open_rel_lock); error_out: scsi_autopm_put_device(sdp->device); sdp_put: scsi_device_put(sdp->device); goto sg_put; } /* Release resources associated with a successful sg_open() * Returns 0 on success, else a negated errno value */ static int sg_release(struct inode *inode, struct file *filp) { Sg_device *sdp; Sg_fd *sfp; if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))) return -ENXIO; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_release\n")); mutex_lock(&sdp->open_rel_lock); scsi_autopm_put_device(sdp->device); kref_put(&sfp->f_ref, sg_remove_sfp); sdp->open_cnt--; /* possibly many open()s waiting on exlude clearing, start many; * only open(O_EXCL)s wait on 0==open_cnt so only start one */ if (sdp->exclude) { sdp->exclude = false; wake_up_interruptible_all(&sdp->open_wait); } else if (0 == sdp->open_cnt) { wake_up_interruptible(&sdp->open_wait); } mutex_unlock(&sdp->open_rel_lock); return 0; } static ssize_t sg_read(struct file *filp, char __user *buf, size_t count, loff_t * ppos) { Sg_device *sdp; Sg_fd *sfp; Sg_request *srp; int req_pack_id = -1; sg_io_hdr_t *hp; struct sg_header *old_hdr = NULL; int retval = 0; if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))) return -ENXIO; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_read: count=%d\n", (int) count)); if (!access_ok(VERIFY_WRITE, buf, count)) return -EFAULT; if (sfp->force_packid && (count >= SZ_SG_HEADER)) { old_hdr = kmalloc(SZ_SG_HEADER, GFP_KERNEL); if (!old_hdr) return -ENOMEM; if (__copy_from_user(old_hdr, buf, SZ_SG_HEADER)) { retval = -EFAULT; goto free_old_hdr; } if (old_hdr->reply_len < 0) { if (count >= SZ_SG_IO_HDR) { sg_io_hdr_t *new_hdr; new_hdr = kmalloc(SZ_SG_IO_HDR, GFP_KERNEL); if (!new_hdr) { retval = -ENOMEM; goto free_old_hdr; } retval =__copy_from_user (new_hdr, buf, SZ_SG_IO_HDR); req_pack_id = new_hdr->pack_id; kfree(new_hdr); if (retval) { retval = -EFAULT; goto free_old_hdr; } } } else req_pack_id = old_hdr->pack_id; } srp = sg_get_rq_mark(sfp, req_pack_id); if (!srp) { /* now wait on packet to arrive */ if (atomic_read(&sdp->detaching)) { retval = -ENODEV; goto free_old_hdr; } if (filp->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto free_old_hdr; } retval = wait_event_interruptible(sfp->read_wait, (atomic_read(&sdp->detaching) || (srp = sg_get_rq_mark(sfp, req_pack_id)))); if (atomic_read(&sdp->detaching)) { retval = -ENODEV; goto free_old_hdr; } if (retval) { /* -ERESTARTSYS as signal hit process */ goto free_old_hdr; } } if (srp->header.interface_id != '\0') { retval = sg_new_read(sfp, buf, count, srp); goto free_old_hdr; } hp = &srp->header; if (old_hdr == NULL) { old_hdr = kmalloc(SZ_SG_HEADER, GFP_KERNEL); if (! old_hdr) { retval = -ENOMEM; goto free_old_hdr; } } memset(old_hdr, 0, SZ_SG_HEADER); old_hdr->reply_len = (int) hp->timeout; old_hdr->pack_len = old_hdr->reply_len; /* old, strange behaviour */ old_hdr->pack_id = hp->pack_id; old_hdr->twelve_byte = ((srp->data.cmd_opcode >= 0xc0) && (12 == hp->cmd_len)) ? 1 : 0; old_hdr->target_status = hp->masked_status; old_hdr->host_status = hp->host_status; old_hdr->driver_status = hp->driver_status; if ((CHECK_CONDITION & hp->masked_status) || (DRIVER_SENSE & hp->driver_status)) memcpy(old_hdr->sense_buffer, srp->sense_b, sizeof (old_hdr->sense_buffer)); switch (hp->host_status) { /* This setup of 'result' is for backward compatibility and is best ignored by the user who should use target, host + driver status */ case DID_OK: case DID_PASSTHROUGH: case DID_SOFT_ERROR: old_hdr->result = 0; break; case DID_NO_CONNECT: case DID_BUS_BUSY: case DID_TIME_OUT: old_hdr->result = EBUSY; break; case DID_BAD_TARGET: case DID_ABORT: case DID_PARITY: case DID_RESET: case DID_BAD_INTR: old_hdr->result = EIO; break; case DID_ERROR: old_hdr->result = (srp->sense_b[0] == 0 && hp->masked_status == GOOD) ? 0 : EIO; break; default: old_hdr->result = EIO; break; } /* Now copy the result back to the user buffer. */ if (count >= SZ_SG_HEADER) { if (__copy_to_user(buf, old_hdr, SZ_SG_HEADER)) { retval = -EFAULT; goto free_old_hdr; } buf += SZ_SG_HEADER; if (count > old_hdr->reply_len) count = old_hdr->reply_len; if (count > SZ_SG_HEADER) { if (sg_read_oxfer(srp, buf, count - SZ_SG_HEADER)) { retval = -EFAULT; goto free_old_hdr; } } } else count = (old_hdr->result == 0) ? 0 : -EIO; sg_finish_rem_req(srp); retval = count; free_old_hdr: kfree(old_hdr); return retval; } static ssize_t sg_new_read(Sg_fd * sfp, char __user *buf, size_t count, Sg_request * srp) { sg_io_hdr_t *hp = &srp->header; int err = 0, err2; int len; if (count < SZ_SG_IO_HDR) { err = -EINVAL; goto err_out; } hp->sb_len_wr = 0; if ((hp->mx_sb_len > 0) && hp->sbp) { if ((CHECK_CONDITION & hp->masked_status) || (DRIVER_SENSE & hp->driver_status)) { int sb_len = SCSI_SENSE_BUFFERSIZE; sb_len = (hp->mx_sb_len > sb_len) ? sb_len : hp->mx_sb_len; len = 8 + (int) srp->sense_b[7]; /* Additional sense length field */ len = (len > sb_len) ? sb_len : len; if (copy_to_user(hp->sbp, srp->sense_b, len)) { err = -EFAULT; goto err_out; } hp->sb_len_wr = len; } } if (hp->masked_status || hp->host_status || hp->driver_status) hp->info |= SG_INFO_CHECK; if (copy_to_user(buf, hp, SZ_SG_IO_HDR)) { err = -EFAULT; goto err_out; } err_out: err2 = sg_finish_rem_req(srp); return err ? : err2 ? : count; } static ssize_t sg_write(struct file *filp, const char __user *buf, size_t count, loff_t * ppos) { int mxsize, cmd_size, k; int input_size, blocking; unsigned char opcode; Sg_device *sdp; Sg_fd *sfp; Sg_request *srp; struct sg_header old_hdr; sg_io_hdr_t *hp; unsigned char cmnd[SG_MAX_CDB_SIZE]; if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))) return -ENXIO; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_write: count=%d\n", (int) count)); if (atomic_read(&sdp->detaching)) return -ENODEV; if (!((filp->f_flags & O_NONBLOCK) || scsi_block_when_processing_errors(sdp->device))) return -ENXIO; if (!access_ok(VERIFY_READ, buf, count)) return -EFAULT; /* protects following copy_from_user()s + get_user()s */ if (count < SZ_SG_HEADER) return -EIO; if (__copy_from_user(&old_hdr, buf, SZ_SG_HEADER)) return -EFAULT; blocking = !(filp->f_flags & O_NONBLOCK); if (old_hdr.reply_len < 0) return sg_new_write(sfp, filp, buf, count, blocking, 0, 0, NULL); if (count < (SZ_SG_HEADER + 6)) return -EIO; /* The minimum scsi command length is 6 bytes. */ if (!