/* * Performance counter x86 architecture code * * Copyright(C) 2008 Thomas Gleixner * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar * Copyright(C) 2009 Jaswinder Singh Rajput * * For licencing details see kernel-base/COPYING */ #include #include #include #include #include #include #include #include #include #include #include #include static bool perf_counters_initialized __read_mostly; /* * Number of (generic) HW counters: */ static int nr_counters_generic __read_mostly; static u64 perf_counter_mask __read_mostly; static u64 counter_value_mask __read_mostly; static int counter_value_bits __read_mostly; static int nr_counters_fixed __read_mostly; struct cpu_hw_counters { struct perf_counter *counters[X86_PMC_IDX_MAX]; unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; unsigned long interrupts; u64 throttle_ctrl; unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; int enabled; }; /* * struct pmc_x86_ops - performance counter x86 ops */ struct pmc_x86_ops { u64 (*save_disable_all)(void); void (*restore_all)(u64); u64 (*get_status)(u64); void (*ack_status)(u64); void (*enable)(int, u64); void (*disable)(int, u64); unsigned eventsel; unsigned perfctr; u64 (*event_map)(int); u64 (*raw_event)(u64); int max_events; }; static struct pmc_x86_ops *pmc_ops __read_mostly; static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = { .enabled = 1, }; static __read_mostly int intel_perfmon_version; /* * Intel PerfMon v3. Used on Core2 and later. */ static const u64 intel_perfmon_event_map[] = { [PERF_COUNT_CPU_CYCLES] = 0x003c, [PERF_COUNT_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_CACHE_MISSES] = 0x412e, [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_BRANCH_MISSES] = 0x00c5, [PERF_COUNT_BUS_CYCLES] = 0x013c, }; static u64 pmc_intel_event_map(int event) { return intel_perfmon_event_map[event]; } static u64 pmc_intel_raw_event(u64 event) { #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL #define CORE_EVNTSEL_MASK \ (CORE_EVNTSEL_EVENT_MASK | \ CORE_EVNTSEL_UNIT_MASK | \ CORE_EVNTSEL_COUNTER_MASK) return event & CORE_EVNTSEL_MASK; } /* * AMD Performance Monitor K7 and later. */ static const u64 amd_perfmon_event_map[] = { [PERF_COUNT_CPU_CYCLES] = 0x0076, [PERF_COUNT_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_CACHE_REFERENCES] = 0x0080, [PERF_COUNT_CACHE_MISSES] = 0x0081, [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_BRANCH_MISSES] = 0x00c5, }; static u64 pmc_amd_event_map(int event) { return amd_perfmon_event_map[event]; } static u64 pmc_amd_raw_event(u64 event) { #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL #define K7_EVNTSEL_MASK \ (K7_EVNTSEL_EVENT_MASK | \ K7_EVNTSEL_UNIT_MASK | \ K7_EVNTSEL_COUNTER_MASK) return event & K7_EVNTSEL_MASK; } /* * Propagate counter elapsed time into the generic counter. * Can only be executed on the CPU where the counter is active. * Returns the delta events processed. */ static void x86_perf_counter_update(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { u64 prev_raw_count, new_raw_count, delta; /* * Careful: an NMI might modify the previous counter value. * * Our tactic to handle this is to first atomically read and * exchange a new raw count - then add that new-prev delta * count to the generic counter atomically: */ again: prev_raw_count = atomic64_read(&hwc->prev_count); rdmsrl(hwc->counter_base + idx, new_raw_count); if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (counter-)time and add that to the generic counter. * * Careful, not all hw sign-extends above the physical width * of the count, so we do that by clipping the delta to 32 bits: */ delta = (u64)(u32)((s32)new_raw_count - (s32)prev_raw_count); atomic64_add(delta, &counter->count); atomic64_sub(delta, &hwc->period_left); } static atomic_t num_counters; static DEFINE_MUTEX(pmc_reserve_mutex); static bool reserve_pmc_hardware(void) { int i; if (nmi_watchdog == NMI_LOCAL_APIC) disable_lapic_nmi_watchdog(); for (i = 0; i < nr_counters_generic; i++) { if (!reserve_perfctr_nmi(pmc_ops->perfctr + i)) goto perfctr_fail; } for (i = 0; i < nr_counters_generic; i++) { if (!reserve_evntsel_nmi(pmc_ops->eventsel + i)) goto