/* * dvb_net.c * * Copyright (C) 2001 Convergence integrated media GmbH * Ralph Metzler <ralph@convergence.de> * Copyright (C) 2002 Ralph Metzler <rjkm@metzlerbros.de> * * ULE Decapsulation code: * Copyright (C) 2003, 2004 gcs - Global Communication & Services GmbH. * and Department of Scientific Computing * Paris Lodron University of Salzburg. * Hilmar Linder <hlinder@cosy.sbg.ac.at> * and Wolfram Stering <wstering@cosy.sbg.ac.at> * * ULE Decaps according to RFC 4326. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html */ /* * ULE ChangeLog: * Feb 2004: hl/ws v1: Implementing draft-fair-ipdvb-ule-01.txt * * Dec 2004: hl/ws v2: Implementing draft-ietf-ipdvb-ule-03.txt: * ULE Extension header handling. * Bugreports by Moritz Vieth and Hanno Tersteegen, * Fraunhofer Institute for Open Communication Systems * Competence Center for Advanced Satellite Communications. * Bugfixes and robustness improvements. * Filtering on dest MAC addresses, if present (D-Bit = 0) * ULE_DEBUG compile-time option. * Apr 2006: cp v3: Bugfixes and compliency with RFC 4326 (ULE) by * Christian Praehauser <cpraehaus@cosy.sbg.ac.at>, * Paris Lodron University of Salzburg. */ /* * FIXME / TODO (dvb_net.c): * * Unloading does not work for 2.6.9 kernels: a refcount doesn't go to zero. * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/dvb/net.h> #include <linux/uio.h> #include <asm/uaccess.h> #include <linux/crc32.h> #include <linux/mutex.h> #include <linux/sched.h> #include "dvb_demux.h" #include "dvb_net.h" static int dvb_net_debug; module_param(dvb_net_debug, int, 0444); MODULE_PARM_DESC(dvb_net_debug, "enable debug messages"); #define dprintk(x...) do { if (dvb_net_debug) printk(x); } while (0) static inline __u32 iov_crc32( __u32 c, struct kvec *iov, unsigned int cnt ) { unsigned int j; for (j = 0; j < cnt; j++) c = crc32_be( c, iov[j].iov_base, iov[j].iov_len ); return c; } #define DVB_NET_MULTICAST_MAX 10 #undef ULE_DEBUG #ifdef ULE_DEBUG #define MAC_ADDR_PRINTFMT "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" #define MAX_ADDR_PRINTFMT_ARGS(macap) (macap)[0],(macap)[1],(macap)[2],(macap)[3],(macap)[4],(macap)[5] #define isprint(c) ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9')) static void hexdump( const unsigned char *buf, unsigned short len ) { char str[80], octet[10]; int ofs, i, l; for (ofs = 0; ofs < len; ofs += 16) { sprintf( str, "%03d: ", ofs ); for (i = 0; i < 16; i++) { if ((i + ofs) < len) sprintf( octet, "%02x ", buf[ofs + i] ); else strcpy( octet, " " ); strcat( str, octet ); } strcat( str, " " ); l = strlen( str ); for (i = 0; (i < 16) && ((i + ofs) < len); i++) str[l++] = isprint( buf[ofs + i] ) ? buf[ofs + i] : '.'; str[l] = '\0'; printk( KERN_WARNING "%s\n", str ); } } #endif struct dvb_net_priv { int in_use; u16 pid; struct net_device *net; struct dvb_net *host; struct dmx_demux *demux; struct dmx_section_feed *secfeed; struct dmx_section_filter *secfilter; struct dmx_ts_feed *tsfeed; int multi_num; struct dmx_section_filter *multi_secfilter[DVB_NET_MULTICAST_MAX]; unsigned char multi_macs[DVB_NET_MULTICAST_MAX][6]; int rx_mode; #define RX_MODE_UNI 0 #define RX_MODE_MULTI 1 #define RX_MODE_ALL_MULTI 2 #define RX_MODE_PROMISC 3 struct work_struct set_multicast_list_wq; struct work_struct restart_net_feed_wq; unsigned char feedtype; /* Either FEED_TYPE_ or FEED_TYPE_ULE */ int need_pusi; /* Set to 1, if synchronization on PUSI required. */ unsigned char tscc; /* TS continuity counter after sync on PUSI. */ struct sk_buff *ule_skb; /* ULE SNDU decodes into this buffer. */ unsigned char *ule_next_hdr; /* Pointer into skb to next ULE extension header. */ unsigned short ule_sndu_len; /* ULE SNDU length in bytes, w/o D-Bit. */ unsigned short ule_sndu_type; /* ULE SNDU type field, complete. */ unsigned char ule_sndu_type_1; /* ULE SNDU type field, if split across 2 TS cells. */ unsigned char ule_dbit; /* Whether the DestMAC address present * or not (bit is set). */ unsigned char ule_bridged; /* Whether the ULE_BRIDGED extension header was found. */ int ule_sndu_remain; /* Nr. of bytes still required for current ULE SNDU. */ unsigned long ts_count; /* Current ts cell counter. */ struct mutex mutex; }; /** * Determine the packet's protocol ID. The rule here is that we * assume 802.3 if the type field is short enough to be a length. * This is normal practice and works for any 'now in use' protocol. * * stolen from eth.c out of the linux kernel, hacked for dvb-device * by Michael Holzt <kju@debian.org> */ static __be16 dvb_net_eth_type_trans(struct sk_buff *skb, struct net_device *dev) { struct ethhdr *eth; unsigned char *rawp; skb_reset_mac_header(skb); skb_pull(skb,dev->hard_header_len); eth = eth_hdr(skb); if (*eth->h_dest & 1) { if(ether_addr_equal(eth->h_dest,dev->broadcast)) skb->pkt_type=PACKET_BROADCAST; else