(srp = sg_add_request(sfp))) { SCSI_LOG_TIMEOUT(1, sg_printk(KERN_INFO, sdp, "sg_write: queue full\n")); return -EDOM; } buf += SZ_SG_HEADER; __get_user(opcode, buf); if (sfp->next_cmd_len > 0) { cmd_size = sfp->next_cmd_len; sfp->next_cmd_len = 0; /* reset so only this write() effected */ } else { cmd_size = COMMAND_SIZE(opcode); /* based on SCSI command group */ if ((opcode >= 0xc0) && old_hdr.twelve_byte) cmd_size = 12; } SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sdp, "sg_write: scsi opcode=0x%02x, cmd_size=%d\n", (int) opcode, cmd_size)); /* Determine buffer size. */ input_size = count - cmd_size; mxsize = (input_size > old_hdr.reply_len) ? input_size : old_hdr.reply_len; mxsize -= SZ_SG_HEADER; input_size -= SZ_SG_HEADER; if (input_size < 0) { sg_remove_request(sfp, srp); return -EIO; /* User did not pass enough bytes for this command. */ } hp = &srp->header; hp->interface_id = '\0'; /* indicator of old interface tunnelled */ hp->cmd_len = (unsigned char) cmd_size; hp->iovec_count = 0; hp->mx_sb_len = 0; if (input_size > 0) hp->dxfer_direction = (old_hdr.reply_len > SZ_SG_HEADER) ? SG_DXFER_TO_FROM_DEV : SG_DXFER_TO_DEV; else hp->dxfer_direction = (mxsize > 0) ? SG_DXFER_FROM_DEV : SG_DXFER_NONE; hp->dxfer_len = mxsize; if (hp->dxfer_direction == SG_DXFER_TO_DEV) hp->dxferp = (char __user *)buf + cmd_size; else hp->dxferp = NULL; hp->sbp = NULL; hp->timeout = old_hdr.reply_len; /* structure abuse ... */ hp->flags = input_size; /* structure abuse ... */ hp->pack_id = old_hdr.pack_id; hp->usr_ptr = NULL; if (__copy_from_user(cmnd, buf, cmd_size)) return -EFAULT; /* * SG_DXFER_TO_FROM_DEV is functionally equivalent to SG_DXFER_FROM_DEV, * but is is possible that the app intended SG_DXFER_TO_DEV, because there * is a non-zero input_size, so emit a warning. */ if (hp->dxfer_direction == SG_DXFER_TO_FROM_DEV) { static char cmd[TASK_COMM_LEN]; if (strcmp(current->comm, cmd)) { printk_ratelimited(KERN_WARNING "sg_write: data in/out %d/%d bytes " "for SCSI command 0x%x-- guessing " "data in;\n program %s not setting " "count and/or reply_len properly\n", old_hdr.reply_len - (int)SZ_SG_HEADER, input_size, (unsigned int) cmnd[0], current->comm); strcpy(cmd, current->comm); } } k = sg_common_write(sfp, srp, cmnd, sfp->timeout, blocking); return (k < 0) ? k : count; } static ssize_t sg_new_write(Sg_fd *sfp, struct file *file, const char __user *buf, size_t count, int blocking, int read_only, int sg_io_owned, Sg_request **o_srp) { int k; Sg_request *srp; sg_io_hdr_t *hp; unsigned char cmnd[SG_MAX_CDB_SIZE]; int timeout; unsigned long ul_timeout; if (count < SZ_SG_IO_HDR) return -EINVAL; if (!access_ok(VERIFY_READ, buf, count)) return -EFAULT; /* protects following copy_from_user()s + get_user()s */ sfp->cmd_q = 1; /* when sg_io_hdr seen, set command queuing on */ if (!(srp = sg_add_request(sfp))) { SCSI_LOG_TIMEOUT(1, sg_printk(KERN_INFO, sfp->parentdp, "sg_new_write: queue full\n")); return -EDOM; } srp->sg_io_owned = sg_io_owned; hp = &srp->header; if (__copy_from_user(hp, buf, SZ_SG_IO_HDR)) { sg_remove_request(sfp, srp); return -EFAULT; } if (hp->interface_id != 'S') { sg_remove_request(sfp, srp); return -ENOSYS; } if (hp->flags & SG_FLAG_MMAP_IO) { if (hp->dxfer_len > sfp->reserve.bufflen) { sg_remove_request(sfp, srp); return -ENOMEM; /* MMAP_IO size must fit in reserve buffer */ } if (hp->flags & SG_FLAG_DIRECT_IO) { sg_remove_request(sfp, srp); return -EINVAL; /* either MMAP_IO or DIRECT_IO (not both) */ } if (sg_res_in_use(sfp)) { sg_remove_request(sfp, srp); return -EBUSY; /* reserve buffer already being used */ } } ul_timeout = msecs_to_jiffies(srp->header.timeout); timeout = (ul_timeout < INT_MAX) ? ul_timeout : INT_MAX; if ((!hp->cmdp) || (hp->cmd_len < 6) || (hp->cmd_len > sizeof (cmnd))) { sg_remove_request(sfp, srp); return -EMSGSIZE; } if (!access_ok(VERIFY_READ, hp->cmdp, hp->cmd_len)) { sg_remove_request(sfp, srp); return -EFAULT; /* protects following copy_from_user()s + get_user()s */ } if (__copy_from_user(cmnd, hp->cmdp, hp->cmd_len)) { sg_remove_request(sfp, srp); return -EFAULT; } if (read_only && sg_allow_access(file, cmnd)) { sg_remove_request(sfp, srp); return -EPERM; } k = sg_common_write(sfp, srp, cmnd, timeout, blocking); if (k < 0) return k; if (o_srp) *o_srp = srp; return count; } static int sg_common_write(Sg_fd * sfp, Sg_request * srp, unsigned char *cmnd, int timeout, int blocking) { int k, at_head; Sg_device *sdp = sfp->parentdp; sg_io_hdr_t *hp = &srp->header; srp->data.cmd_opcode = cmnd[0]; /* hold opcode of command */ hp->status = 0; hp->masked_status = 0; hp->msg_status = 0; hp->info = 0; hp->host_status = 0; hp->driver_status = 0; hp->resid = 0; SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sfp->parentdp, "sg_common_write: scsi opcode=0x%02x, cmd_size=%d\n", (int) cmnd[0], (int) hp->cmd_len)); k = sg_start_req(srp, cmnd); if (k) { SCSI_LOG_TIMEOUT(1, sg_printk(KERN_INFO, sfp->parentdp, "sg_common_write: start_req err=%d\n", k)); sg_finish_rem_req(srp); return k; /* probably out of space --> ENOMEM */ } if (atomic_read(&sdp->detaching)) { if (srp->bio) blk_end_request_all(srp->rq, -EIO); sg_finish_rem_req(srp); return -ENODEV; } hp->duration = jiffies_to_msecs(jiffies); if (hp->interface_id != '\0' && /* v3 (or later) interface */ (SG_FLAG_Q_AT_TAIL & hp->flags)) at_head = 0; else at_head = 1; srp->rq->timeout = timeout; kref_get(&sfp->f_ref); /* sg_rq_end_io() does kref_put(). */ blk_execute_rq_nowait(sdp->device->request_queue, sdp->disk, srp->rq, at_head, sg_rq_end_io); return 0; } static int srp_done(Sg_fd *sfp, Sg_request *srp) { unsigned long flags; int ret; read_lock_irqsave(&sfp->rq_list_lock, flags); ret = srp->done; read_unlock_irqrestore(&sfp->rq_list_lock, flags); return ret; } static int max_sectors_bytes(struct request_queue *q) { unsigned int max_sectors = queue_max_sectors(q); max_sectors = min_t(unsigned int, max_sectors, INT_MAX >> 9); return max_sectors << 9; } static long sg_ioctl(struct file *filp, unsigned int cmd_in, unsigned long arg) { void __user *p = (void __user *)arg; int __user *ip = p; int result, val, read_only; Sg_device *sdp; Sg_fd *sfp; Sg_request *srp; unsigned long iflags; if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))) return -ENXIO; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_ioctl: cmd=0x%x\n", (int) cmd_in)); read_only = (O_RDWR != (filp->f_flags & O_ACCMODE)); switch (cmd_in) { case SG_IO: if (atomic_read(&sdp->detaching)) return -ENODEV; if (!scsi_block_when_processing_errors(sdp->device)) return -ENXIO; if (!access_ok(VERIFY_WRITE, p, SZ_SG_IO_HDR)) return -EFAULT; result = sg_new_write(sfp, filp, p, SZ_SG_IO_HDR, 1, read_only, 1, &srp); if (result < 0) return result; result = wait_event_interruptible(sfp->read_wait, (srp_done(sfp, srp) || atomic_read(&sdp->detaching))); if (atomic_read(&sdp->detaching)) return -ENODEV; write_lock_irq(&sfp->rq_list_lock); if (srp->done) { srp->done = 2; write_unlock_irq(&sfp->rq_list_lock); result = sg_new_read(sfp, p, SZ_SG_IO_HDR, srp); return (result < 0) ? result : 0; } srp->orphan = 1; write_unlock_irq(&sfp->rq_list_lock); return result; /* -ERESTARTSYS because signal hit process */ case SG_SET_TIMEOUT: result = get_user(val, ip); if (result) return result; if (val < 0) return -EIO; if (val >= MULDIV (INT_MAX, USER_HZ, HZ)) val = MULDIV (INT_MAX, USER_HZ, HZ); sfp->timeout_user = val; sfp->timeout = MULDIV (val, HZ, USER_HZ); return 0; case SG_GET_TIMEOUT: /* N.B. User receives timeout as return value */ /* strange ..., for backward compatibility */ return sfp->timeout_user; case SG_SET_FORCE_LOW_DMA: result = get_user(val, ip); if (result) return result; if (val) { sfp->low_dma = 1; if ((0 == sfp->low_dma) && (0 == sg_res_in_use(sfp))) { val = (int) sfp->reserve.bufflen; sg_remove_scat(sfp, &sfp->reserve); sg_build_reserve(sfp, val); } } else { if (atomic_read(&sdp->detaching)) return -ENODEV; sfp->low_dma = sdp->device->host->unchecked_isa_dma; } return 0; case SG_GET_LOW_DMA: return put_user((int) sfp->low_dma, ip); case SG_GET_SCSI_ID: if (!access_ok(VERIFY_WRITE, p, sizeof (sg_scsi_id_t))) return -EFAULT; else { sg_scsi_id_t __user *sg_idp = p; if (atomic_read(&sdp->detaching)) return -ENODEV; __put_user((int) sdp->device->host->host_no, &sg_idp->host_no); __put_user((int) sdp->device->channel, &sg_idp->channel); __put_user((int) sdp->device->id, &sg_idp->scsi_id); __put_user((int) sdp->device->lun, &sg_idp->lun); __put_user((int) sdp->device->type, &sg_idp->scsi_type); __put_user((short) sdp->device->host->cmd_per_lun, &sg_idp->h_cmd_per_lun); __put_user((short) sdp->device->queue_depth, &sg_idp->d_queue_depth); __put_user(0, &sg_idp->unused[0]); __put_user(0, &sg_idp->unused[1]); return 0; } case SG_SET_FORCE_PACK_ID: result = get_user(val, ip); if (result) return result; sfp->force_packid = val ? 