eventsel_fail; } return true; eventsel_fail: for (i--; i >= 0; i--) release_evntsel_nmi(pmc_ops->eventsel + i); i = nr_counters_generic; perfctr_fail: for (i--; i >= 0; i--) release_perfctr_nmi(pmc_ops->perfctr + i); if (nmi_watchdog == NMI_LOCAL_APIC) enable_lapic_nmi_watchdog(); return false; } static void release_pmc_hardware(void) { int i; for (i = 0; i < nr_counters_generic; i++) { release_perfctr_nmi(pmc_ops->perfctr + i); release_evntsel_nmi(pmc_ops->eventsel + i); } if (nmi_watchdog == NMI_LOCAL_APIC) enable_lapic_nmi_watchdog(); } static void hw_perf_counter_destroy(struct perf_counter *counter) { if (atomic_dec_and_mutex_lock(&num_counters, &pmc_reserve_mutex)) { release_pmc_hardware(); mutex_unlock(&pmc_reserve_mutex); } } /* * Setup the hardware configuration for a given hw_event_type */ static int __hw_perf_counter_init(struct perf_counter *counter) { struct perf_counter_hw_event *hw_event = &counter->hw_event; struct hw_perf_counter *hwc = &counter->hw; int err; if (unlikely(!perf_counters_initialized)) return -EINVAL; err = 0; if (atomic_inc_not_zero(&num_counters)) { mutex_lock(&pmc_reserve_mutex); if (atomic_read(&num_counters) == 0 && !reserve_pmc_hardware()) err = -EBUSY; else atomic_inc(&num_counters); mutex_unlock(&pmc_reserve_mutex); } if (err) return err; /* * Generate PMC IRQs: * (keep 'enabled' bit clear for now) */ hwc->config = ARCH_PERFMON_EVENTSEL_INT; /* * Count user and OS events unless requested not to. */ if (!hw_event->exclude_user) hwc->config |= ARCH_PERFMON_EVENTSEL_USR; if (!hw_event->exclude_kernel) hwc->config |= ARCH_PERFMON_EVENTSEL_OS; /* * If privileged enough, allow NMI events: */ hwc->nmi = 0; if (capable(CAP_SYS_ADMIN) && hw_event->nmi) hwc->nmi = 1; hwc->irq_period = hw_event->irq_period; /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic counter period: */ if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) if ((s64)hwc->irq_period <= 0 || hwc->irq_period > 0x7FFFFFFF) hwc->irq_period = 0x7FFFFFFF; atomic64_set(&hwc->period_left, hwc->irq_period); /* * Raw event type provide the config in the event structure */ if (perf_event_raw(hw_event)) { hwc->config |= pmc_ops->raw_event(perf_event_config(hw_event)); } else { if (perf_event_id(hw_event) >= pmc_ops->max_events) return -EINVAL; /* * The generic map: */ hwc->config |= pmc_ops->event_map(perf_event_id(hw_event)); } counter->destroy = hw_perf_counter_destroy; return 0; } static u64 pmc_intel_save_disable_all(void) { u64 ctrl; rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); return ctrl; } static u64 pmc_amd_save_disable_all(void) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); int enabled, idx; enabled = cpuc->enabled; cpuc->enabled = 0; /* * ensure we write the disable before we start disabling the * counters proper, so that pcm_amd_enable() does the right thing. */ barrier(); for (idx = 0; idx < nr_counters_generic; idx++) { u64 val; rdmsrl(MSR_K7_EVNTSEL0 + idx, val); if (val & ARCH_PERFMON_EVENTSEL0_ENABLE) { val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE; wrmsrl(MSR_K7_EVNTSEL0 + idx, val); } } return enabled; } u64 hw_perf_save_disable(void) { if (unlikely(!perf_counters_initialized)) return 0; return pmc_ops->save_disable_all(); } /* * Exported because of ACPI idle */ EXPORT_SYMBOL_GPL(hw_perf_save_disable); static void pmc_intel_restore_all(u64 ctrl) { wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); } static void pmc_amd_restore_all(u64 ctrl) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); int idx; cpuc->enabled = ctrl; barrier(); if (!ctrl) return; for (idx = 0; idx < nr_counters_generic; idx++) { if (test_bit(idx, cpuc->active_mask)) { u64 val; rdmsrl(MSR_K7_EVNTSEL0 + idx, val); val |= ARCH_PERFMON_EVENTSEL0_ENABLE; wrmsrl(MSR_K7_EVNTSEL0 + idx, val); } } } void hw_perf_restore(u64 ctrl) { if (unlikely(!perf_counters_initialized)) return; pmc_ops->restore_all(ctrl); } /* * Exported because of ACPI idle */ EXPORT_SYMBOL_GPL(hw_perf_restore); static u64 pmc_intel_get_status(u64 mask) { u64 status; rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); return status; } static u64 pmc_amd_get_status(u64 mask) { u64 status = 0; int idx; for (idx = 0; idx < nr_counters_generic; idx++) { s64 val; if (!