skb->pkt_type=PACKET_MULTICAST; } if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) return eth->h_proto; rawp = skb->data; /** * This is a magic hack to spot IPX packets. Older Novell breaks * the protocol design and runs IPX over 802.3 without an 802.2 LLC * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This * won't work for fault tolerant netware but does for the rest. */ if (*(unsigned short *)rawp == 0xFFFF) return htons(ETH_P_802_3); /** * Real 802.2 LLC */ return htons(ETH_P_802_2); } #define TS_SZ 188 #define TS_SYNC 0x47 #define TS_TEI 0x80 #define TS_SC 0xC0 #define TS_PUSI 0x40 #define TS_AF_A 0x20 #define TS_AF_D 0x10 /* ULE Extension Header handlers. */ #define ULE_TEST 0 #define ULE_BRIDGED 1 #define ULE_OPTEXTHDR_PADDING 0 static int ule_test_sndu( struct dvb_net_priv *p ) { return -1; } static int ule_bridged_sndu( struct dvb_net_priv *p ) { struct ethhdr *hdr = (struct ethhdr*) p->ule_next_hdr; if(ntohs(hdr->h_proto) < ETH_P_802_3_MIN) { int framelen = p->ule_sndu_len - ((p->ule_next_hdr+sizeof(struct ethhdr)) - p->ule_skb->data); /* A frame Type < ETH_P_802_3_MIN for a bridged frame, introduces a LLC Length field. */ if(framelen != ntohs(hdr->h_proto)) { return -1; } } /* Note: * From RFC4326: * "A bridged SNDU is a Mandatory Extension Header of Type 1. * It must be the final (or only) extension header specified in the header chain of a SNDU." * The 'ule_bridged' flag will cause the extension header processing loop to terminate. */ p->ule_bridged = 1; return 0; } static int ule_exthdr_padding(struct dvb_net_priv *p) { return 0; } /** Handle ULE extension headers. * Function is called after a successful CRC32 verification of an ULE SNDU to complete its decoding. * Returns: >= 0: nr. of bytes consumed by next extension header * -1: Mandatory extension header that is not recognized or TEST SNDU; discard. */ static int handle_one_ule_extension( struct dvb_net_priv *p ) { /* Table of mandatory extension header handlers. The header type is the index. */ static int (*ule_mandatory_ext_handlers[255])( struct dvb_net_priv *p ) = { [0] = ule_test_sndu, [1] = ule_bridged_sndu, [2] = NULL, }; /* Table of optional extension header handlers. The header type is the index. */ static int (*ule_optional_ext_handlers[255])( struct dvb_net_priv *p ) = { [0] = ule_exthdr_padding, [1] = NULL, }; int ext_len = 0; unsigned char hlen = (p->ule_sndu_type & 0x0700) >> 8; unsigned char htype = p->ule_sndu_type & 0x00FF; /* Discriminate mandatory and optional extension headers. */ if (hlen == 0) { /* Mandatory extension header */ if (ule_mandatory_ext_handlers[htype]) { ext_len = ule_mandatory_ext_handlers[htype]( p ); if(ext_len >= 0) { p->ule_next_hdr += ext_len; if (!p->ule_bridged) { p->ule_sndu_type = ntohs(*(__be16 *)p->ule_next_hdr); p->ule_next_hdr += 2; } else { p->ule_sndu_type = ntohs(*(__be16 *)(p->ule_next_hdr + ((p->ule_dbit ? 2 : 3) * ETH_ALEN))); /* This assures the extension handling loop will terminate. */ } } // else: extension handler failed or SNDU should be discarded } else ext_len = -1; /* SNDU has to be discarded. */ } else { /* Optional extension header. Calculate the length. */ ext_len = hlen << 1; /* Process the optional extension header according to its type. */ if (ule_optional_ext_handlers[htype]) (void)ule_optional_ext_handlers[htype]( p ); p->ule_next_hdr += ext_len; p->ule_sndu_type = ntohs( *(__be16 *)(p->ule_next_hdr-2) ); /* * note: the length of the next header type is included in the * length of THIS optional extension header */ } return ext_len; } static int handle_ule_extensions( struct dvb_net_priv *p ) { int total_ext_len = 0, l; p->ule_next_hdr = p->ule_skb->data; do { l = handle_one_ule_extension( p ); if (l < 0) return l; /* Stop extension header processing and discard SNDU. */ total_ext_len += l; #ifdef ULE_DEBUG dprintk("handle_ule_extensions: ule_next_hdr=%p, ule_sndu_type=%i, " "l=%i, total_ext_len=%i\n", p->ule_next_hdr, (int) p->ule_sndu_type, l, total_ext_len); #endif } while (p->ule_sndu_type < ETH_P_802_3_MIN); return total_ext_len; } /** Prepare for a new ULE SNDU: reset the decoder state. */ static inline void reset_ule( struct dvb_net_priv *p ) { p->ule_skb = NULL; p->ule_next_hdr = NULL; p->ule_sndu_len = 0; p->ule_sndu_type = 0; p->ule_sndu_type_1 = 0; p->ule_sndu_remain = 0; p->ule_dbit = 0xFF; p->ule_bridged = 0; } /** * Decode ULE SNDUs according to draft-ietf-ipdvb-ule-03.txt from a sequence of * TS cells of a single PID. */ static void dvb_net_ule( struct net_device *dev, const u8 *buf, size_t buf_len ) { struct dvb_net_priv *priv = netdev_priv(dev); unsigned long skipped = 0L; const u8 *ts, *ts_end, *from_where = NULL; u8 ts_remain = 0, how_much = 0, new_ts = 1; struct ethhdr *ethh = NULL; bool error = false; #ifdef ULE_DEBUG /* The code inside ULE_DEBUG keeps a history of the last 100 TS cells