1 : 0; return 0; case SG_GET_PACK_ID: if (!access_ok(VERIFY_WRITE, ip, sizeof (int))) return -EFAULT; read_lock_irqsave(&sfp->rq_list_lock, iflags); for (srp = sfp->headrp; srp; srp = srp->nextrp) { if ((1 == srp->done) && (!srp->sg_io_owned)) { read_unlock_irqrestore(&sfp->rq_list_lock, iflags); __put_user(srp->header.pack_id, ip); return 0; } } read_unlock_irqrestore(&sfp->rq_list_lock, iflags); __put_user(-1, ip); return 0; case SG_GET_NUM_WAITING: read_lock_irqsave(&sfp->rq_list_lock, iflags); for (val = 0, srp = sfp->headrp; srp; srp = srp->nextrp) { if ((1 == srp->done) && (!srp->sg_io_owned)) ++val; } read_unlock_irqrestore(&sfp->rq_list_lock, iflags); return put_user(val, ip); case SG_GET_SG_TABLESIZE: return put_user(sdp->sg_tablesize, ip); case SG_SET_RESERVED_SIZE: result = get_user(val, ip); if (result) return result; if (val < 0) return -EINVAL; val = min_t(int, val, max_sectors_bytes(sdp->device->request_queue)); if (val != sfp->reserve.bufflen) { if (sg_res_in_use(sfp) || sfp->mmap_called) return -EBUSY; sg_remove_scat(sfp, &sfp->reserve); sg_build_reserve(sfp, val); } return 0; case SG_GET_RESERVED_SIZE: val = min_t(int, sfp->reserve.bufflen, max_sectors_bytes(sdp->device->request_queue)); return put_user(val, ip); case SG_SET_COMMAND_Q: result = get_user(val, ip); if (result) return result; sfp->cmd_q = val ? 1 : 0; return 0; case SG_GET_COMMAND_Q: return put_user((int) sfp->cmd_q, ip); case SG_SET_KEEP_ORPHAN: result = get_user(val, ip); if (result) return result; sfp->keep_orphan = val; return 0; case SG_GET_KEEP_ORPHAN: return put_user((int) sfp->keep_orphan, ip); case SG_NEXT_CMD_LEN: result = get_user(val, ip); if (result) return result; sfp->next_cmd_len = (val > 0) ? val : 0; return 0; case SG_GET_VERSION_NUM: return put_user(sg_version_num, ip); case SG_GET_ACCESS_COUNT: /* faked - we don't have a real access count anymore */ val = (sdp->device ? 1 : 0); return put_user(val, ip); case SG_GET_REQUEST_TABLE: if (!access_ok(VERIFY_WRITE, p, SZ_SG_REQ_INFO * SG_MAX_QUEUE)) return -EFAULT; else { sg_req_info_t *rinfo; unsigned int ms; rinfo = kmalloc(SZ_SG_REQ_INFO * SG_MAX_QUEUE, GFP_KERNEL); if (!rinfo) return -ENOMEM; read_lock_irqsave(&sfp->rq_list_lock, iflags); for (srp = sfp->headrp, val = 0; val < SG_MAX_QUEUE; ++val, srp = srp ? srp->nextrp : srp) { memset(&rinfo[val], 0, SZ_SG_REQ_INFO); if (srp) { rinfo[val].req_state = srp->done + 1; rinfo[val].problem = srp->header.masked_status & srp->header.host_status & srp->header.driver_status; if (srp->done) rinfo[val].duration = srp->header.duration; else { ms = jiffies_to_msecs(jiffies); rinfo[val].duration = (ms > srp->header.duration) ? (ms - srp->header.duration) : 0; } rinfo[val].orphan = srp->orphan; rinfo[val].sg_io_owned = srp->sg_io_owned; rinfo[val].pack_id = srp->header.pack_id; rinfo[val].usr_ptr = srp->header.usr_ptr; } } read_unlock_irqrestore(&sfp->rq_list_lock, iflags); result = __copy_to_user(p, rinfo, SZ_SG_REQ_INFO * SG_MAX_QUEUE); result = result ? -EFAULT : 0; kfree(rinfo); return result; } case SG_EMULATED_HOST: if (atomic_read(&sdp->detaching)) return -ENODEV; return put_user(sdp->device->host->hostt->emulated, ip); case SCSI_IOCTL_SEND_COMMAND: if (atomic_read(&sdp->detaching)) return -ENODEV; if (read_only) { unsigned char opcode = WRITE_6; Scsi_Ioctl_Command __user *siocp = p; if (copy_from_user(&opcode, siocp->data, 1)) return -EFAULT; if (sg_allow_access(filp, &opcode)) return -EPERM; } return sg_scsi_ioctl(sdp->device->request_queue, NULL, filp->f_mode, p); case SG_SET_DEBUG: result = get_user(val, ip); if (result) return result; sdp->sgdebug = (char) val; return 0; case BLKSECTGET: return put_user(max_sectors_bytes(sdp->device->request_queue), ip); case BLKTRACESETUP: return blk_trace_setup(sdp->device->request_queue, sdp->disk->disk_name, MKDEV(SCSI_GENERIC_MAJOR, sdp->index), NULL, (char *)arg); case BLKTRACESTART: return blk_trace_startstop(sdp->device->request_queue, 1); case BLKTRACESTOP: return blk_trace_startstop(sdp->device->request_queue, 0); case BLKTRACETEARDOWN: return blk_trace_remove(sdp->device->request_queue); case SCSI_IOCTL_GET_IDLUN: case SCSI_IOCTL_GET_BUS_NUMBER: case SCSI_IOCTL_PROBE_HOST: case SG_GET_TRANSFORM: case SG_SCSI_RESET: if (atomic_read(&sdp->detaching)) return -ENODEV; break; default: if (read_only) return -EPERM; /* don't know so take safe approach */ break; } result = scsi_ioctl_block_when_processing_errors(sdp->device, cmd_in, filp->f_flags & O_NDELAY); if (result) return result; return scsi_ioctl(sdp->device, cmd_in, p); } #ifdef CONFIG_COMPAT static long sg_compat_ioctl(struct file *filp, unsigned int cmd_in, unsigned long arg) { Sg_device *sdp; Sg_fd *sfp; struct scsi_device *sdev; if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))) return -ENXIO; sdev = sdp->device; if (sdev->host->hostt->compat_ioctl) { int ret; ret = sdev->host->hostt->compat_ioctl(sdev, cmd_in, (void __user *)arg); return ret; } return -ENOIOCTLCMD; } #endif static unsigned int sg_poll(struct file *filp, poll_table * wait) { unsigned int res = 0; Sg_device *sdp; Sg_fd *sfp; Sg_request *srp; int count = 0; unsigned long iflags; sfp = filp->private_data; if (!sfp) return POLLERR; sdp = sfp->parentdp; if (!sdp) return POLLERR; poll_wait(filp, &sfp->read_wait, wait); read_lock_irqsave(&sfp->rq_list_lock, iflags); for (srp = sfp->headrp; srp; srp = srp->nextrp) { /* if any read waiting, flag it */ if ((0 == res) && (1 == srp->done) && (!srp->sg_io_owned)) res = POLLIN | POLLRDNORM; ++count; } read_unlock_irqrestore(&sfp->rq_list_lock, iflags); if (atomic_read(&sdp->detaching)) res |= POLLHUP; else if (!sfp->cmd_q) { if (0 == count) res |= POLLOUT | POLLWRNORM; } else if (count < SG_MAX_QUEUE) res |= POLLOUT | POLLWRNORM; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_poll: res=0x%x\n", (int) res)); return res; } static int sg_fasync(int fd, struct file *filp, int mode) { Sg_device *sdp; Sg_fd *sfp; if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))) return -ENXIO; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_fasync: mode=%d\n", mode)); return fasync_helper(fd, filp, mode, &sfp->async_qp); } static int sg_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { Sg_fd *sfp; unsigned long offset, len, sa; Sg_scatter_hold *rsv_schp; int k, length; if ((NULL == vma) || (!