(mask & (1 << idx))) continue; rdmsrl(MSR_K7_PERFCTR0 + idx, val); val <<= (64 - counter_value_bits); if (val >= 0) status |= (1 << idx); } return status; } static u64 hw_perf_get_status(u64 mask) { if (unlikely(!perf_counters_initialized)) return 0; return pmc_ops->get_status(mask); } static void pmc_intel_ack_status(u64 ack) { wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); } static void pmc_amd_ack_status(u64 ack) { } static void hw_perf_ack_status(u64 ack) { if (unlikely(!perf_counters_initialized)) return; pmc_ops->ack_status(ack); } static void pmc_intel_enable(int idx, u64 config) { wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, config | ARCH_PERFMON_EVENTSEL0_ENABLE); } static void pmc_amd_enable(int idx, u64 config) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); set_bit(idx, cpuc->active_mask); if (cpuc->enabled) config |= ARCH_PERFMON_EVENTSEL0_ENABLE; wrmsrl(MSR_K7_EVNTSEL0 + idx, config); } static void hw_perf_enable(int idx, u64 config) { if (unlikely(!perf_counters_initialized)) return; pmc_ops->enable(idx, config); } static void pmc_intel_disable(int idx, u64 config) { wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, config); } static void pmc_amd_disable(int idx, u64 config) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); clear_bit(idx, cpuc->active_mask); wrmsrl(MSR_K7_EVNTSEL0 + idx, config); } static void hw_perf_disable(int idx, u64 config) { if (unlikely(!perf_counters_initialized)) return; pmc_ops->disable(idx, config); } static inline void __pmc_fixed_disable(struct perf_counter *counter, struct hw_perf_counter *hwc, unsigned int __idx) { int idx = __idx - X86_PMC_IDX_FIXED; u64 ctrl_val, mask; int err; mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; err = checking_wrmsrl(hwc->config_base, ctrl_val); } static inline void __pmc_generic_disable(struct perf_counter *counter, struct hw_perf_counter *hwc, unsigned int idx) { if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) __pmc_fixed_disable(counter, hwc, idx); else hw_perf_disable(idx, hwc->config); } static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]); /* * Set the next IRQ period, based on the hwc->period_left value. * To be called with the counter disabled in hw: */ static void __hw_perf_counter_set_period(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { s64 left = atomic64_read(&hwc->period_left); s64 period = hwc->irq_period; int err; /* * If we are way outside a reasoable range then just skip forward: */ if (unlikely(left <= -period)) { left = period; atomic64_set(&hwc->period_left, left); } if (unlikely(left <= 0)) { left += period; atomic64_set(&hwc->period_left, left); } per_cpu(prev_left[idx], smp_processor_id()) = left; /* * The hw counter starts counting from this counter offset, * mark it to be able to extra future deltas: */ atomic64_set(&hwc->prev_count, (u64)-left); err = checking_wrmsrl(hwc->counter_base + idx, (u64)(-left) & counter_value_mask); } static inline void __pmc_fixed_enable(struct perf_counter *counter, struct hw_perf_counter *hwc, unsigned int __idx) { int idx = __idx - X86_PMC_IDX_FIXED; u64 ctrl_val, bits, mask; int err; /* * Enable IRQ generation (0x8), * and enable ring-3 counting (0x2) and ring-0 counting (0x1) * if requested: */ bits = 0x8ULL; if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) bits |= 0x2; if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) bits |= 0x1; bits <<= (idx * 4); mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; ctrl_val |= bits; err = checking_wrmsrl(hwc->config_base, ctrl_val); } static void __pmc_generic_enable(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) __pmc_fixed_enable(counter, hwc, idx); else hw_perf_enable(idx, hwc->config); } static int fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc) { unsigned int event; if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) return -1; if (unlikely(hwc->nmi)) return -1; event = hwc->config & ARCH_PERFMON_EVENT_MASK; if (unlikely(event == pmc_ops->event_map(PERF_COUNT_INSTRUCTIONS))) return X86_PMC_IDX_FIXED_INSTRUCTIONS; if (unlikely(event == pmc_ops->event_map(PERF_COUNT_CPU_CYCLES))) return X86_PMC_IDX_FIXED_CPU_CYCLES; if (unlikely(event == pmc_ops->event_map(PERF_COUNT_BUS_CYCLES))) return X86_PMC_IDX_FIXED_BUS_CYCLES; return -1; } /* * Find a PMC slot for the freshly enabled / scheduled in counter: */ static int pmc_generic_enable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; int idx; idx = fixed_mode_idx(counter, hwc); if (idx >= 0) { /* * Try to get the fixed counter, if that is already taken * then try to get a generic counter: */ if (test_and_set_bit(idx, cpuc->used)) goto try_generic; hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; /* * We set it so that counter_base + idx in wrmsr/rdmsr maps to * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2: */ hwc->counter_base = MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED; hwc->idx = idx; } else { idx = hwc->idx; /* Try to get the previous generic counter again */ if (test_and_set_bit(idx, cpuc->used)) { try_generic: idx = find_first_zero_bit(cpuc->used, nr_counters_generic); if (idx == nr_counters_generic) return -EAGAIN; set_bit(idx, cpuc->used); hwc->idx = idx; } hwc->config_base = pmc_ops->eventsel; hwc->counter_base = pmc_ops->perfctr; } perf_counters_lapic_init(hwc->nmi); __pmc_generic_disable(counter, hwc, idx); cpuc->counters[idx] = counter; /* * Make it visible before enabling the hw: */ smp_wmb(); __hw_perf_counter_set_period(counter, hwc, idx); __pmc_generic_enable(counter, hwc, idx); return 0; } void perf_counter_print_debug(void) { u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; struct cpu_hw_counters *cpuc; int cpu, idx; if (!nr_counters_generic) return; local_irq_disable(); cpu = smp_processor_id(); cpuc = &per_cpu(cpu_hw_counters, cpu); if (intel_perfmon_version >= 2) { rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); pr_info("\n"); pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); pr_info("CPU#%d: status: %016llx\n", cpu, status); pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); } pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used); for (idx = 0; idx < nr_counters_generic; idx++) { rdmsrl(pmc_ops->eventsel + idx, pmc_ctrl); rdmsrl(pmc_ops->perfctr + idx, pmc_count); prev_left = per_cpu(prev_left[idx], cpu); pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", cpu, idx, pmc_ctrl); pr_info("CPU#%d: gen-PMC%d count: %016llx\n", cpu, idx, pmc_count); pr_info("CPU#%d: gen-PMC%d left: %016llx\n", cpu, idx, prev_left); } for (idx = 0; idx < nr_counters_fixed; idx++) { rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", cpu, idx, pmc_count); } local_irq_enable(); } static void pmc_generic_disable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; unsigned int idx = hwc->idx; __pmc_generic_disable(counter, hwc, idx); clear_bit(idx, cpuc->used); cpuc->counters[idx] = NULL; /* * Make sure the cleared pointer becomes visible before we * (potentially) free the counter: */ smp_wmb(); /* * Drain the remaining delta count out of a counter * that we are disabling: */ x86_perf_counter_update(counter, hwc, idx); } /* * Save and restart an expired counter. Called by NMI contexts, * so it has to be careful about preempting normal counter ops: */ static void perf_save_and_restart(struct perf_counter *counter) { struct hw_perf_counter *hwc = &counter->hw; int idx = hwc->idx; x86_perf_counter_update(counter, hwc, idx); __hw_perf_counter_set_period(counter, hwc, idx); if (counter->state == PERF_COUNTER_STATE_ACTIVE) __pmc_generic_enable(counter, hwc, idx); } /* * Maximum interrupt frequency of 100KHz per CPU */ #define PERFMON_MAX_INTERRUPTS (100000/HZ) /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static int __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi) { int bit, cpu = smp_processor_id(); u64 ack, status; struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu); int ret = 0; cpuc->throttle_ctrl = hw_perf_save_disable(); status = hw_perf_get_status(cpuc->throttle_ctrl); if (!status) goto out; ret = 1; again: inc_irq_stat(apic_perf_irqs); ack = status; for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { struct perf_counter *counter = cpuc->counters[bit]; clear_bit(bit, (unsigned