processed. */ static unsigned char ule_hist[100*TS_SZ]; static unsigned char *ule_where = ule_hist, ule_dump; #endif /* For all TS cells in current buffer. * Appearently, we are called for every single TS cell. */ for (ts = buf, ts_end = buf + buf_len; ts < ts_end; /* no default incr. */ ) { if (new_ts) { /* We are about to process a new TS cell. */ #ifdef ULE_DEBUG if (ule_where >= &ule_hist[100*TS_SZ]) ule_where = ule_hist; memcpy( ule_where, ts, TS_SZ ); if (ule_dump) { hexdump( ule_where, TS_SZ ); ule_dump = 0; } ule_where += TS_SZ; #endif /* Check TS error conditions: sync_byte, transport_error_indicator, scrambling_control . */ if ((ts[0] != TS_SYNC) || (ts[1] & TS_TEI) || ((ts[3] & TS_SC) != 0)) { printk(KERN_WARNING "%lu: Invalid TS cell: SYNC %#x, TEI %u, SC %#x.\n", priv->ts_count, ts[0], ts[1] & TS_TEI >> 7, ts[3] & 0xC0 >> 6); /* Drop partly decoded SNDU, reset state, resync on PUSI. */ if (priv->ule_skb) { dev_kfree_skb( priv->ule_skb ); /* Prepare for next SNDU. */ dev->stats.rx_errors++; dev->stats.rx_frame_errors++; } reset_ule(priv); priv->need_pusi = 1; /* Continue with next TS cell. */ ts += TS_SZ; priv->ts_count++; continue; } ts_remain = 184; from_where = ts + 4; } /* Synchronize on PUSI, if required. */ if (priv->need_pusi) { if (ts[1] & TS_PUSI) { /* Find beginning of first ULE SNDU in current TS cell. */ /* Synchronize continuity counter. */ priv->tscc = ts[3] & 0x0F; /* There is a pointer field here. */ if (ts[4] > ts_remain) { printk(KERN_ERR "%lu: Invalid ULE packet " "(pointer field %d)\n", priv->ts_count, ts[4]); ts += TS_SZ; priv->ts_count++; continue; } /* Skip to destination of pointer field. */ from_where = &ts[5] + ts[4]; ts_remain -= 1 + ts[4]; skipped = 0; } else { skipped++; ts += TS_SZ; priv->ts_count++; continue; } } if (new_ts) { /* Check continuity counter. */ if ((ts[3] & 0x0F) == priv->tscc) priv->tscc = (priv->tscc + 1) & 0x0F; else { /* TS discontinuity handling: */ printk(KERN_WARNING "%lu: TS discontinuity: got %#x, " "expected %#x.\n", priv->ts_count, ts[3] & 0x0F, priv->tscc); /* Drop partly decoded SNDU, reset state, resync on PUSI. */ if (priv->ule_skb) { dev_kfree_skb( priv->ule_skb ); /* Prepare for next SNDU. */ // reset_ule(priv); moved to below. dev->stats.rx_errors++; dev->stats.rx_frame_errors++; } reset_ule(priv); /* skip to next PUSI. */ priv->need_pusi = 1; continue; } /* If we still have an incomplete payload, but PUSI is * set; some TS cells are missing. * This is only possible here, if we missed exactly 16 TS * cells (continuity counter wrap). */ if (ts[1] & TS_PUSI) { if (! priv->need_pusi) { if (!(*from_where < (ts_remain-1)) || *from_where != priv->ule_sndu_remain) { /* Pointer field is invalid. Drop this TS cell and any started ULE SNDU. */ printk(KERN_WARNING "%lu: Invalid pointer " "field: %u.\n", priv->ts_count, *from_where); /* Drop partly decoded SNDU, reset state, resync on PUSI. */ if (priv->ule_skb) { error = true; dev_kfree_skb(priv->ule_skb); } if (error || priv->ule_sndu_remain) { dev->stats.rx_errors++; dev->stats.rx_frame_errors++; error = false; } reset_ule(priv); priv->need_pusi = 1; continue; } /* Skip pointer field (we're processing a * packed payload). */ from_where += 1; ts_remain -= 1; } else priv->need_pusi = 0; if (priv->ule_sndu_remain > 183) { /* Current SNDU lacks more data than there could be available in the * current TS cell. */ dev->stats.rx_errors++; dev->stats.rx_length_errors++; printk(KERN_WARNING "%lu: Expected %d more SNDU bytes, but " "got PUSI (pf %d, ts_remain %d). Flushing incomplete payload.\n", priv->ts_count, priv->ule_sndu_remain, ts[4], ts_remain); dev_kfree_skb(priv->ule_skb); /* Prepare for next SNDU. */ reset_ule(priv); /* Resync: go to where pointer field points to: start of next ULE SNDU. */ from_where += ts[4]; ts_remain -= ts[4]; } } } /* Check if new payload needs to be started. */ if (priv->ule_skb == NULL) { /* Start a new payload with skb. * Find ULE header. It is only guaranteed that the * length field (2 bytes) is contained in the current * TS. * Check ts_remain has to be >= 2 here. */ if (ts_remain < 2) { printk(KERN_WARNING "Invalid payload packing: only %d " "bytes left in TS. Resyncing.\n", ts_remain); priv->ule_sndu_len = 0; priv->need_pusi = 1; ts += TS_SZ; continue; } if (! priv->ule_sndu_len) { /* Got at least two bytes, thus extrace the SNDU length. */ priv->ule_sndu_len = from_where[0] << 8 | from_where[1]; if (priv->ule_sndu_len & 0x8000) { /* D-Bit is set: no dest mac present. */ priv->ule_sndu_len &= 0x7FFF; priv->ule_dbit = 1; } else priv->ule_dbit = 0; if (priv->ule_sndu_len < 5) { printk(KERN_WARNING "%lu: Invalid ULE SNDU length %u. " "Resyncing.