(sfp = (Sg_fd *) vma->vm_private_data))) return VM_FAULT_SIGBUS; rsv_schp = &sfp->reserve; offset = vmf->pgoff << PAGE_SHIFT; if (offset >= rsv_schp->bufflen) return VM_FAULT_SIGBUS; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sfp->parentdp, "sg_vma_fault: offset=%lu, scatg=%d\n", offset, rsv_schp->k_use_sg)); sa = vma->vm_start; length = 1 << (PAGE_SHIFT + rsv_schp->page_order); for (k = 0; k < rsv_schp->k_use_sg && sa < vma->vm_end; k++) { len = vma->vm_end - sa; len = (len < length) ? len : length; if (offset < len) { struct page *page = nth_page(rsv_schp->pages[k], offset >> PAGE_SHIFT); get_page(page); /* increment page count */ vmf->page = page; return 0; /* success */ } sa += len; offset -= len; } return VM_FAULT_SIGBUS; } static const struct vm_operations_struct sg_mmap_vm_ops = { .fault = sg_vma_fault, }; static int sg_mmap(struct file *filp, struct vm_area_struct *vma) { Sg_fd *sfp; unsigned long req_sz, len, sa; Sg_scatter_hold *rsv_schp; int k, length; if ((!filp) || (!vma) || (!(sfp = (Sg_fd *) filp->private_data))) return -ENXIO; req_sz = vma->vm_end - vma->vm_start; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sfp->parentdp, "sg_mmap starting, vm_start=%p, len=%d\n", (void *) vma->vm_start, (int) req_sz)); if (vma->vm_pgoff) return -EINVAL; /* want no offset */ rsv_schp = &sfp->reserve; if (req_sz > rsv_schp->bufflen) return -ENOMEM; /* cannot map more than reserved buffer */ sa = vma->vm_start; length = 1 << (PAGE_SHIFT + rsv_schp->page_order); for (k = 0; k < rsv_schp->k_use_sg && sa < vma->vm_end; k++) { len = vma->vm_end - sa; len = (len < length) ? len : length; sa += len; } sfp->mmap_called = 1; vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; vma->vm_private_data = sfp; vma->vm_ops = &sg_mmap_vm_ops; return 0; } static void sg_rq_end_io_usercontext(struct work_struct *work) { struct sg_request *srp = container_of(work, struct sg_request, ew.work); struct sg_fd *sfp = srp->parentfp; sg_finish_rem_req(srp); kref_put(&sfp->f_ref, sg_remove_sfp); } /* * This function is a "bottom half" handler that is called by the mid * level when a command is completed (or has failed). */ static void sg_rq_end_io(struct request *rq, int uptodate) { struct sg_request *srp = rq->end_io_data; Sg_device *sdp; Sg_fd *sfp; unsigned long iflags; unsigned int ms; char *sense; int result, resid, done = 1; if (WARN_ON(srp->done != 0)) return; sfp = srp->parentfp; if (WARN_ON(sfp == NULL)) return; sdp = sfp->parentdp; if (unlikely(atomic_read(&sdp->detaching))) pr_info("%s: device detaching\n", __func__); sense = rq->sense; result = rq->errors; resid = rq->resid_len; SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sdp, "sg_cmd_done: pack_id=%d, res=0x%x\n", srp->header.pack_id, result)); srp->header.resid = resid; ms = jiffies_to_msecs(jiffies); srp->header.duration = (ms > srp->header.duration) ? (ms - srp->header.duration) : 0; if (0 != result) { struct scsi_sense_hdr sshdr; srp->header.status = 0xff & result; srp->header.masked_status = status_byte(result); srp->header.msg_status = msg_byte(result); srp->header.host_status = host_byte(result); srp->header.driver_status = driver_byte(result); if ((sdp->sgdebug > 0) && ((CHECK_CONDITION == srp->header.masked_status) || (COMMAND_TERMINATED == srp->header.masked_status))) __scsi_print_sense(sdp->device, __func__, sense, SCSI_SENSE_BUFFERSIZE); /* Following if statement is a patch supplied by Eric Youngdale */ if (driver_byte(result) != 0 && scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, &sshdr) && !scsi_sense_is_deferred(&sshdr) && sshdr.sense_key == UNIT_ATTENTION && sdp->device->removable) { /* Detected possible disc change. Set the bit - this */ /* may be used if there are filesystems using this device */ sdp->device->changed = 1; } } /* Rely on write phase to clean out srp status values, so no "else" */ /* * Free the request as soon as it is complete so that its resources * can be reused without waiting for userspace to read() the * result. But keep the associated bio (if any) around until * blk_rq_unmap_user() can be called from user context. */ srp->rq = NULL; if (rq->cmd != rq->__cmd) kfree(rq->cmd); __blk_put_request(rq->q, rq); write_lock_irqsave(&sfp->rq_list_lock, iflags); if (unlikely(srp->orphan)) { if (sfp->keep_orphan) srp->sg_io_owned = 0; else done = 0; } srp->done = done; write_unlock_irqrestore(&sfp->rq_list_lock, iflags); if (likely(done)) { /* Now wake up any sg_read() that is waiting for this * packet. */ wake_up_interruptible(&sfp->read_wait); kill_fasync(&sfp->async_qp, SIGPOLL, POLL_IN); kref_put(&sfp->f_ref, sg_remove_sfp); } else { INIT_WORK(&srp->ew.work, sg_rq_end_io_usercontext); schedule_work(&srp->ew.work); } } static const struct file_operations sg_fops = { .owner = THIS_MODULE, .read = sg_read, .write = sg_write, .poll = sg_poll, .unlocked_ioctl = sg_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = sg_compat_ioctl, #endif .open = sg_open, .mmap = sg_mmap, .release = sg_release, .fasync = sg_fasync, .llseek = no_llseek, }; static struct class *sg_sysfs_class; static int sg_sysfs_valid = 0; static Sg_device * sg_alloc(struct gendisk *disk, struct scsi_device *scsidp) { struct request_queue *q = scsidp->request_queue; Sg_device *sdp; unsigned long iflags; int error; u32 k; sdp = kzalloc(sizeof(Sg_device), GFP_KERNEL); if (!sdp) { sdev_printk(KERN_WARNING, scsidp, "%s: kmalloc Sg_device " "failure\n", __func__); return ERR_PTR(-ENOMEM); } idr_preload(GFP_KERNEL); write_lock_irqsave(&sg_index_lock, iflags); error = idr_alloc(&sg_index_idr, sdp, 0, SG_MAX_DEVS, GFP_NOWAIT); if (error < 0) { if (error == -ENOSPC) { sdev_printk(KERN_WARNING, scsidp, "Unable to attach sg device type=%d, minor number exceeds %d\n", scsidp->type, SG_MAX_DEVS - 1); error = -ENODEV; } else { sdev_printk(KERN_WARNING, scsidp, "%s: idr " "allocation Sg_device failure: %d\n", __func__, error); } goto out_unlock; } k = error; SCSI_LOG_TIMEOUT(3, sdev_printk(KERN_INFO, scsidp, "sg_alloc: dev=%d \n", k)); sprintf(disk->disk_name, "sg%d", k); disk->first_minor = k; sdp->disk = disk; sdp->device = scsidp; mutex_init(&sdp->open_rel_lock); INIT_LIST_HEAD(&sdp->sfds); init_waitqueue_head(&sdp->open_wait); atomic_set(&sdp->detaching, 0); rwlock_init(&sdp->sfd_lock); sdp->sg_tablesize = queue_max_segments(q); sdp->index = k; kref_init(&sdp->d_ref); error = 0; out_unlock: write_unlock_irqrestore(&sg_index_lock, iflags); idr_preload_end(); if (error) { kfree(sdp); return ERR_PTR(error); } return sdp; } static int sg_add_device(struct device *cl_dev, struct class_interface *cl_intf) { struct scsi_device *scsidp = to_scsi_device(cl_dev->parent); struct gendisk *disk; Sg_device *sdp = NULL; struct cdev * cdev = NULL; int error; unsigned long iflags; disk = alloc_disk(1); if (!disk) { pr_warn("%s: alloc_disk failed\n", __func__); return -ENOMEM; } disk->major = SCSI_GENERIC_MAJOR; error = -ENOMEM; cdev = cdev_alloc(); if (!cdev) { pr_warn("%s: cdev_alloc failed\n", __func__); goto out; } cdev->owner = THIS_MODULE; cdev->ops = &sg_fops; sdp = sg_alloc(disk, scsidp); if (IS_ERR(sdp)) { pr_warn("%s: sg_alloc failed\n", __func__); error = PTR_ERR(sdp); goto out; } error = cdev_add(cdev, MKDEV(SCSI_GENERIC_MAJOR, sdp->index), 1); if (error) goto cdev_add_err; sdp->cdev = cdev; if (sg_sysfs_valid) { struct device *sg_class_member; sg_class_member = device_create(sg_sysfs_class, cl_dev->parent, MKDEV(SCSI_GENERIC_MAJOR, sdp->index), sdp, "%s", disk->disk_name); if (IS_ERR(sg_class_member)) { pr_err("%s: device_create failed\n", __func__); error = PTR_ERR(sg_class_member); goto cdev_add_err; } error = sysfs_create_link(&scsidp->sdev_gendev.kobj, &sg_class_member->kobj, "generic"); if (error) pr_err("%s: unable to make symlink 'generic' back " "to sg%d\n", __func__, sdp->index); } else pr_warn("%s: sg_sys Invalid\n", __func__); sdev_printk(KERN_NOTICE, scsidp, "Attached scsi generic sg%d " "type %d\n", sdp->index, scsidp->type); dev_set_drvdata(cl_dev, sdp); return 0; cdev_add_err: write_lock_irqsave(&sg_index_lock, iflags); idr_remove(&sg_index_idr, sdp->index); write_unlock_irqrestore(&sg_index_lock, iflags); kfree(sdp); out: put_disk(disk); if (cdev) cdev_del(cdev); return error; } static void sg_device_destroy(struct kref *kref) { struct sg_device *sdp = container_of(kref, struct sg_device, d_ref); unsigned long flags; /* CAUTION! Note that the device can still be found via idr_find() * even though the refcount is 0. Therefore, do idr_remove() BEFORE * any other cleanup. */ write_lock_irqsave(&sg_index_lock, flags); idr_remove(&sg_index_idr, sdp->index); write_unlock_irqrestore(&sg_index_lock, flags); SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_device_destroy\n")); put_disk(sdp->disk); kfree(sdp); } static void sg_remove_device(struct device *cl_dev, struct class_interface *cl_intf) { struct scsi_device *scsidp = to_scsi_device(cl_dev->parent); Sg_device *sdp = dev_get_drvdata(cl_dev); unsigned long iflags; Sg_fd *sfp; int val; if (!sdp) return; /* want sdp->detaching non-zero as soon as possible */ val = atomic_inc_return(&sdp->detaching); if (val > 1) return; /* only want to do following once per device */ SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "%s\n", __func__)); read_lock_irqsave(&sdp->sfd_lock, iflags); list_for_each_entry(sfp, &sdp->sfds, sfd_siblings) { wake_up_interruptible_all(&sfp->read_wait); kill_fasync(&sfp->async_qp, SIGPOLL, POLL_HUP); } wake_up_interruptible_all(&sdp->open_wait); read_unlock_irqrestore(&sdp->sfd_lock, iflags); sysfs_remove_link(&scsidp->sdev_gendev.kobj, "generic"); device_destroy(sg_sysfs_class, MKDEV(SCSI_GENERIC_MAJOR, sdp->index)); cdev_del(sdp->cdev); sdp->cdev = NULL; kref_put(&sdp->d_ref, sg_device_destroy); } module_param_named(scatter_elem_sz, scatter_elem_sz, int, S_IRUGO | S_IWUSR); module_param_named(def_reserved_size, def_reserved_size, int, S_IRUGO | S_IWUSR); module_param_named(allow_dio, sg_allow_dio, int, S_IRUGO | S_IWUSR); MODULE_AUTHOR("Douglas Gilbert"); MODULE_DESCRIPTION("SCSI generic (sg) driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(SG_VERSION_STR); MODULE_ALIAS_CHARDEV_MAJOR(SCSI_GENERIC_MAJOR); MODULE_PARM_DESC(scatter_elem_sz, "scatter gather element " "size (default: max(SG_SCATTER_SZ, PAGE_SIZE))"); MODULE_PARM_DESC(def_reserved_size, "size of buffer reserved for each fd"); MODULE_PARM_DESC(allow_dio, "allow direct I/O (default: 0 (disallow))"); static int __init init_sg(void) { int rc; if (scatter_elem_sz < PAGE_SIZE) { scatter_elem_sz = PAGE_SIZE; scatter_elem_sz_prev = scatter_elem_sz; } if (def_reserved_size >= 0) sg_big_buff = def_reserved_size; else def_reserved_size = sg_big_buff; rc = register_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0), SG_MAX_DEVS, "sg"); if (rc) return rc; sg_sysfs_class = class_create(THIS_MODULE, "scsi_generic"); if ( IS_ERR(sg_sysfs_class) ) { rc = PTR_ERR(sg_sysfs_class); goto err_out; } sg_sysfs_valid = 1; rc = scsi_register_interface(&sg_interface); if (0 == rc) { #ifdef CONFIG_SCSI_PROC_FS sg_proc_init(); #endif /* CONFIG_SCSI_PROC_FS */ return 0; } class_destroy(sg_sysfs_class); err_out: unregister_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0), SG_MAX_DEVS); return rc; } static void __exit exit_sg(void) { #ifdef CONFIG_SCSI_PROC_FS sg_proc_cleanup(); #endif /* CONFIG_SCSI_PROC_FS */ scsi_unregister_interface(&sg_interface); class_destroy(sg_sysfs_class); sg_sysfs_valid = 0; unregister_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0), SG_MAX_DEVS); idr_destroy(&sg_index_idr); } static int sg_start_req(Sg_request *srp, unsigned char *cmd) { int res; struct request *rq; Sg_fd *sfp = srp->parentfp; sg_io_hdr_t *hp = &srp->header; int dxfer_len = (int) hp->dxfer_len; int dxfer_dir = hp->dxfer_direction; unsigned int iov_count = hp->iovec_count; Sg_scatter_hold *req_schp = &srp->data; Sg_scatter_hold *rsv_schp = &sfp->reserve; struct request_queue *q = sfp->parentdp->device->request_queue; struct rq_map_data *md, map_data; int rw = hp->dxfer_direction == SG_DXFER_TO_DEV ? WRITE : READ; unsigned char *long_cmdp = NULL; SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sfp->parentdp, "sg_start_req: dxfer_len=%d\n", dxfer_len)); if (hp->cmd_len > BLK_MAX_CDB) { long_cmdp = kzalloc(hp->cmd_len, GFP_KERNEL); if (!long_cmdp) return -ENOMEM; } /* * NOTE * * With scsi-mq enabled, there are a fixed number of preallocated * requests equal in number to shost->can_queue. If all of the * preallocated requests are already in use, then using GFP_ATOMIC with * blk_get_request() will return -EWOULDBLOCK, whereas using GFP_KERNEL * will cause blk_get_request() to sleep until an active command * completes, freeing up a request. Neither option is ideal, but * GFP_KERNEL is the better choice to prevent userspace from getting an * unexpected EWOULDBLOCK. * * With scsi-mq disabled, blk_get_request() with GFP_KERNEL usually * does not sleep except under memory pressure. */ rq = blk_get_request(q, rw, GFP_KERNEL); if (IS_ERR(rq)) { kfree(long_cmdp); return PTR_ERR(rq); } blk_rq_set_block_pc(rq); if (hp->cmd_len > BLK_MAX_CDB) rq->cmd = long_cmdp; memcpy(rq->cmd, cmd, hp->cmd_len); rq->cmd_len = hp->cmd_len; srp->rq = rq; rq->end_io_data = srp; rq->sense = srp->sense_b; rq->retries = SG_DEFAULT_RETRIES; if ((dxfer_len <= 0) || (dxfer_dir == SG_DXFER_NONE)) return 0; if (sg_allow_dio && hp->flags & SG_FLAG_DIRECT_IO && dxfer_dir != SG_DXFER_UNKNOWN && !iov_count && !sfp->parentdp->device->host->unchecked_isa_dma && blk_rq_aligned(q, (unsigned long)hp->dxferp, dxfer_len)) md = NULL; else md = &map_data; if (md) { if (!sg_res_in_use(sfp) && dxfer_len <= rsv_schp->bufflen) sg_link_reserve(sfp, srp, dxfer_len); else { res = sg_build_indirect(req_schp, sfp, dxfer_len); if (res) return res; } md->pages = req_schp->pages; md->page_order = req_schp->page_order; md->nr_entries = req_schp->k_use_sg; md->offset = 0; md->null_mapped = hp->dxferp ? 