long *) &status); if (!counter) continue; perf_save_and_restart(counter); perf_counter_output(counter, nmi, regs); } hw_perf_ack_status(ack); /* * Repeat if there is more work to be done: */ status = hw_perf_get_status(cpuc->throttle_ctrl); if (status) goto again; out: /* * Restore - do not reenable when global enable is off or throttled: */ if (++cpuc->interrupts < PERFMON_MAX_INTERRUPTS) hw_perf_restore(cpuc->throttle_ctrl); return ret; } void perf_counter_unthrottle(void) { struct cpu_hw_counters *cpuc; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) return; if (unlikely(!perf_counters_initialized)) return; cpuc = &__get_cpu_var(cpu_hw_counters); if (cpuc->interrupts >= PERFMON_MAX_INTERRUPTS) { if (printk_ratelimit()) printk(KERN_WARNING "PERFMON: max interrupts exceeded!\n"); hw_perf_restore(cpuc->throttle_ctrl); } cpuc->interrupts = 0; } void smp_perf_counter_interrupt(struct pt_regs *regs) { irq_enter(); apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); ack_APIC_irq(); __smp_perf_counter_interrupt(regs, 0); irq_exit(); } void perf_counters_lapic_init(int nmi) { u32 apic_val; if (!perf_counters_initialized) return; /* * Enable the performance counter vector in the APIC LVT: */ apic_val = apic_read(APIC_LVTERR); apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED); if (nmi) apic_write(APIC_LVTPC, APIC_DM_NMI); else apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); apic_write(APIC_LVTERR, apic_val); } static int __kprobes perf_counter_nmi_handler(struct notifier_block *self, unsigned long cmd, void *__args) { struct die_args *args = __args; struct pt_regs *regs; int ret; switch (cmd) { case DIE_NMI: case DIE_NMI_IPI: break; default: return NOTIFY_DONE; } regs = args->regs; apic_write(APIC_LVTPC, APIC_DM_NMI); ret = __smp_perf_counter_interrupt(regs, 1); return ret ? NOTIFY_STOP : NOTIFY_OK; } static __read_mostly struct notifier_block perf_counter_nmi_notifier = { .notifier_call = perf_counter_nmi_handler, .next = NULL, .priority = 1 }; static struct pmc_x86_ops pmc_intel_ops = { .save_disable_all = pmc_intel_save_disable_all, .restore_all = pmc_intel_restore_all, .get_status = pmc_intel_get_status, .ack_status = pmc_intel_ack_status, .enable = pmc_intel_enable, .disable = pmc_intel_disable, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .event_map = pmc_intel_event_map, .raw_event = pmc_intel_raw_event, .max_events = ARRAY_SIZE(intel_perfmon_event_map), }; static struct pmc_x86_ops pmc_amd_ops = { .save_disable_all = pmc_amd_save_disable_all, .restore_all = pmc_amd_restore_all, .get_status = pmc_amd_get_status, .ack_status = pmc_amd_ack_status, .enable = pmc_amd_enable, .disable = pmc_amd_disable, .eventsel = MSR_K7_EVNTSEL0, .perfctr = MSR_K7_PERFCTR0, .event_map = pmc_amd_event_map, .raw_event = pmc_amd_raw_event, .max_events = ARRAY_SIZE(amd_perfmon_event_map), }; static struct pmc_x86_ops *pmc_intel_init(void) { union cpuid10_edx edx; union cpuid10_eax eax; unsigned int unused; unsigned int ebx; /* * Check whether the Architectural PerfMon supports * Branch Misses Retired Event or not. */ cpuid(10, &eax.full, &ebx, &unused, &edx.full); if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED) return NULL; intel_perfmon_version = eax.split.version_id; if (intel_perfmon_version < 2) return NULL; pr_info("Intel Performance Monitoring support detected.\n"); pr_info("... version: %d\n", intel_perfmon_version); pr_info("... bit width: %d\n", eax.split.bit_width); pr_info("... mask length: %d\n", eax.split.mask_length); nr_counters_generic = eax.split.num_counters; nr_counters_fixed = edx.split.num_counters_fixed; counter_value_mask = (1ULL << eax.split.bit_width) - 1; return &pmc_intel_ops; } static struct pmc_x86_ops *pmc_amd_init(void) { nr_counters_generic = 4; nr_counters_fixed = 0; counter_value_mask = 0x0000FFFFFFFFFFFFULL; counter_value_bits = 48; pr_info("AMD Performance Monitoring support detected.