\n", priv->ts_count, priv->ule_sndu_len); dev->stats.rx_errors++; dev->stats.rx_length_errors++; priv->ule_sndu_len = 0; priv->need_pusi = 1; new_ts = 1; ts += TS_SZ; priv->ts_count++; continue; } ts_remain -= 2; /* consume the 2 bytes SNDU length. */ from_where += 2; } priv->ule_sndu_remain = priv->ule_sndu_len + 2; /* * State of current TS: * ts_remain (remaining bytes in the current TS cell) * 0 ule_type is not available now, we need the next TS cell * 1 the first byte of the ule_type is present * >=2 full ULE header present, maybe some payload data as well. */ switch (ts_remain) { case 1: priv->ule_sndu_remain--; priv->ule_sndu_type = from_where[0] << 8; priv->ule_sndu_type_1 = 1; /* first byte of ule_type is set. */ ts_remain -= 1; from_where += 1; /* Continue w/ next TS. */ case 0: new_ts = 1; ts += TS_SZ; priv->ts_count++; continue; default: /* complete ULE header is present in current TS. */ /* Extract ULE type field. */ if (priv->ule_sndu_type_1) { priv->ule_sndu_type_1 = 0; priv->ule_sndu_type |= from_where[0]; from_where += 1; /* points to payload start. */ ts_remain -= 1; } else { /* Complete type is present in new TS. */ priv->ule_sndu_type = from_where[0] << 8 | from_where[1]; from_where += 2; /* points to payload start. */ ts_remain -= 2; } break; } /* Allocate the skb (decoder target buffer) with the correct size, as follows: * prepare for the largest case: bridged SNDU with MAC address (dbit = 0). */ priv->ule_skb = dev_alloc_skb( priv->ule_sndu_len + ETH_HLEN + ETH_ALEN ); if (priv->ule_skb == NULL) { printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); dev->stats.rx_dropped++; return; } /* This includes the CRC32 _and_ dest mac, if !dbit. */ priv->ule_sndu_remain = priv->ule_sndu_len; priv->ule_skb->dev = dev; /* Leave space for Ethernet or bridged SNDU header (eth hdr plus one MAC addr). */ skb_reserve( priv->ule_skb, ETH_HLEN + ETH_ALEN ); } /* Copy data into our current skb. */ how_much = min(priv->ule_sndu_remain, (int)ts_remain); memcpy(skb_put(priv->ule_skb, how_much), from_where, how_much); priv->ule_sndu_remain -= how_much; ts_remain -= how_much; from_where += how_much; /* Check for complete payload. */ if (priv->ule_sndu_remain <= 0) { /* Check CRC32, we've got it in our skb already. */ __be16 ulen = htons(priv->ule_sndu_len); __be16 utype = htons(priv->ule_sndu_type); const u8 *tail; struct kvec iov[3] = { { &ulen, sizeof ulen }, { &utype, sizeof utype }, { priv->ule_skb->data, priv->ule_skb->len - 4 } }; u32 ule_crc = ~0L, expected_crc; if (priv->ule_dbit) { /* Set D-bit for CRC32 verification, * if it was set originally. */ ulen |= htons(0x8000); } ule_crc = iov_crc32(ule_crc, iov, 3); tail = skb_tail_pointer(priv->ule_skb); expected_crc = *(tail - 4) << 24 | *(tail - 3) << 16 | *(tail - 2) << 8 | *(tail - 1); if (ule_crc != expected_crc) { printk(KERN_WARNING "%lu: CRC32 check FAILED: %08x / %08x, SNDU len %d type %#x, ts_remain %d, next 2: %x.\n", priv->ts_count, ule_crc, expected_crc, priv->ule_sndu_len, priv->ule_sndu_type, ts_remain, ts_remain > 2 ? *(unsigned short *)from_where : 0); #ifdef ULE_DEBUG hexdump( iov[0].iov_base, iov[0].iov_len ); hexdump( iov[1].iov_base, iov[1].iov_len ); hexdump( iov[2].iov_base, iov[2].iov_len ); if (ule_where == ule_hist) { hexdump( &ule_hist[98*TS_SZ], TS_SZ ); hexdump( &ule_hist[99*TS_SZ], TS_SZ ); } else if (ule_where == &ule_hist[TS_SZ]) { hexdump( &ule_hist[99*TS_SZ], TS_SZ ); hexdump( ule_hist, TS_SZ ); } else { hexdump( ule_where - TS_SZ - TS_SZ, TS_SZ ); hexdump( ule_where - TS_SZ, TS_SZ ); } ule_dump = 1; #endif dev->stats.rx_errors++; dev->stats.rx_crc_errors++; dev_kfree_skb(priv->ule_skb); } else { /* CRC32 verified OK. */ u8 dest_addr[ETH_ALEN]; static const u8 bc_addr[ETH_ALEN] = { [ 0 ... ETH_ALEN-1] = 0xff }; /* CRC32 was OK. Remove it from skb. */ priv->ule_skb->tail -= 4; priv->ule_skb->len -= 4; if (!priv->ule_dbit) { /* * The destination MAC address is the * next data in the skb. It comes * before any extension headers. * * Check if the payload of this SNDU * should be passed up the stack. */ register int drop = 0; if (priv->rx_mode != RX_MODE_PROMISC) { if (priv->ule_skb->data[0] & 0x01) { /* multicast or broadcast */ if (!ether_addr_equal(priv->ule_skb->data, bc_addr)) { /* multicast */ if (priv->rx_mode == RX_MODE_MULTI) { int i; for(i = 0; i < priv->multi_num && !ether_addr_equal(priv->ule_skb->data, priv->multi_macs[i]); i++) ; if (i == priv->multi_num) drop = 1; } else if (priv->rx_mode != RX_MODE_ALL_MULTI) drop = 1; /* no broadcast; */ /* else: all multicast mode: accept all multicast packets */ } /* else: broadcast */ } else if (!ether_addr_equal(priv->ule_skb->data, dev->dev_addr)) drop = 1; /* else: destination address matches the MAC address of our receiver device */ } /* else: promiscuous mode; pass everything up the stack */ if (drop) { #ifdef ULE_DEBUG dprintk("Dropping SNDU: MAC destination address does not match: dest addr: "MAC_ADDR_PRINTFMT", dev addr: "MAC_ADDR_PRINTFMT"\n", MAX_ADDR_PRINTFMT_ARGS(priv->ule_skb->data), MAX_ADDR_PRINTFMT_ARGS(dev->dev_addr)); #endif dev_kfree_skb(priv->ule_skb); goto sndu_done; } else { skb_copy_from_linear_data(priv->ule_skb, dest_addr, ETH_ALEN); skb_pull(priv->ule_skb, ETH_ALEN); } } /* Handle ULE Extension Headers. */ if (priv->ule_sndu_type < ETH_P_802_3_MIN) { /* There is an extension header. Handle it accordingly. */ int l = handle_ule_extensions(priv); if (l < 0) { /* Mandatory extension header unknown or TEST SNDU. Drop it. */ // printk( KERN_WARNING "Dropping SNDU, extension headers.