0 : 1; if (dxfer_dir == SG_DXFER_TO_FROM_DEV) md->from_user = 1; else md->from_user = 0; } if (unlikely(iov_count > MAX_UIOVEC)) return -EINVAL; if (iov_count) { int size = sizeof(struct iovec) * iov_count; struct iovec *iov; struct iov_iter i; iov = memdup_user(hp->dxferp, size); if (IS_ERR(iov)) return PTR_ERR(iov); iov_iter_init(&i, rw, iov, iov_count, min_t(size_t, hp->dxfer_len, iov_length(iov, iov_count))); res = blk_rq_map_user_iov(q, rq, md, &i, GFP_ATOMIC); kfree(iov); } else res = blk_rq_map_user(q, rq, md, hp->dxferp, hp->dxfer_len, GFP_ATOMIC); if (!res) { srp->bio = rq->bio; if (!md) { req_schp->dio_in_use = 1; hp->info |= SG_INFO_DIRECT_IO; } } return res; } static int sg_finish_rem_req(Sg_request *srp) { int ret = 0; Sg_fd *sfp = srp->parentfp; Sg_scatter_hold *req_schp = &srp->data; SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sfp->parentdp, "sg_finish_rem_req: res_used=%d\n", (int) srp->res_used)); if (srp->bio) ret = blk_rq_unmap_user(srp->bio); if (srp->rq) { if (srp->rq->cmd != srp->rq->__cmd) kfree(srp->rq->cmd); blk_put_request(srp->rq); } if (srp->res_used) sg_unlink_reserve(sfp, srp); else sg_remove_scat(sfp, req_schp); sg_remove_request(sfp, srp); return ret; } static int sg_build_sgat(Sg_scatter_hold * schp, const Sg_fd * sfp, int tablesize) { int sg_bufflen = tablesize * sizeof(struct page *); gfp_t gfp_flags = GFP_ATOMIC | __GFP_NOWARN; schp->pages = kzalloc(sg_bufflen, gfp_flags); if (!schp->pages) return -ENOMEM; schp->sglist_len = sg_bufflen; return tablesize; /* number of scat_gath elements allocated */ } static int sg_build_indirect(Sg_scatter_hold * schp, Sg_fd * sfp, int buff_size) { int ret_sz = 0, i, k, rem_sz, num, mx_sc_elems; int sg_tablesize = sfp->parentdp->sg_tablesize; int blk_size = buff_size, order; gfp_t gfp_mask = GFP_ATOMIC | __GFP_COMP | __GFP_NOWARN; if (blk_size < 0) return -EFAULT; if (0 == blk_size) ++blk_size; /* don't know why */ /* round request up to next highest SG_SECTOR_SZ byte boundary */ blk_size = ALIGN(blk_size, SG_SECTOR_SZ); SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sfp->parentdp, "sg_build_indirect: buff_size=%d, blk_size=%d\n", buff_size, blk_size)); /* N.B. ret_sz carried into this block ... */ mx_sc_elems = sg_build_sgat(schp, sfp, sg_tablesize); if (mx_sc_elems < 0) return mx_sc_elems; /* most likely -ENOMEM */ num = scatter_elem_sz; if (unlikely(num != scatter_elem_sz_prev)) { if (num < PAGE_SIZE) { scatter_elem_sz = PAGE_SIZE; scatter_elem_sz_prev = PAGE_SIZE; } else scatter_elem_sz_prev = num; } if (sfp->low_dma) gfp_mask |= GFP_DMA; if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) gfp_mask |= __GFP_ZERO; order = get_order(num); retry: ret_sz = 1 << (PAGE_SHIFT + order); for (k = 0, rem_sz = blk_size; rem_sz > 0 && k < mx_sc_elems; k++, rem_sz -= ret_sz) { num = (rem_sz > scatter_elem_sz_prev) ? scatter_elem_sz_prev : rem_sz; schp->pages[k] = alloc_pages(gfp_mask, order); if (!schp->pages[k]) goto out; if (num == scatter_elem_sz_prev) { if (unlikely(ret_sz > scatter_elem_sz_prev)) { scatter_elem_sz = ret_sz; scatter_elem_sz_prev = ret_sz; } } SCSI_LOG_TIMEOUT(5, sg_printk(KERN_INFO, sfp->parentdp, "sg_build_indirect: k=%d, num=%d, ret_sz=%d\n", k, num, ret_sz)); } /* end of for loop */ schp->page_order = order; schp->k_use_sg = k; SCSI_LOG_TIMEOUT(5, sg_printk(KERN_INFO, sfp->parentdp, "sg_build_indirect: k_use_sg=%d, rem_sz=%d\n", k, rem_sz)); schp->bufflen = blk_size; if (rem_sz > 0) /* must have failed */ return -ENOMEM; return 0; out: for (i = 0; i < k; i++) __free_pages(schp->pages[i], order); if (--order >= 0) goto retry; return -ENOMEM; } static void sg_remove_scat(Sg_fd * sfp, Sg_scatter_hold * schp) { SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sfp->parentdp, "sg_remove_scat: k_use_sg=%d\n", schp->k_use_sg)); if (schp->pages && schp->sglist_len > 0) { if (!schp->dio_in_use) { int k; for (k = 0; k < schp->k_use_sg && schp->pages[k]; k++) { SCSI_LOG_TIMEOUT(5, sg_printk(KERN_INFO, sfp->parentdp, "sg_remove_scat: k=%d, pg=0x%p\n", k, schp->pages[k])); __free_pages(schp->pages[k], schp->page_order); } kfree(schp->pages); } } memset(schp, 0, sizeof (*schp)); } static int sg_read_oxfer(Sg_request * srp, char __user *outp, int num_read_xfer) { Sg_scatter_hold *schp = &srp->data; int k, num; SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, srp->parentfp->parentdp, "sg_read_oxfer: num_read_xfer=%d\n", num_read_xfer)); if ((!outp) || (num_read_xfer <= 0)) return 0; num = 1 << (PAGE_SHIFT + schp->page_order); for (k = 0; k < schp->k_use_sg && schp->pages[k]; k++) { if (num > num_read_xfer) { if (__copy_to_user(outp, page_address(schp->pages[k]), num_read_xfer)) return -EFAULT; break; } else { if (__copy_to_user(outp, page_address(schp->pages[k]), num)) return -EFAULT; num_read_xfer -= num; if (num_read_xfer <= 0) break; outp += num; } } return 0; } static void sg_build_reserve(Sg_fd * sfp, int req_size) { Sg_scatter_hold *schp = &sfp->reserve; SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sfp->parentdp, "sg_build_reserve: req_size=%d\n", req_size)); do { if (req_size < PAGE_SIZE) req_size = PAGE_SIZE; if (0 == sg_build_indirect(schp, sfp, req_size)) return; else sg_remove_scat(sfp, schp); req_size >>= 1; /* divide by 2 */ } while (req_size > (PAGE_SIZE / 2)); } static void sg_link_reserve(Sg_fd * sfp, Sg_request * srp, int size) { Sg_scatter_hold *req_schp = &srp->data; Sg_scatter_hold *rsv_schp = &sfp->reserve; int k, num, rem; srp->res_used = 1; SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, sfp->parentdp, "sg_link_reserve: size=%d\n", size)); rem = size; num = 1 << (PAGE_SHIFT + rsv_schp->page_order); for (k = 0; k < rsv_schp->k_use_sg; k++) { if (rem <= num) { req_schp->k_use_sg = k + 1; req_schp->sglist_len = rsv_schp->sglist_len; req_schp->pages = rsv_schp->pages; req_schp->bufflen = size; req_schp->page_order = rsv_schp->page_order; break; } else rem -= num; } if (k >= rsv_schp->k_use_sg) SCSI_LOG_TIMEOUT(1, sg_printk(KERN_INFO, sfp->parentdp, "sg_link_reserve: BAD size\n")); } static void sg_unlink_reserve(Sg_fd * sfp, Sg_request * srp) { Sg_scatter_hold *req_schp = &srp->data; SCSI_LOG_TIMEOUT(4, sg_printk(KERN_INFO, srp->parentfp->parentdp, "sg_unlink_reserve: req->k_use_sg=%d\n", (int) req_schp->k_use_sg)); req_schp->k_use_sg = 0; req_schp->bufflen = 0; req_schp->pages = NULL; req_schp->page_order = 0; req_schp->sglist_len = 0; sfp->save_scat_len = 0; srp->res_used = 0; } static Sg_request * sg_get_rq_mark(Sg_fd * sfp, int pack_id) { Sg_request *resp; unsigned long iflags; write_lock_irqsave(&sfp->rq_list_lock, iflags); for (resp = sfp->headrp; resp; resp = resp->nextrp) { /* look for requests that are ready + not SG_IO owned */ if ((1 == resp->done) && (!resp->sg_io_owned) && ((-1 == pack_id) || (resp->header.pack_id == pack_id))) { resp->done = 2; /* guard against other readers */ break; } } write_unlock_irqrestore(&sfp->rq_list_lock, iflags); return resp; } /* always adds to end of list */ static Sg_request * sg_add_request(Sg_fd * sfp) { int k; unsigned long iflags; Sg_request *resp; Sg_request *rp = sfp->req_arr; write_lock_irqsave(&sfp->rq_list_lock, iflags); resp = sfp->headrp; if (!resp) { memset(rp, 0, sizeof (Sg_request)); rp->parentfp = sfp; resp = rp; sfp->headrp = resp; } else { if (0 == sfp->cmd_q) resp = NULL; /* command queuing disallowed */ else { for (k = 0; k < SG_MAX_QUEUE; ++k, ++rp) { if (!rp->parentfp) break; } if (k < SG_MAX_QUEUE) { memset(rp, 0, sizeof (Sg_request)); rp->parentfp = sfp; while (resp->nextrp) resp = resp->nextrp; resp->nextrp = rp; resp = rp; } else resp = NULL; } } if (resp) { resp->nextrp = NULL; resp->header.duration = jiffies_to_msecs(jiffies); } write_unlock_irqrestore(&sfp->rq_list_lock, iflags); return resp; } /* Return of 1 for found; 0 for not found */ static int sg_remove_request(Sg_fd * sfp, Sg_request * srp) { Sg_request *prev_rp; Sg_request *rp; unsigned long iflags; int res = 0; if ((!sfp) || (!srp) || (!sfp->headrp)) return res; write_lock_irqsave(&sfp->rq_list_lock, iflags); prev_rp = sfp->headrp; if (srp == prev_rp) { sfp->headrp = prev_rp->nextrp; prev_rp->parentfp = NULL; res = 1; } else { while ((rp = prev_rp->nextrp)) { if (srp == rp) { prev_rp->nextrp = rp->nextrp; rp->parentfp = NULL; res = 1; break; } prev_rp = rp; } } write_unlock_irqrestore(&sfp->rq_list_lock, iflags); return res; } static Sg_fd * sg_add_sfp(Sg_device * sdp) { Sg_fd *sfp; unsigned long iflags; int bufflen; sfp = kzalloc(sizeof(*sfp), GFP_ATOMIC | __GFP_NOWARN); if (!sfp) return ERR_PTR(-ENOMEM); init_waitqueue_head(&sfp->read_wait); rwlock_init(&sfp->rq_list_lock); kref_init(&sfp->f_ref); sfp->timeout = SG_DEFAULT_TIMEOUT; sfp->timeout_user = SG_DEFAULT_TIMEOUT_USER; sfp->force_packid = SG_DEF_FORCE_PACK_ID; sfp->low_dma = (SG_DEF_FORCE_LOW_DMA == 0) ? sdp->device->host->unchecked_isa_dma : 1; sfp->cmd_q = SG_DEF_COMMAND_Q; sfp->keep_orphan = SG_DEF_KEEP_ORPHAN; sfp->parentdp = sdp; write_lock_irqsave(&sdp->sfd_lock, iflags); if (atomic_read(&sdp->detaching)) { write_unlock_irqrestore(&sdp->sfd_lock, iflags); return ERR_PTR(-ENODEV); } list_add_tail(&sfp->sfd_siblings, &sdp->sfds); write_unlock_irqrestore(&sdp->sfd_lock, iflags); SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_add_sfp: sfp=0x%p\n", sfp)); if (unlikely(sg_big_buff != def_reserved_size)) sg_big_buff = def_reserved_size; bufflen = min_t(int, sg_big_buff, max_sectors_bytes(sdp->device->request_queue)); sg_build_reserve(sfp, bufflen); SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_add_sfp: bufflen=%d, k_use_sg=%d\n", sfp->reserve.bufflen, sfp->reserve.k_use_sg)); kref_get(&sdp->d_ref); __module_get(THIS_MODULE); return sfp; } static void sg_remove_sfp_usercontext(struct work_struct *work) { struct sg_fd *sfp = container_of(work, struct sg_fd, ew.work); struct sg_device *sdp = sfp->parentdp; /* Cleanup any responses which were never read(). */ while (sfp->headrp) sg_finish_rem_req(sfp->headrp); if (sfp->reserve.bufflen > 0) { SCSI_LOG_TIMEOUT(6, sg_printk(KERN_INFO, sdp, "sg_remove_sfp: bufflen=%d, k_use_sg=%d\n", (int) sfp->reserve.bufflen, (int) sfp->reserve.k_use_sg)); sg_remove_scat(sfp, &sfp->reserve); } SCSI_LOG_TIMEOUT(6, sg_printk(KERN_INFO, sdp, "sg_remove_sfp: sfp=0x%p\n", sfp)); kfree(sfp); scsi_device_put(sdp->device); kref_put(&sdp->d_ref, sg_device_destroy); module_put(THIS_MODULE); } static void sg_remove_sfp(struct kref *kref) { struct sg_fd *sfp = container_of(kref, struct sg_fd, f_ref); struct sg_device *sdp = sfp->parentdp; unsigned long iflags; write_lock_irqsave(&sdp->sfd_lock, iflags); list_del(&sfp->sfd_siblings); write_unlock_irqrestore(&sdp->sfd_lock, iflags); INIT_WORK(&sfp->ew.work, sg_remove_sfp_usercontext); schedule_work(&sfp->ew.work); } static int sg_res_in_use(Sg_fd * sfp) { const Sg_request *srp; unsigned long iflags; read_lock_irqsave(&sfp->rq_list_lock, iflags); for (srp = sfp->headrp; srp; srp = srp->nextrp) if (srp->res_used) break; read_unlock_irqrestore(&sfp->rq_list_lock, iflags); return srp ? 1 : 0; } #ifdef CONFIG_SCSI_PROC_FS static int sg_idr_max_id(int id, void *p, void *data) { int *k = data; if (*k < id) *k = id; return 0; } static int sg_last_dev(void) { int k = -1; unsigned long iflags; read_lock_irqsave(&sg_index_lock, iflags); idr_for_each(&sg_index_idr, sg_idr_max_id, &k); read_unlock_irqrestore(&sg_index_lock, iflags); return k + 1; /* origin 1 */ } #endif /* must be called with sg_index_lock held */ static Sg_device *sg_lookup_dev(int dev) { return idr_find(&sg_index_idr, dev); } static Sg_device * sg_get_dev(int dev) { struct sg_device *sdp; unsigned long flags; read_lock_irqsave(&sg_index_lock, flags); sdp = sg_lookup_dev(dev); if (!sdp) sdp = ERR_PTR(-ENXIO); else if (atomic_read(&sdp->detaching)) { /* If sdp->detaching, then the refcount may already be 0, in * which case it would be a bug to do kref_get(). */ sdp = ERR_PTR(-ENODEV); } else kref_get(&sdp->d_ref); read_unlock_irqrestore(&sg_index_lock, flags); return sdp; } #ifdef CONFIG_SCSI_PROC_FS static struct proc_dir_entry *sg_proc_sgp = NULL; static char sg_proc_sg_dirname[] = "scsi/sg"; static int sg_proc_seq_show_int(struct seq_file *s, void *v); static int sg_proc_single_open_adio(struct inode *inode, struct file *file); static ssize_t sg_proc_write_adio(struct file *filp, const char __user *buffer, size_t count, loff_t *off); static const struct file_operations adio_fops = { .owner = THIS_MODULE, .open = sg_proc_single_open_adio, .read = seq_read, .llseek = seq_lseek, .write = sg_proc_write_adio, .release = single_release, }; static int sg_proc_single_open_dressz(struct inode *inode, struct file *file); static ssize_t sg_proc_write_dressz(struct file *filp, const char __user *buffer, size_t count, loff_t *off); static const struct file_operations dressz_fops = { .owner = THIS_MODULE, .open = sg_proc_single_open_dressz, .read = seq_read, .llseek = seq_lseek, .write = sg_proc_write_dressz, .release = single_release, }; static int sg_proc_seq_show_version(struct seq_file *s, void *v); static int sg_proc_single_open_version(struct inode *inode, struct file *file); static const struct file_operations version_fops = { .owner = THIS_MODULE, .open = sg_proc_single_open_version, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int sg_proc_seq_show_devhdr(struct seq_file *s, void *v); static int sg_proc_single_open_devhdr(struct inode *inode, struct file *file); static const struct file_operations devhdr_fops = { .owner = THIS_MODULE, .open = sg_proc_single_open_devhdr, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int sg_proc_seq_show_dev(struct seq_file *s, void *v); static int sg_proc_open_dev(struct inode *inode, struct file *file); static void * dev_seq_start(struct seq_file *s, loff_t *pos); static void * dev_seq_next(struct seq_file *s, void *v, loff_t *pos); static void dev_seq_stop(struct seq_file *s, void *v); static const struct file_operations dev_fops = { .owner = THIS_MODULE, .open = sg_proc_open_dev, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static const struct seq_operations dev_seq_ops = { .start = dev_seq_start, .next = dev_seq_next, .stop = dev_seq_stop, .show = sg_proc_seq_show_dev, }; static int sg_proc_seq_show_devstrs(struct seq_file *s, void *v); static int sg_proc_open_devstrs(struct inode *inode, struct file *file); static const struct file_operations devstrs_fops = { .owner = THIS_MODULE, .open = sg_proc_open_devstrs, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static const struct seq_operations devstrs_seq_ops = { .start = dev_seq_start, .next = dev_seq_next, .stop = dev_seq_stop, .show = sg_proc_seq_show_devstrs, }; static int sg_proc_seq_show_debug(struct seq_file *s, void *v); static int sg_proc_open_debug(struct inode *inode, struct file *file); static const struct file_operations debug_fops = { .owner = THIS_MODULE, .open = sg_proc_open_debug, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static const struct seq_operations debug_seq_ops = { .start = dev_seq_start, .next = dev_seq_next, .stop = dev_seq_stop, .show = sg_proc_seq_show_debug, }; struct sg_proc_leaf { const char * name; const struct file_operations * fops; }; static const struct sg_proc_leaf sg_proc_leaf_arr[] = { {"allow_dio", &adio_fops}, {"debug", &debug_fops}, {"def_reserved_size", &dressz_fops}, {"device_hdr", &devhdr_fops}, {"devices", &dev_fops}, {"device_strs", &devstrs_fops}, {"version", &version_fops} }; static