\n"); return &pmc_amd_ops; } void __init init_hw_perf_counters(void) { if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) return; switch (boot_cpu_data.x86_vendor) { case X86_VENDOR_INTEL: pmc_ops = pmc_intel_init(); break; case X86_VENDOR_AMD: pmc_ops = pmc_amd_init(); break; } if (!pmc_ops) return; pr_info("... num counters: %d\n", nr_counters_generic); if (nr_counters_generic > X86_PMC_MAX_GENERIC) { nr_counters_generic = X86_PMC_MAX_GENERIC; WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!", nr_counters_generic, X86_PMC_MAX_GENERIC); } perf_counter_mask = (1 << nr_counters_generic) - 1; perf_max_counters = nr_counters_generic; pr_info("... value mask: %016Lx\n", counter_value_mask); if (nr_counters_fixed > X86_PMC_MAX_FIXED) { nr_counters_fixed = X86_PMC_MAX_FIXED; WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!", nr_counters_fixed, X86_PMC_MAX_FIXED); } pr_info("... fixed counters: %d\n", nr_counters_fixed); perf_counter_mask |= ((1LL << nr_counters_fixed)-1) << X86_PMC_IDX_FIXED; pr_info("... counter mask: %016Lx\n", perf_counter_mask); perf_counters_initialized = true; perf_counters_lapic_init(0); register_die_notifier(&perf_counter_nmi_notifier); } static void pmc_generic_read(struct perf_counter *counter) { x86_perf_counter_update(counter, &counter->hw, counter->hw.idx); } static const struct hw_perf_counter_ops x86_perf_counter_ops = { .enable = pmc_generic_enable, .disable = pmc_generic_disable, .read = pmc_generic_read, }; const struct hw_perf_counter_ops * hw_perf_counter_init(struct perf_counter *counter) { int err; err = __hw_perf_counter_init(counter); if (err) return ERR_PTR(err); return &x86_perf_counter_ops; } /* * callchain support */ static inline void callchain_store(struct perf_callchain_entry *entry, unsigned long ip) { if (entry->nr < MAX_STACK_DEPTH) entry->ip[entry->nr++] = ip; } static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry); static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry); static void backtrace_warning_symbol(void *data, char *msg, unsigned long symbol) { /* Ignore warnings */ } static void backtrace_warning(void *data, char *msg) { /* Ignore warnings */ } static int backtrace_stack(void *data, char *name) { /* Don't bother with IRQ stacks for now */ return -1; } static void backtrace_address(void *data, unsigned long addr, int reliable) { struct perf_callchain_entry *entry = data; if (reliable) callchain_store(entry, addr); } static const struct stacktrace_ops backtrace_ops = { .warning = backtrace_warning, .warning_symbol = backtrace_warning_symbol, .stack = backtrace_stack, .address = backtrace_address, }; static void perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry) { unsigned long bp; char *stack; callchain_store(entry, instruction_pointer(regs)); stack = ((char *)regs + sizeof(struct pt_regs)); #ifdef CONFIG_FRAME_POINTER bp = frame_pointer(regs); #else bp = 0; #endif dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry); } struct stack_frame { const void __user *next_fp; unsigned long return_address; }; static int copy_stack_frame(const void __user *fp, struct stack_frame *frame) { int ret; if (!access_ok(VERIFY_READ, fp, sizeof(*frame))) return 0; ret = 1; pagefault_disable(); if (__copy_from_user_inatomic(frame, fp, sizeof(*frame))) ret = 0; pagefault_enable(); return ret; } static void perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry) { struct stack_frame frame; const void __user *fp; regs = (struct pt_regs *)current->thread.sp0 - 1; fp = (void __user *)regs->bp; callchain_store(entry, regs->ip); while (entry->nr < MAX_STACK_DEPTH) { frame.next_fp = NULL; frame.return_address = 0; if (!copy_stack_frame(fp, &frame)) break; if ((unsigned long)fp < user_stack_pointer(regs)) break; callchain_store(entry, frame.return_address); fp = frame.next_fp; } } static void perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry) { int is_user; if (!regs) return; is_user = user_mode(regs); if (!current || current->pid == 0) return; if (is_user && current->state != TASK_RUNNING) return; if (!is_user) perf_callchain_kernel(regs, entry); if (current->mm) perf_callchain_user(regs, entry); } struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) { struct perf_callchain_entry *entry; if (in_nmi()) entry = &__get_cpu_var(nmi_entry); else entry = &__get_cpu_var(irq_entry); entry->nr = 0; perf_do_callchain(regs, entry); return entry; }