\n" ); dev_kfree_skb(priv->ule_skb); goto sndu_done; } skb_pull(priv->ule_skb, l); } /* * Construct/assure correct ethernet header. * Note: in bridged mode (priv->ule_bridged != * 0) we already have the (original) ethernet * header at the start of the payload (after * optional dest. address and any extension * headers). */ if (!priv->ule_bridged) { skb_push(priv->ule_skb, ETH_HLEN); ethh = (struct ethhdr *)priv->ule_skb->data; if (!priv->ule_dbit) { /* dest_addr buffer is only valid if priv->ule_dbit == 0 */ memcpy(ethh->h_dest, dest_addr, ETH_ALEN); memset(ethh->h_source, 0, ETH_ALEN); } else /* zeroize source and dest */ memset( ethh, 0, ETH_ALEN*2 ); ethh->h_proto = htons(priv->ule_sndu_type); } /* else: skb is in correct state; nothing to do. */ priv->ule_bridged = 0; /* Stuff into kernel's protocol stack. */ priv->ule_skb->protocol = dvb_net_eth_type_trans(priv->ule_skb, dev); /* If D-bit is set (i.e. destination MAC address not present), * receive the packet anyhow. */ /* if (priv->ule_dbit && skb->pkt_type == PACKET_OTHERHOST) priv->ule_skb->pkt_type = PACKET_HOST; */ dev->stats.rx_packets++; dev->stats.rx_bytes += priv->ule_skb->len; netif_rx(priv->ule_skb); } sndu_done: /* Prepare for next SNDU. */ reset_ule(priv); } /* More data in current TS (look at the bytes following the CRC32)? */ if (ts_remain >= 2 && *((unsigned short *)from_where) != 0xFFFF) { /* Next ULE SNDU starts right there. */ new_ts = 0; priv->ule_skb = NULL; priv->ule_sndu_type_1 = 0; priv->ule_sndu_len = 0; // printk(KERN_WARNING "More data in current TS: [%#x %#x %#x %#x]\n", // *(from_where + 0), *(from_where + 1), // *(from_where + 2), *(from_where + 3)); // printk(KERN_WARNING "ts @ %p, stopped @ %p:\n", ts, from_where + 0); // hexdump(ts, 188); } else { new_ts = 1; ts += TS_SZ; priv->ts_count++; if (priv->ule_skb == NULL) { priv->need_pusi = 1; priv->ule_sndu_type_1 = 0; priv->ule_sndu_len = 0; } } } /* for all available TS cells */ } static int dvb_net_ts_callback(const u8 *buffer1, size_t buffer1_len, const u8 *buffer2, size_t buffer2_len, struct dmx_ts_feed *feed, enum dmx_success success) { struct net_device *dev = feed->priv; if (buffer2) printk(KERN_WARNING "buffer2 not NULL: %p.\n", buffer2); if (buffer1_len > 32768) printk(KERN_WARNING "length > 32k: %zu.\n", buffer1_len); /* printk("TS callback: %u bytes, %u TS cells @ %p.\n", buffer1_len, buffer1_len / TS_SZ, buffer1); */ dvb_net_ule(dev, buffer1, buffer1_len); return 0; } static void dvb_net_sec(struct net_device *dev, const u8 *pkt, int pkt_len) { u8 *eth; struct sk_buff *skb; struct net_device_stats *stats = &dev->stats; int snap = 0; /* note: pkt_len includes a 32bit checksum */ if (pkt_len < 16) { printk("%s: IP/MPE packet length = %d too small.\n", dev->name, pkt_len); stats->rx_errors++; stats->rx_length_errors++; return; } /* it seems some ISPs manage to screw up here, so we have to * relax the error checks... */ #if 0 if ((pkt[5] & 0xfd) != 0xc1) { /* drop scrambled or broken packets */ #else if ((pkt[5] & 0x3c) != 0x00) { /* drop scrambled */ #endif stats->rx_errors++; stats->rx_crc_errors++; return; } if (pkt[5] & 0x02) { /* handle LLC/SNAP, see rfc-1042 */ if (pkt_len < 24 || memcmp(&pkt[12], "\xaa\xaa\x03\0\0\0", 6)) { stats->rx_dropped++; return; } snap = 8; } if (pkt[7]) { /* FIXME: assemble datagram from multiple sections */ stats->rx_errors++; stats->rx_frame_errors++; return; } /* we have 14 byte ethernet header (ip header follows); * 12 byte MPE header; 4 byte checksum; + 2 byte alignment, 8 byte LLC/SNAP */ if (!(skb = dev_alloc_skb(pkt_len - 4 - 12 + 14 + 2 - snap))) { //printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); stats->rx_dropped++; return; } skb_reserve(skb, 2); /* longword align L3 header */ skb->dev = dev; /* copy L3 payload */ eth = (u8 *) skb_put(skb, pkt_len - 12 - 4 + 14 - snap); memcpy(eth + 14, pkt + 12 + snap, pkt_len - 12 - 4 - snap); /* create ethernet header: */ eth[0]=pkt[0x0b]; eth[1]=pkt[0x0a]; eth[2]=pkt[0x09]; eth[3]=pkt[0x08]; eth[4]=pkt[0x04]; eth[5]=pkt[0x03]; eth[6]=eth[7]=eth[8]=eth[9]=eth[10]=eth[11]=0; if (snap) { eth[12] = pkt[18]; eth[13] = pkt[19]; } else { /* protocol numbers are from rfc-1700 or * http://www.iana.org/assignments/ethernet-numbers */ if (pkt[12] >> 4 == 6) { /* version field