int sg_proc_init(void) { int num_leaves = ARRAY_SIZE(sg_proc_leaf_arr); int k; sg_proc_sgp = proc_mkdir(sg_proc_sg_dirname, NULL); if (!sg_proc_sgp) return 1; for (k = 0; k < num_leaves; ++k) { const struct sg_proc_leaf *leaf = &sg_proc_leaf_arr[k]; umode_t mask = leaf->fops->write ? S_IRUGO | S_IWUSR : S_IRUGO; proc_create(leaf->name, mask, sg_proc_sgp, leaf->fops); } return 0; } static void sg_proc_cleanup(void) { int k; int num_leaves = ARRAY_SIZE(sg_proc_leaf_arr); if (!sg_proc_sgp) return; for (k = 0; k < num_leaves; ++k) remove_proc_entry(sg_proc_leaf_arr[k].name, sg_proc_sgp); remove_proc_entry(sg_proc_sg_dirname, NULL); } static int sg_proc_seq_show_int(struct seq_file *s, void *v) { seq_printf(s, "%d\n", *((int *)s->private)); return 0; } static int sg_proc_single_open_adio(struct inode *inode, struct file *file) { return single_open(file, sg_proc_seq_show_int, &sg_allow_dio); } static ssize_t sg_proc_write_adio(struct file *filp, const char __user *buffer, size_t count, loff_t *off) { int err; unsigned long num; if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; err = kstrtoul_from_user(buffer, count, 0, &num); if (err) return err; sg_allow_dio = num ? 1 : 0; return count; } static int sg_proc_single_open_dressz(struct inode *inode, struct file *file) { return single_open(file, sg_proc_seq_show_int, &sg_big_buff); } static ssize_t sg_proc_write_dressz(struct file *filp, const char __user *buffer, size_t count, loff_t *off) { int err; unsigned long k = ULONG_MAX; if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; err = kstrtoul_from_user(buffer, count, 0, &k); if (err) return err; if (k <= 1048576) { /* limit "big buff" to 1 MB */ sg_big_buff = k; return count; } return -ERANGE; } static int sg_proc_seq_show_version(struct seq_file *s, void *v) { seq_printf(s, "%d\t%s [%s]\n", sg_version_num, SG_VERSION_STR, sg_version_date); return 0; } static int sg_proc_single_open_version(struct inode *inode, struct file *file) { return single_open(file, sg_proc_seq_show_version, NULL); } static int sg_proc_seq_show_devhdr(struct seq_file *s, void *v) { seq_puts(s, "host\tchan\tid\tlun\ttype\topens\tqdepth\tbusy\tonline\n"); return 0; } static int sg_proc_single_open_devhdr(struct inode *inode, struct file *file) { return single_open(file, sg_proc_seq_show_devhdr, NULL); } struct sg_proc_deviter { loff_t index; size_t max; }; static void * dev_seq_start(struct seq_file *s, loff_t *pos) { struct sg_proc_deviter * it = kmalloc(sizeof(*it), GFP_KERNEL); s->private = it; if (! it) return NULL; it->index = *pos; it->max = sg_last_dev(); if (it->index >= it->max) return NULL; return it; } static void * dev_seq_next(struct seq_file *s, void *v, loff_t *pos) { struct sg_proc_deviter * it = s->private; *pos = ++it->index; return (it->index < it->max) ? it : NULL; } static void dev_seq_stop(struct seq_file *s, void *v) { kfree(s->private); } static int sg_proc_open_dev(struct inode *inode, struct file *file) { return seq_open(file, &dev_seq_ops); } static int sg_proc_seq_show_dev(struct seq_file *s, void *v) { struct sg_proc_deviter * it = (struct sg_proc_deviter *) v; Sg_device *sdp; struct scsi_device *scsidp; unsigned long iflags; read_lock_irqsave(&sg_index_lock, iflags); sdp = it ? sg_lookup_dev(it->index) : NULL; if ((NULL == sdp) || (NULL == sdp->device) || (atomic_read(&sdp->detaching))) seq_puts(s, "-1\t-1\t-1\t-1\t-1\t-1\t-1\t-1\t-1\n"); else { scsidp = sdp->device; seq_printf(s, "%d\t%d\t%d\t%llu\t%d\t%d\t%d\t%d\t%d\n", scsidp->host->host_no, scsidp->channel, scsidp->id, scsidp->lun, (int) scsidp->type, 1, (int) scsidp->queue_depth, (int) atomic_read(&scsidp->device_busy), (int) scsi_device_online(scsidp)); } read_unlock_irqrestore(&sg_index_lock, iflags); return 0; } static int sg_proc_open_devstrs(struct inode *inode, struct file *file) { return seq_open(file, &devstrs_seq_ops); } static int sg_proc_seq_show_devstrs(struct seq_file *s, void *v) { struct sg_proc_deviter * it = (struct sg_proc_deviter *) v; Sg_device *sdp; struct scsi_device *scsidp; unsigned long iflags; read_lock_irqsave(&sg_index_lock, iflags); sdp = it ? sg_lookup_dev(it->index) : NULL; scsidp = sdp ? sdp->device : NULL; if (sdp && scsidp && (!atomic_read(&sdp->detaching))) seq_printf(s, "%8.8s\t%16.16s\t%4.4s\n", scsidp->vendor, scsidp->model, scsidp->rev); else seq_puts(s, "\n"); read_unlock_irqrestore(&sg_index_lock, iflags); return 0; } /* must be called while holding sg_index_lock */ static void sg_proc_debug_helper(struct seq_file *s, Sg_device * sdp) { int k, m, new_interface, blen, usg; Sg_request *srp; Sg_fd *fp; const sg_io_hdr_t *hp; const char * cp; unsigned int ms; k = 0; list_for_each_entry(fp, &sdp->sfds, sfd_siblings) { k++; read_lock(&fp->rq_list_lock); /* irqs already disabled */ seq_printf(s, " FD(%d): timeout=%dms bufflen=%d " "(res)sgat=%d low_dma=%d\n", k, jiffies_to_msecs(fp->timeout), fp->reserve.bufflen, (int) fp->reserve.k_use_sg, (int) fp->low_dma); seq_printf(s, " cmd_q=%d f_packid=%d k_orphan=%d closed=0\n", (int) fp->cmd_q, (int) fp->force_packid, (int) fp->keep_orphan); for (m = 0, srp = fp->headrp; srp != NULL; ++m, srp = srp->nextrp) { hp = &srp->header; new_interface = (hp->interface_id == '\0') ? 0 : 1; if (srp->res_used) { if (new_interface && (SG_FLAG_MMAP_IO & hp->flags)) cp = " mmap>> "; else cp = " rb>> "; } else { if (SG_INFO_DIRECT_IO_MASK & hp->info) cp = " dio>> "; else cp = " "; } seq_puts(s, cp); blen = srp->data.bufflen; usg = srp->data.k_use_sg; seq_puts(s, srp->done ? ((1 == srp->done) ? "rcv:" : "fin:") : "act:"); seq_printf(s, " id=%d blen=%d", srp->header.pack_id, blen); if (srp->done) seq_printf(s, " dur=%d", hp->duration); else { ms = jiffies_to_msecs(jiffies); seq_printf(s, " t_o/elap=%d/%d", (new_interface ? hp->timeout : jiffies_to_msecs(fp->timeout)), (ms > hp->duration ? ms - hp->duration : 0)); } seq_printf(s, "ms sgat=%d op=0x%02x\n", usg, (int) srp->data.cmd_opcode); } if (0 == m) seq_puts(s, " No requests active\n"); read_unlock(&fp->rq_list_lock); } } static int sg_proc_open_debug(struct inode *inode, struct file *file) { return seq_open(file, &debug_seq_ops); } static int sg_proc_seq_show_debug(struct seq_file *s, void *v) { struct sg_proc_deviter * it = (struct sg_proc_deviter *) v; Sg_device *sdp; unsigned long iflags; if (it && (0 == it->index)) seq_printf(s, "max_active_device=%d def_reserved_size=%d\n", (int)it->max, sg_big_buff); read_lock_irqsave(&sg_index_lock, iflags); sdp = it ? sg_lookup_dev(it->index) : NULL; if (NULL == sdp) goto skip; read_lock(&sdp->sfd_lock); if (!list_empty(&sdp->sfds)) { seq_printf(s, " >>> device=%s ", sdp->disk->disk_name); if (atomic_read(&sdp->detaching)) seq_puts(s, "detaching pending close "); else if (sdp->device) { struct scsi_device *scsidp = sdp->device; seq_printf(s, "%d:%d:%d:%llu em=%d", scsidp->host->host_no, scsidp->channel, scsidp->id, scsidp->lun, scsidp->host->hostt->emulated); } seq_printf(s, " sg_tablesize=%d excl=%d open_cnt=%d\n", sdp->sg_tablesize, sdp->exclude, sdp->open_cnt); sg_proc_debug_helper(s, sdp); } read_unlock(&sdp->sfd_lock); skip: read_unlock_irqrestore(&sg_index_lock, iflags); return 0; } #endif /* CONFIG_SCSI_PROC_FS */ module_init(init_sg); module_exit(exit_sg);