from IP header */ eth[12] = 0x86; /* IPv6 */ eth[13] = 0xdd; } else { eth[12] = 0x08; /* IPv4 */ eth[13] = 0x00; } } skb->protocol = dvb_net_eth_type_trans(skb, dev); stats->rx_packets++; stats->rx_bytes+=skb->len; netif_rx(skb); } static int dvb_net_sec_callback(const u8 *buffer1, size_t buffer1_len, const u8 *buffer2, size_t buffer2_len, struct dmx_section_filter *filter, enum dmx_success success) { struct net_device *dev = filter->priv; /** * we rely on the DVB API definition where exactly one complete * section is delivered in buffer1 */ dvb_net_sec (dev, buffer1, buffer1_len); return 0; } static int dvb_net_tx(struct sk_buff *skb, struct net_device *dev) { dev_kfree_skb(skb); return NETDEV_TX_OK; } static u8 mask_normal[6]={0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; static u8 mask_allmulti[6]={0xff, 0xff, 0xff, 0x00, 0x00, 0x00}; static u8 mac_allmulti[6]={0x01, 0x00, 0x5e, 0x00, 0x00, 0x00}; static u8 mask_promisc[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; static int dvb_net_filter_sec_set(struct net_device *dev, struct dmx_section_filter **secfilter, u8 *mac, u8 *mac_mask) { struct dvb_net_priv *priv = netdev_priv(dev); int ret; *secfilter=NULL; ret = priv->secfeed->allocate_filter(priv->secfeed, secfilter); if (ret<0) { printk("%s: could not get filter\n", dev->name); return ret; } (*secfilter)->priv=(void *) dev; memset((*secfilter)->filter_value, 0x00, DMX_MAX_FILTER_SIZE); memset((*secfilter)->filter_mask, 0x00, DMX_MAX_FILTER_SIZE); memset((*secfilter)->filter_mode, 0xff, DMX_MAX_FILTER_SIZE); (*secfilter)->filter_value[0]=0x3e; (*secfilter)->filter_value[3]=mac[5]; (*secfilter)->filter_value[4]=mac[4]; (*secfilter)->filter_value[8]=mac[3]; (*secfilter)->filter_value[9]=mac[2]; (*secfilter)->filter_value[10]=mac[1]; (*secfilter)->filter_value[11]=mac[0]; (*secfilter)->filter_mask[0] = 0xff; (*secfilter)->filter_mask[3] = mac_mask[5]; (*secfilter)->filter_mask[4] = mac_mask[4]; (*secfilter)->filter_mask[8] = mac_mask[3]; (*secfilter)->filter_mask[9] = mac_mask[2]; (*secfilter)->filter_mask[10] = mac_mask[1]; (*secfilter)->filter_mask[11]=mac_mask[0]; dprintk("%s: filter mac=%pM\n", dev->name, mac); dprintk("%s: filter mask=%pM\n", dev->name, mac_mask); return 0; } static int dvb_net_feed_start(struct net_device *dev) { int ret = 0, i; struct dvb_net_priv *priv = netdev_priv(dev); struct dmx_demux *demux = priv->demux; unsigned char *mac = (unsigned char *) dev->dev_addr; dprintk("%s: rx_mode %i\n", __func__, priv->rx_mode); mutex_lock(&priv->mutex); if (priv->tsfeed || priv->secfeed || priv->secfilter || priv->multi_secfilter[0]) printk("%s: BUG %d\n", __func__, __LINE__); priv->secfeed=NULL; priv->secfilter=NULL; priv->tsfeed = NULL; if (priv->feedtype == DVB_NET_FEEDTYPE_MPE) { dprintk("%s: alloc secfeed\n", __func__); ret=demux->allocate_section_feed(demux, &priv->secfeed, dvb_net_sec_callback); if (ret<0) { printk("%s: could not allocate section feed\n", dev->name); goto error; } ret = priv->secfeed->set(priv->secfeed, priv->pid, 32768, 1); if (ret<0) { printk("%s: could not set section feed\n", dev->name); priv->demux->release_section_feed(priv->demux, priv->secfeed); priv->secfeed=NULL; goto error; } if (priv->rx_mode != RX_MODE_PROMISC) { dprintk("%s: set secfilter\n", __func__); dvb_net_filter_sec_set(dev, &priv->secfilter, mac, mask_normal); } switch (priv->rx_mode) { case RX_MODE_MULTI: for (i = 0; i < priv->multi_num; i++) { dprintk("%s: set multi_secfilter[%d]\n", __func__, i); dvb_net_filter_sec_set(dev, &priv->multi_secfilter[i], priv->multi_macs[i], mask_normal); } break; case RX_MODE_ALL_MULTI: priv->multi_num=1; dprintk("%s: set multi_secfilter[0]\n", __func__); dvb_net_filter_sec_set(dev, &priv->multi_secfilter[0], mac_allmulti, mask_allmulti); break; case RX_MODE_PROMISC: priv->multi_num=0; dprintk("%s: set secfilter\n", __func__); dvb_net_filter_sec_set(dev, &priv->secfilter, mac, mask_promisc); break; } dprintk("%s: start filtering\n", __func__); priv->secfeed->start_filtering(priv->secfeed); } else if (priv->feedtype == DVB_NET_FEEDTYPE_ULE) { struct timespec timeout = { 0, 10000000 }; // 10 msec /* we have payloads encapsulated in TS */ dprintk("%s: alloc tsfeed\n", __func__); ret = demux->allocate_ts_feed(demux, &priv->tsfeed, dvb_net_ts_callback); if (ret < 0) { printk("%s: could not allocate ts feed\n", dev->name); goto error; } /* Set netdevice pointer for ts decaps callback. */ priv->tsfeed->priv = (void *)dev; ret = priv->tsfeed->set(priv->tsfeed, priv->pid, /* pid */ TS_PACKET, /* type */ DMX_PES_OTHER, /* pes type */ 32768, /* circular buffer size */ timeout /* timeout */ ); if (ret < 0) { printk("%s: could not set ts feed\n", dev->name); priv->demux->release_ts_feed(priv->demux, priv->tsfeed); priv->tsfeed = NULL; goto error; } dprintk("%s: start filtering\n", __func__); priv->tsfeed->start_filtering(priv->tsfeed); } else ret = -EINVAL; error: mutex_unlock(&priv->mutex); return ret; } static int dvb_net_feed_stop(struct net_device *dev) { struct dvb_net_priv *priv = netdev_priv(dev); int i, ret = 0; dprintk("%s\n", __func__); mutex_lock(&priv->mutex); if (priv->feedtype == DVB_NET_FEEDTYPE_MPE) { if (priv->secfeed) { if (priv->secfeed->is_filtering) { dprintk("%s: stop secfeed\n", __func__); priv->secfeed->stop_filtering(priv->secfeed); } if (priv->secfilter) { dprintk("%s: release secfilter\n", __func__); priv->secfeed->release_filter(priv->secfeed, priv->secfilter); priv->secfilter=NULL; } for (i=0; i<priv->multi_num; i++) { if (priv->multi_secfilter[i]) { dprintk("%s: release multi_filter[%d]\n", __func__, i); priv->secfeed->release_filter(priv->secfeed, priv->multi_secfilter[i]); priv->multi_secfilter[i] = NULL; } } priv->demux->release_section_feed(priv->demux, priv->secfeed); priv->secfeed = NULL; } else printk("%s: no feed to stop\n", dev->name); } else if (priv->feedtype == DVB_NET_FEEDTYPE_ULE) { if (priv->tsfeed) { if (priv->tsfeed->is_filtering) { dprintk("%s: stop tsfeed\n", __func__); priv->tsfeed->stop_filtering(priv->tsfeed); } priv->demux->release_ts_feed(priv->demux, priv->tsfeed); priv->tsfeed = NULL; } else printk("%s: no ts feed to stop\n", dev->name); } else ret = -EINVAL; mutex_unlock(&priv->mutex); return ret; } static int dvb_set_mc_filter(struct net_device *dev, unsigned char *addr) { struct dvb_net_priv *priv = netdev_priv(dev); if (priv->multi_num == DVB_NET_MULTICAST_MAX) return -ENOMEM; memcpy(priv->multi_macs[priv->multi_num], addr, ETH_ALEN); priv->multi_num++; return 0; } static void wq_set_multicast_list (struct work_struct *work) { struct dvb_net_priv *priv = container_of(work, struct dvb_net_priv, set_multicast_list_wq); struct net_device *dev = priv->net; dvb_net_feed_stop(dev); priv->rx_mode = RX_MODE_UNI; netif_addr_lock_bh(dev); if (dev->flags & IFF_PROMISC) { dprintk("%s: promiscuous mode\n", dev->name); priv->rx_mode = RX_MODE_PROMISC; } else if ((dev->flags & IFF_ALLMULTI)) { dprintk("%s: allmulti mode\n", dev->name); priv->rx_mode = RX_MODE_ALL_MULTI; } else if (!netdev_mc_empty(dev)) { struct netdev_hw_addr *ha; dprintk("%s: set_mc_list, %d entries\n", dev->name, netdev_mc_count(dev)); priv->rx_mode = RX_MODE_MULTI; priv->multi_num = 0; netdev_for_each_mc_addr(ha, dev) dvb_set_mc_filter(dev, ha->addr); } netif_addr_unlock_bh(dev); dvb_net_feed_start(dev); } static void dvb_net_set_multicast_list (struct net_device *dev) { struct dvb_net_priv *priv = netdev_priv(dev); schedule_work(&priv->set_multicast_list_wq); } static void wq_restart_net_feed (struct work_struct *work) { struct dvb_net_priv *priv = container_of(work, struct dvb_net_priv, restart_net_feed_wq); struct net_device *dev = priv->net; if (netif_running(dev)) { dvb_net_feed_stop(dev); dvb_net_feed_start(dev); } } static int dvb_net_set_mac (struct net_device *dev, void *p) { struct dvb_net_priv *priv = netdev_priv(dev); struct sockaddr *addr=p; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); if (netif_running(dev)) schedule_work(&priv->restart_net_feed_wq); return 0; } static int dvb_net_open(struct net_device *dev) { struct dvb_net_priv *priv = netdev_priv(dev); priv->in_use++; dvb_net_feed_start(dev); return 0; } static int dvb_net_stop(struct net_device *dev) { struct dvb_net_priv *priv = netdev_priv(dev); priv->in_use--; return dvb_net_feed_stop(dev); } static const struct header_ops dvb_header_ops = { .create = eth_header, .parse = eth_header_parse, .rebuild = eth_rebuild_header, }; static const struct net_device_ops dvb_netdev_ops = { .ndo_open = dvb_net_open, .ndo_stop = dvb_net_stop, .ndo_start_xmit = dvb_net_tx, .ndo_set_rx_mode = dvb_net_set_multicast_list, .ndo_set_mac_address = dvb_net_set_mac, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, }; static void dvb_net_setup(struct net_device *dev) { ether_setup(dev); dev->header_ops = &dvb_header_ops; dev->netdev_ops = &dvb_netdev_ops; dev->mtu = 4096; dev->flags |= IFF_NOARP; } static int get_if(struct dvb_net *dvbnet) { int i; for (i=0; i<DVB_NET_DEVICES_MAX; i++) if (!dvbnet->state[i]) break; if (i == DVB_NET_DEVICES_MAX) return -1; dvbnet->state[i]=1; return i; } static int dvb_net_add_if(struct dvb_net *dvbnet, u16 pid, u8 feedtype) { struct net_device *net; struct dvb_net_priv *priv; int result; int if_num; if (feedtype != DVB_NET_FEEDTYPE_MPE && feedtype != DVB_NET_FEEDTYPE_ULE) return -EINVAL; if ((if_num = get_if(dvbnet)) < 0) return -EINVAL; net = alloc_netdev(sizeof(struct dvb_net_priv), "dvb", dvb_net_setup); if (!net) return -ENOMEM; if (dvbnet->dvbdev->id) snprintf(net->name, IFNAMSIZ, "dvb%d%u%d", dvbnet->dvbdev->adapter->num, dvbnet->dvbdev->id, if_num); else /* compatibility fix to keep dvb0_0 format */ snprintf(net->name, IFNAMSIZ, "dvb%d_%d", dvbnet->dvbdev->adapter->num, if_num); net->addr_len = 6; memcpy(net->dev_addr, dvbnet->dvbdev->adapter->proposed_mac, 6); dvbnet->device[if_num] = net; priv = netdev_priv(net); priv->net = net; priv->demux = dvbnet->demux; priv->pid = pid; priv->rx_mode = RX_MODE_UNI; priv->need_pusi = 1; priv->tscc = 0; priv->feedtype = feedtype; reset_ule(priv); INIT_WORK(&priv->set_multicast_list_wq, wq_set_multicast_list); INIT_WORK(&priv->restart_net_feed_wq, wq_restart_net_feed); mutex_init(&priv->mutex); net->base_addr = pid; if ((result = register_netdev(net)) < 0) { dvbnet->device[if_num] = NULL; free_netdev(net); return result; } printk("dvb_net: created network interface %s\n", net->name); return if_num; } static int dvb_net_remove_if(struct dvb_net *dvbnet, unsigned long num) { struct net_device *net = dvbnet->device[num]; struct dvb_net_priv *priv; if (!dvbnet->state[num]) return -EINVAL; priv = netdev_priv(net); if (priv->in_use) return -EBUSY; dvb_net_stop(net); flush_work(&priv->set_multicast_list_wq); flush_work(&priv->restart_net_feed_wq); printk("dvb_net: removed network interface %s\n", net->name); unregister_netdev(net); dvbnet->state[num]=0; dvbnet->device[num] = NULL; free_netdev(net); return 0; } static int dvb_net_do_ioctl(struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct dvb_net *dvbnet = dvbdev->priv; int ret = 0; if (((file->f_flags&O_ACCMODE)==O_RDONLY)) return -EPERM; if (mutex_lock_interruptible(&dvbnet->ioctl_mutex)) return -ERESTARTSYS; switch (cmd) { case NET_ADD_IF: { struct dvb_net_if *dvbnetif = parg; int result; if (!capable(CAP_SYS_ADMIN)) { ret = -EPERM; goto ioctl_error; } if (!try_module_get(dvbdev->adapter->module)) { ret = -EPERM; goto ioctl_error; } result=dvb_net_add_if(dvbnet, dvbnetif->pid, dvbnetif->feedtype); if (result<0) { module_put(dvbdev->adapter->module); ret = result; goto ioctl_error; } dvbnetif->if_num=result; break; } case NET_GET_IF: { struct net_device *netdev; struct dvb_net_priv *priv_data; struct dvb_net_if *dvbnetif = parg; if (dvbnetif->if_num >= DVB_NET_DEVICES_MAX || !dvbnet->state[dvbnetif->if_num]) { ret = -EINVAL; goto ioctl_error; } netdev = dvbnet->device[dvbnetif->if_num]; priv_data = netdev_priv(netdev); dvbnetif->pid=priv_data->pid; dvbnetif->feedtype=priv_data->feedtype; break; } case NET_REMOVE_IF: { if (!capable(CAP_SYS_ADMIN)) { ret = -EPERM; goto ioctl_error; } if ((unsigned long) parg >= DVB_NET_DEVICES_MAX) { ret = -EINVAL; goto ioctl_error; } ret = dvb_net_remove_if(dvbnet, (unsigned long) parg); if (!ret) module_put(dvbdev->adapter->module); break; } /* binary compatibility cruft */ case __NET_ADD_IF_OLD: { struct __dvb_net_if_old *dvbnetif = parg; int result; if (!capable(CAP_SYS_ADMIN)) { ret = -EPERM; goto ioctl_error; } if (!try_module_get(dvbdev->adapter->module)) { ret = -EPERM; goto ioctl_error; } result=dvb_net_add_if(dvbnet, dvbnetif->pid, DVB_NET_FEEDTYPE_MPE); if (result<0) { module_put(dvbdev->adapter->module); ret = result; goto ioctl_error; } dvbnetif->if_num=result; break; } case __NET_GET_IF_OLD: { struct net_device *netdev; struct dvb_net_priv *priv_data; struct __dvb_net_if_old *dvbnetif = parg; if (dvbnetif->if_num >= DVB_NET_DEVICES_MAX || !dvbnet->state[dvbnetif->if_num]) { ret = -EINVAL; goto ioctl_error; } netdev = dvbnet->device[dvbnetif->if_num]; priv_data = netdev_priv(netdev); dvbnetif->pid=priv_data->pid; break; } default: ret = -ENOTTY; break; } ioctl_error: mutex_unlock(&dvbnet->ioctl_mutex); return ret; } static long dvb_net_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return dvb_usercopy(file, cmd, arg, dvb_net_do_ioctl); } static int dvb_net_close(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct dvb_net *dvbnet = dvbdev->priv; dvb_generic_release(inode, file); if(dvbdev->users == 1 && dvbnet->exit == 1) wake_up(&dvbdev->wait_queue); return 0; } static const struct file_operations dvb_net_fops = { .owner = THIS_MODULE, .unlocked_ioctl = dvb_net_ioctl, .open = dvb_generic_open, .release = dvb_net_close, .llseek = noop_llseek, }; static struct dvb_device dvbdev_net = { .priv = NULL, .users = 1, .writers = 1, .fops = &dvb_net_fops, }; void dvb_net_release (struct dvb_net *dvbnet) { int i; dvbnet->exit = 1; if (dvbnet->dvbdev->users < 1) wait_event(dvbnet->dvbdev->wait_queue, dvbnet->dvbdev->users==1); dvb_unregister_device(dvbnet->dvbdev); for (i=0; i<DVB_NET_DEVICES_MAX; i++) { if (!dvbnet->state[i]) continue; dvb_net_remove_if(dvbnet, i); } } EXPORT_SYMBOL(dvb_net_release); int dvb_net_init (struct dvb_adapter *adap, struct dvb_net *dvbnet, struct dmx_demux *dmx) { int i; mutex_init(&dvbnet->ioctl_mutex); dvbnet->demux = dmx; for (i=0; i<DVB_NET_DEVICES_MAX; i++) dvbnet->state[i] = 0; return dvb_register_device(adap, &dvbnet->dvbdev, &dvbdev_net, dvbnet, DVB_DEVICE_NET); } EXPORT_SYMBOL(dvb_net_init);