/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * IPv4 Forwarding Information Base: FIB frontend. * * Authors: Alexey Kuznetsov, * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_IP_MULTIPLE_TABLES static int __net_init fib4_rules_init(struct net *net) { struct fib_table *local_table, *main_table; main_table = fib_trie_table(RT_TABLE_MAIN, NULL); if (!main_table) return -ENOMEM; local_table = fib_trie_table(RT_TABLE_LOCAL, main_table); if (!local_table) goto fail; hlist_add_head_rcu(&local_table->tb_hlist, &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]); hlist_add_head_rcu(&main_table->tb_hlist, &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]); return 0; fail: fib_free_table(main_table); return -ENOMEM; } #else struct fib_table *fib_new_table(struct net *net, u32 id) { struct fib_table *tb, *alias = NULL; unsigned int h; if (id == 0) id = RT_TABLE_MAIN; tb = fib_get_table(net, id); if (tb) return tb; if (id == RT_TABLE_LOCAL) alias = fib_new_table(net, RT_TABLE_MAIN); tb = fib_trie_table(id, alias); if (!tb) return NULL; switch (id) { case RT_TABLE_LOCAL: rcu_assign_pointer(net->ipv4.fib_local, tb); break; case RT_TABLE_MAIN: rcu_assign_pointer(net->ipv4.fib_main, tb); break; case RT_TABLE_DEFAULT: rcu_assign_pointer(net->ipv4.fib_default, tb); break; default: break; } h = id & (FIB_TABLE_HASHSZ - 1); hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]); return tb; } /* caller must hold either rtnl or rcu read lock */ struct fib_table *fib_get_table(struct net *net, u32 id) { struct fib_table *tb; struct hlist_head *head; unsigned int h; if (id == 0) id = RT_TABLE_MAIN; h = id & (FIB_TABLE_HASHSZ - 1); head = &net->ipv4.fib_table_hash[h]; hlist_for_each_entry_rcu(tb, head, tb_hlist) { if (tb->tb_id == id) return tb; } return NULL; } #endif /* CONFIG_IP_MULTIPLE_TABLES */ static void fib_replace_table(struct net *net, struct fib_table *old, struct fib_table *new) { #ifdef CONFIG_IP_MULTIPLE_TABLES switch (new->tb_id) { case RT_TABLE_LOCAL: rcu_assign_pointer(net->ipv4.fib_local, new); break; case RT_TABLE_MAIN: rcu_assign_pointer(net->ipv4.fib_main, new); break; case RT_TABLE_DEFAULT: rcu_assign_pointer(net->ipv4.fib_default, new); break; default: break; } #endif /* replace the old table in the hlist */ hlist_replace_rcu(&old->tb_hlist, &new->tb_hlist); } int fib_unmerge(struct net *net) { struct fib_table *old, *new; /* attempt to fetch local table if it has been allocated */ old = fib_get_table(net, RT_TABLE_LOCAL); if (!old) return 0; new = fib_trie_unmerge(old); if (!new) return -ENOMEM; /* replace merged table with clean table */ if (new != old) { fib_replace_table(net, old, new); fib_free_table(old); } return 0; } static void fib_flush(struct net *net) { int flushed = 0; unsigned int h; for (h = 0; h < FIB_TABLE_HASHSZ; h++) { struct hlist_head *head = &net->ipv4.fib_table_hash[h]; struct hlist_node *tmp; struct fib_table *tb; hlist_for_each_entry_safe(tb, tmp, head, tb_hlist) flushed += fib_table_flush(tb); } if (flushed) rt_cache_flush(net); } void fib_flush_external(struct net *net) { struct fib_table *tb; struct hlist_head *head; unsigned int h; for (h = 0; h < FIB_TABLE_HASHSZ; h++) { head = &net->ipv4.fib_table_hash[h]; hlist_for_each_entry(tb, head, tb_hlist) fib_table_flush_external(tb); } } /* * Find address type as if only "dev" was present in the system. If * on_dev is NULL then all interfaces are taken into consideration. */ static inline unsigned int __inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr, int tb_id) { struct flowi4 fl4 = { .daddr = addr }; struct fib_result res; unsigned int ret = RTN_BROADCAST; struct fib_table *table; if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr)) return RTN_BROADCAST; if (ipv4_is_multicast(addr)) return RTN_MULTICAST; rcu_read_lock(); table = fib_get_table(net, tb_id); if (table) { ret = RTN_UNICAST; if (!fib_table_lookup(table, &fl4, &res, FIB_LOOKUP_NOREF)) { if (!dev || dev == res.fi->fib_dev) ret = res.type; } } rcu_read_unlock(); return ret; } unsigned int inet_addr_type_table(struct net *net, __be32 addr, int tb_id) { return __inet_dev_addr_type(net, NULL, addr, tb_id); } EXPORT_SYMBOL(inet_addr_type_table); unsigned int inet_addr_type(struct net *net, __be32 addr) { return __inet_dev_addr_type(net, NULL, addr, RT_TABLE_LOCAL); } EXPORT_SYMBOL(inet_addr_type); unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr) { int rt_table = vrf_dev_table(dev) ? : RT_TABLE_LOCAL; return __inet_dev_addr_type(net, dev, addr, rt_table); } EXPORT_SYMBOL(inet_dev_addr_type); /* inet_addr_type with dev == NULL but using the table from a dev * if one is associated */ unsigned int inet_addr_type_dev_table(struct net *net, const struct net_device *dev, __be32 addr) { int rt_table = vrf_dev_table(dev) ? : RT_TABLE_LOCAL; return __inet_dev_addr_type(net, NULL, addr, rt_table); } EXPORT_SYMBOL(inet_addr_type_dev_table); __be32 fib_compute_spec_dst(struct sk_buff *skb) { struct net_device *dev = skb->dev; struct in_device *in_dev; struct fib_result res; struct rtable *rt; struct flowi4 fl4; struct net *net; int scope; rt = skb_rtable(skb); if ((rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST | RTCF_LOCAL)) == RTCF_LOCAL) return ip_hdr(skb)->daddr; in_dev = __in_dev_get_rcu(dev); BUG_ON(!in_dev); net = dev_net(dev); scope = RT_SCOPE_UNIVERSE; if (!ipv4_is_zeronet(ip_hdr(skb)->saddr)) { fl4.flowi4_oif = 0; fl4.flowi4_iif = LOOPBACK_IFINDEX; fl4.daddr = ip_hdr(skb)->saddr; fl4.saddr = 0; fl4.flowi4_tos = RT_TOS(ip_hdr(skb)->tos); fl4.flowi4_scope = scope; fl4.flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0; fl4.flowi4_tun_key.tun_id = 0; if (!fib_lookup(net, &fl4, &res, 0)) return FIB_RES_PREFSRC(net, res); } else { scope = RT_SCOPE_LINK; } return inet_select_addr(dev, ip_hdr(skb)->saddr, scope); } /* Given (packet source, input interface) and optional (dst, oif, tos): * - (main) check, that source is valid i.e. not broadcast or our local * address. * - figure out what "logical" interface this packet arrived * and calculate "specific destination" address. * - check, that packet arrived from expected physical interface. * called with rcu_read_lock() */ static int __fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, int rpf, struct in_device *idev, u32 *itag) { int ret, no_addr; struct fib_result res; struct flowi4 fl4; struct net *net; bool dev_match; fl4.flowi4_oif = 0; fl4.flowi4_iif = vrf_master_ifindex_rcu(dev); if (!fl4.flowi4_iif) fl4.flowi4_iif = oif ? : LOOPBACK_IFINDEX; fl4.daddr = src; fl4.saddr = dst; fl4.flowi4_tos = tos; fl4.flowi4_scope = RT_SCOPE_UNIVERSE; fl4.flowi4_tun_key.tun_id = 0; no_addr = idev->ifa_list == NULL; fl4.flowi4_mark = IN_DEV_SRC_VMARK(idev) ? skb->mark : 0; net = dev_net(dev); if (fib_lookup(net, &fl4, &res, 0)) goto last_resort; if (res.type != RTN_UNICAST && (res.type != RTN_LOCAL || !IN_DEV_ACCEPT_LOCAL(idev))) goto e_inval; if (!rpf && !fib_num_tclassid_users(dev_net(dev)) && (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev))) goto last_resort; fib_combine_itag(itag, &res); dev_match = false; #ifdef CONFIG_IP_ROUTE_MULTIPATH for (ret = 0; ret < res.fi->fib_nhs; ret++) { struct fib_nh *nh = &res.fi->fib_nh[ret]; if (nh->nh_dev == dev) { dev_match = true; break; } else if (vrf_master_ifindex_rcu(nh->nh_dev) == dev->ifindex) { dev_match = true; break; } } #else if (FIB_RES_DEV(res) == dev) dev_match = true; #endif if (dev_match) { ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST; return ret; } if (no_addr) goto last_resort; if (rpf == 1) goto e_rpf; fl4.flowi4_oif = dev->ifindex; ret = 0; if (fib_lookup(net, &fl4, &res, FIB_LOOKUP_IGNORE_LINKSTATE) == 0) { if (res.type == RTN_UNICAST) ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST; } return ret; last_resort: if (rpf) goto e_rpf; *itag = 0; return 0; e_inval: return -EINVAL; e_rpf: return -EXDEV; } /* Ignore rp_filter for packets protected by IPsec. */ int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, struct in_device *idev, u32 *itag) { int r = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(idev); if (!r && !fib_num_tclassid_users(dev_net(dev)) && IN_DEV_ACCEPT_LOCAL(idev) && (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev))) { *itag = 0; return 0; } return __fib_validate_source(skb, src, dst, tos, oif, dev, r, idev, itag); } static inline __be32 sk_extract_addr(struct sockaddr *addr) { return ((struct sockaddr_in *) addr)->sin_addr.s_addr; } static int put_rtax(struct nlattr *mx, int len, int type, u32 value) { struct nlattr *nla; nla = (struct nlattr *) ((char *) mx + len); nla->nla_type = type; nla->nla_len = nla_attr_size(4); *(u32 *) nla_data(nla) = value; return len + nla_total_size(4); } static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt, struct fib_config *cfg) { __be32 addr; int plen; memset(cfg, 0, sizeof(*cfg)); cfg->fc_nlinfo.nl_net = net; if (rt->rt_dst.sa_family != AF_INET) return -EAFNOSUPPORT; /* * Check mask for validity: * a) it must be contiguous. * b) destination must have all host bits clear. * c) if application forgot to set correct family (AF_INET), * reject request unless it is absolutely clear i.e. * both family and mask are zero. */ plen = 32; addr = sk_extract_addr(&rt->rt_dst); if (!(rt->rt_flags & RTF_HOST)) { __be32 mask = sk_extract_addr(&rt->rt_genmask); if (rt->rt_genmask.sa_family != AF_INET) { if (mask || rt->rt_genmask.sa_family) return -EAFNOSUPPORT; } if (bad_mask(mask, addr)) return -EINVAL; plen = inet_mask_len(mask); } cfg->fc_dst_len = plen; cfg->fc_dst = addr; if (cmd != SIOCDELRT) { cfg->fc_nlflags = NLM_F_CREATE; cfg->fc_protocol = RTPROT_BOOT; } if (rt->rt_metric) cfg->fc_priority = rt->rt_metric - 1; if (rt->rt_flags & RTF_REJECT) { cfg->fc_scope = RT_SCOPE_HOST; cfg->fc_type = RTN_UNREACHABLE; return 0; } cfg->fc_scope = RT_SCOPE_NOWHERE; cfg->fc_type = RTN_UNICAST; if (rt->rt_dev) { char *colon; struct net_device *dev; char devname[IFNAMSIZ]; if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1)) return -EFAULT; devname[IFNAMSIZ-1] = 0; colon = strchr(devname, ':'); if (colon) *colon = 0; dev = __dev_get_by_name(net, devname); if (!dev) return -ENODEV; cfg->fc_oif = dev->ifindex; if (colon) { struct in_ifaddr *ifa; struct in_device *in_dev = __in_dev_get_rtnl(dev); if (!in_dev) return -ENODEV; *colon = ':'; for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) if (strcmp(ifa->ifa_label, devname) == 0) break; if (!ifa) return -ENODEV; cfg->fc_prefsrc = ifa->ifa_local; } } addr = sk_extract_addr(&rt->rt_gateway); if (rt->rt_gateway.sa_family == AF_INET && addr) { unsigned int addr_type; cfg->fc_gw = addr; addr_type = inet_addr_type_table(net, addr, cfg->fc_table); if (rt->rt_flags & RTF_GATEWAY && addr_type == RTN_UNICAST) cfg->fc_scope = RT_SCOPE_UNIVERSE; } if (cmd == SIOCDELRT) return 0; if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw) return -EINVAL; if (cfg->fc_scope == RT_SCOPE_NOWHERE) cfg->fc_scope = RT_SCOPE_LINK; if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) { struct nlattr *mx; int len = 0; mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL); if (!mx) return -ENOMEM; if (rt->rt_flags & RTF_MTU) len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40); if (rt->rt_flags & RTF_WINDOW) len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window); if (rt->rt_flags & RTF_IRTT) len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3); cfg->fc_mx = mx; cfg->fc_mx_len = len; } return 0; } /* * Handle IP routing ioctl calls. * These are used to manipulate the routing tables */ int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg) { struct fib_config cfg; struct rtentry rt; int err; switch (cmd) { case SIOCADDRT: /* Add a route */ case SIOCDELRT: /* Delete a route */ if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&rt, arg, sizeof(rt))) return -EFAULT; rtnl_lock(); err = rtentry_to_fib_config(net, cmd, &rt, &cfg); if (err == 0) { struct fib_table *tb; if (cmd == SIOCDELRT) { tb = fib_get_table(net, cfg.fc_table); if (tb) err = fib_table_delete(tb, &cfg); else err = -ESRCH; } else { tb = fib_new_table(net, cfg.fc_table); if (tb) err = fib_table_insert(tb, &cfg); else err = -ENOBUFS; } /* allocated by rtentry_to_fib_config() */ kfree(cfg.fc_mx); } rtnl_unlock(); return err; } return -EINVAL; } const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = { [RTA_DST] = { .type = NLA_U32 }, [RTA_SRC] = { .type = NLA_U32 }, [RTA_IIF] = { .type = NLA_U32 }, [RTA_OIF] = { .type = NLA_U32 }, [RTA_GATEWAY] = { .type = NLA_U32 }, [RTA_PRIORITY] = { .type = NLA_U32 }, [RTA_PREFSRC] = { .type = NLA_U32 }, [RTA_METRICS] = { .type = NLA_NESTED }, [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, [RTA_FLOW] = { .type = NLA_U32 }, [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, [RTA_ENCAP] = { .type = NLA_NESTED }, }; static int rtm_to_fib_config(struct net *net, struct sk_buff *skb, struct nlmsghdr *nlh, struct fib_config *cfg) { struct nlattr *attr; int err, remaining; struct rtmsg *rtm; err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy); if (err < 0) goto errout; memset(cfg, 0, sizeof(*cfg)); rtm = nlmsg_data(nlh); cfg->fc_dst_len = rtm->rtm_dst_len; cfg->fc_tos = rtm->rtm_tos; cfg->fc_table = rtm->rtm_table; cfg->fc_protocol = rtm->rtm_protocol; cfg->fc_scope = rtm->rtm_scope; cfg->fc_type = rtm->rtm_type; cfg->fc_flags = rtm->rtm_flags; cfg->fc_nlflags = nlh->nlmsg_flags; cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid; cfg->fc_nlinfo.nlh = nlh; cfg->fc_nlinfo.nl_net = net; if (cfg->fc_type > RTN_MAX) { err = -EINVAL; goto errout; } nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) { switch (nla_type(attr)) { case RTA_DST: cfg->fc_dst = nla_get_be32(attr); break; case RTA_OIF: cfg->fc_oif = nla_get_u32(attr); break; case RTA_GATEWAY: cfg->fc_gw = nla_get_be32(attr); break; case RTA_PRIORITY: cfg->fc_priority = nla_get_u32(attr); break; case RTA_PREFSRC: cfg->fc_prefsrc = nla_get_be32(attr); break; case RTA_METRICS: cfg->fc_mx = nla_data(attr); cfg->fc_mx_len = nla_len(attr); break; case RTA_MULTIPATH: cfg->fc_mp = nla_data(attr); cfg->fc_mp_len = nla_len(attr); break; case RTA_FLOW: cfg->fc_flow = nla_get_u32(attr); break; case RTA_TABLE: cfg->fc_table = nla_get_u32(attr); break; case RTA_ENCAP: cfg->fc_encap = attr; break; case RTA_ENCAP_TYPE: cfg->fc_encap_type = nla_get_u16(attr); break; } } return 0; errout: return err; } static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh) { struct net *net = sock_net(skb->sk); struct fib_config cfg; struct fib_table *tb; int err; err = rtm_to_fib_config(net, skb, nlh, &cfg); if (err < 0) goto errout; tb = fib_get_table(net, cfg.fc_table); if (!tb) { err = -ESRCH; goto errout; } err = fib_table_delete(tb, &cfg); errout: return err; } static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh) { struct net *net = sock_net(skb->sk); struct fib_config cfg; struct fib_table *tb; int err; err = rtm_to_fib_config(net, skb, nlh, &cfg); if (err < 0) goto errout; tb = fib_new_table(net, cfg.fc_table); if (!tb) { err = -ENOBUFS; goto errout; } err = fib_table_insert(tb, &cfg); errout: return err; } static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); unsigned int h, s_h; unsigned int e = 0, s_e; struct fib_table *tb; struct hlist_head *head; int dumped = 0; if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) && ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED) return skb->len; s_h = cb->args[0]; s_e = cb->args[1]; rcu_read_lock(); for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) { e = 0; head = &net->ipv4.fib_table_hash[h]; hlist_for_each_entry_rcu(tb, head, tb_hlist) { if (e < s_e) goto next; if (dumped) memset(&cb->args[2], 0, sizeof(cb->args) - 2 * sizeof(cb->args[0])); if (fib_table_dump(tb, skb, cb) < 0) goto out; dumped = 1; next: e++; } } out: rcu_read_unlock(); cb->args[1] = e; cb->args[0] = h; return skb->len; } /* Prepare and feed intra-kernel routing request. * Really, it should be netlink message, but :-( netlink * can be not configured, so that we feed it directly * to fib engine. It is legal, because all events occur * only when netlink is already locked. */ static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa) { struct net *net = dev_net(ifa->ifa_dev->dev); struct fib_table *tb; struct fib_config cfg = { .fc_protocol = RTPROT_KERNEL, .fc_type = type, .fc_dst = dst, .fc_dst_len = dst_len, .fc_prefsrc = ifa->ifa_local, .fc_oif = ifa->ifa_dev->dev->ifindex, .fc_nlflags = NLM_F_CREATE | NLM_F_APPEND, .fc_nlinfo = { .nl_net = net, }, }; if (type == RTN_UNICAST) tb = fib_new_table(net, RT_TABLE_MAIN); else tb = fib_new_table(net, RT_TABLE_LOCAL); if (!tb) return; cfg.fc_table = tb->tb_id; if (type != RTN_LOCAL) cfg.fc_scope = RT_SCOPE_LINK; else cfg.fc_scope = RT_SCOPE_HOST; if (cmd == RTM_NEWROUTE) fib_table_insert(tb, &cfg); else fib_table_delete(tb, &cfg); } void fib_add_ifaddr(struct in_ifaddr *ifa) { struct in_device *in_dev = ifa->ifa_dev; struct net_device *dev = in_dev->dev; struct in_ifaddr *prim = ifa; __be32 mask = ifa->ifa_mask; __be32 addr = ifa->ifa_local; __be32 prefix = ifa->ifa_address & mask; if (ifa->ifa_flags & IFA_F_SECONDARY) { prim = inet_ifa_byprefix(in_dev, prefix, mask); if (!prim) { pr_warn("%s: bug: prim == NULL\n", __func__); return; } } fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim); if (!(dev->flags & IFF_UP)) return; /* Add broadcast address, if it is explicitly assigned. */ if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF)) fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim); if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) && (prefix != addr || ifa->ifa_prefixlen < 32)) { fib_magic(RTM_NEWROUTE, dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST, prefix, ifa->ifa_prefixlen, prim); /* Add network specific broadcasts, when it takes a sense */ if (ifa->ifa_prefixlen < 31) { fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim); fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask, 32, prim); } } } /* Delete primary or secondary address. * Optionally, on secondary address promotion consider the addresses * from subnet iprim as deleted, even if they are in device list. * In this case the secondary ifa can be in device list. */ void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim) { struct in_device *in_dev = ifa->ifa_dev; struct net_device *dev = in_dev->dev; struct in_ifaddr *ifa1; struct in_ifaddr *prim = ifa, *prim1 = NULL; __be32 brd = ifa->ifa_address | ~ifa->ifa_mask; __be32 any = ifa->ifa_address & ifa->ifa_mask; #define LOCAL_OK 1 #define BRD_OK 2 #define BRD0_OK 4 #define BRD1_OK 8 unsigned int ok = 0; int subnet = 0; /* Primary network */ int gone = 1; /* Address is missing */ int same_prefsrc = 0; /* Another primary with same IP */ if (ifa->ifa_flags & IFA_F_SECONDARY) { prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask); if (!prim) { pr_warn("%s: bug: prim == NULL\n", __func__); return; } if (iprim && iprim != prim) { pr_warn("%s: bug: iprim != prim\n", __func__); return; } } else if (!ipv4_is_zeronet(any) && (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) { fib_magic(RTM_DELROUTE, dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST, any, ifa->ifa_prefixlen, prim); subnet = 1; } /* Deletion is more complicated than add. * We should take care of not to delete too much :-) * * Scan address list to be sure that addresses are really gone. */ for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) { if (ifa1 == ifa) { /* promotion, keep the IP */ gone = 0; continue; } /* Ignore IFAs from our subnet */ if (iprim && ifa1->ifa_mask == iprim->ifa_mask && inet_ifa_match(ifa1->ifa_address, iprim)) continue; /* Ignore ifa1 if it uses different primary IP (prefsrc) */ if (ifa1->ifa_flags & IFA_F_SECONDARY) { /* Another address from our subnet? */ if (ifa1->ifa_mask == prim->ifa_mask && inet_ifa_match(ifa1->ifa_address, prim)) prim1 = prim; else { /* We reached the secondaries, so * same_prefsrc should be determined. */ if (!same_prefsrc) continue; /* Search new prim1 if ifa1 is not * using the current prim1 */ if (!prim1 || ifa1->ifa_mask != prim1->ifa_mask || !inet_ifa_match(ifa1->ifa_address, prim1)) prim1 = inet_ifa_byprefix(in_dev, ifa1->ifa_address, ifa1->ifa_mask); if (!prim1) continue; if (prim1->ifa_local != prim->ifa_local) continue; } } else { if (prim->ifa_local != ifa1->ifa_local) continue; prim1 = ifa1; if (prim != prim1) same_prefsrc = 1; } if (ifa->ifa_local == ifa1->ifa_local) ok |= LOCAL_OK; if (ifa->ifa_broadcast == ifa1->ifa_broadcast) ok |= BRD_OK; if (brd == ifa1->ifa_broadcast) ok |= BRD1_OK; if (any == ifa1->ifa_broadcast) ok |= BRD0_OK; /* primary has network specific broadcasts */ if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) { __be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask; __be32 any1 = ifa1->ifa_address & ifa1->ifa_mask; if (!ipv4_is_zeronet(any1)) { if (ifa->ifa_broadcast == brd1 || ifa->ifa_broadcast == any1) ok |= BRD_OK; if (brd == brd1 || brd == any1) ok |= BRD1_OK; if (any == brd1 || any == any1) ok |= BRD0_OK; } } } if (!(ok & BRD_OK)) fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim); if (subnet && ifa->ifa_prefixlen < 31) { if (!(ok & BRD1_OK)) fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim); if (!(ok & BRD0_OK)) fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim); } if (!(ok & LOCAL_OK)) { unsigned int addr_type; fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim); /* Check, that this local address finally disappeared. */ addr_type = inet_addr_type_dev_table(dev_net(dev), dev, ifa->ifa_local); if (gone && addr_type != RTN_LOCAL) { /* And the last, but not the least thing. * We must flush stray FIB entries. * * First of all, we scan fib_info list searching * for stray nexthop entries, then ignite fib_flush. */ if (fib_sync_down_addr(dev_net(dev), ifa->ifa_local)) fib_flush(dev_net(dev)); } } #undef LOCAL_OK #undef BRD_OK #undef BRD0_OK #undef BRD1_OK } static void nl_fib_lookup(struct net *net, struct fib_result_nl *frn) { struct fib_result res; struct flowi4 fl4 = { .flowi4_mark = frn->fl_mark, .daddr = frn->fl_addr, .flowi4_tos = frn->fl_tos, .flowi4_scope = frn->fl_scope, }; struct fib_table *tb; rcu_read_lock(); tb = fib_get_table(net, frn->tb_id_in); frn->err = -ENOENT; if (tb) { local_bh_disable(); frn->tb_id = tb->tb_id; frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF); if (!frn->err) { frn->prefixlen = res.prefixlen; frn->nh_sel = res.nh_sel; frn->type = res.type; frn->scope = res.scope; } local_bh_enable(); } rcu_read_unlock(); } static void nl_fib_input(struct sk_buff *skb) { struct net *net; struct fib_result_nl *frn; struct nlmsghdr *nlh; u32 portid; net = sock_net(skb->sk); nlh = nlmsg_hdr(skb); if (skb->len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len || nlmsg_len(nlh) < sizeof(*frn)) return; skb = netlink_skb_clone(skb, GFP_KERNEL); if (!skb) return; nlh = nlmsg_hdr(skb); frn = (struct fib_result_nl *) nlmsg_data(nlh); nl_fib_lookup(net, frn); portid = NETLINK_CB(skb).portid; /* netlink portid */ NETLINK_CB(skb).portid = 0; /* from kernel */ NETLINK_CB(skb).dst_group = 0; /* unicast */ netlink_unicast(net->ipv4.fibnl, skb, portid, MSG_DONTWAIT); } static int __net_init nl_fib_lookup_init(struct net *net) { struct sock *sk; struct netlink_kernel_cfg cfg = { .input = nl_fib_input, }; sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, &cfg); if (!sk) return -EAFNOSUPPORT; net->ipv4.fibnl = sk; return 0; } static void nl_fib_lookup_exit(struct net *net) { netlink_kernel_release(net->ipv4.fibnl); net->ipv4.fibnl = NULL; } static void fib_disable_ip(struct net_device *dev, unsigned long event) { if (fib_sync_down_dev(dev, event)) fib_flush(dev_net(dev)); rt_cache_flush(dev_net(dev)); arp_ifdown(dev); } static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct in_ifaddr *ifa = (struct in_ifaddr *)ptr; struct net_device *dev = ifa->ifa_dev->dev; struct net *net = dev_net(dev); switch (event) { case NETDEV_UP: fib_add_ifaddr(ifa); #ifdef CONFIG_IP_ROUTE_MULTIPATH fib_sync_up(dev, RTNH_F_DEAD); #endif atomic_inc(&net->ipv4.dev_addr_genid); rt_cache_flush(dev_net(dev)); break; case NETDEV_DOWN: fib_del_ifaddr(ifa, NULL); atomic_inc(&net->ipv4.dev_addr_genid); if (!ifa->ifa_dev->ifa_list) { /* Last address was deleted from this interface. * Disable IP. */ fib_disable_ip(dev, event); } else { rt_cache_flush(dev_net(dev)); } break; } return NOTIFY_DONE; } static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct in_device *in_dev; struct net *net = dev_net(dev); unsigned int flags; if (event == NETDEV_UNREGISTER) { fib_disable_ip(dev, event); rt_flush_dev(dev); return NOTIFY_DONE; } in_dev = __in_dev_get_rtnl(dev); if (!in_dev) return NOTIFY_DONE; switch (event) { case NETDEV_UP: for_ifa(in_dev) { fib_add_ifaddr(ifa); } endfor_ifa(in_dev); #ifdef CONFIG_IP_ROUTE_MULTIPATH fib_sync_up(dev, RTNH_F_DEAD); #endif atomic_inc(&net->ipv4.dev_addr_genid); rt_cache_flush(net); break; case NETDEV_DOWN: fib_disable_ip(dev, event); break; case NETDEV_CHANGE: flags = dev_get_flags(dev); if (flags & (IFF_RUNNING | IFF_LOWER_UP)) fib_sync_up(dev, RTNH_F_LINKDOWN); else fib_sync_down_dev(dev, event); /* fall through */ case NETDEV_CHANGEMTU: rt_cache_flush(net); break; } return NOTIFY_DONE; } static struct notifier_block fib_inetaddr_notifier = { .notifier_call = fib_inetaddr_event, }; static struct notifier_block fib_netdev_notifier = { .notifier_call = fib_netdev_event, }; static int __net_init ip_fib_net_init(struct net *net) { int err; size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ; /* Avoid false sharing : Use at least a full cache line */ size = max_t(size_t, size, L1_CACHE_BYTES); net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL); if (!net->ipv4.fib_table_hash) return -ENOMEM; err = fib4_rules_init(net); if (err < 0) goto fail; return 0; fail: kfree(net->ipv4.fib_table_hash); return err; } static void ip_fib_net_exit(struct net *net) { unsigned int i; rtnl_lock(); #ifdef CONFIG_IP_MULTIPLE_TABLES RCU_INIT_POINTER(net->ipv4.fib_local, NULL); RCU_INIT_POINTER(net->ipv4.fib_main, NULL); RCU_INIT_POINTER(net->ipv4.fib_default, NULL); #endif for (i = 0; i < FIB_TABLE_HASHSZ; i++) { struct hlist_head *head = &net->ipv4.fib_table_hash[i]; struct hlist_node *tmp; struct fib_table *tb; hlist_for_each_entry_safe(tb, tmp, head, tb_hlist) { hlist_del(&tb->tb_hlist); fib_table_flush(tb); fib_free_table(tb); } } #ifdef CONFIG_IP_MULTIPLE_TABLES fib4_rules_exit(net); #endif rtnl_unlock(); kfree(net->ipv4.fib_table_hash); } static int __net_init fib_net_init(struct net *net) { int error; #ifdef CONFIG_IP_ROUTE_CLASSID net->ipv4.fib_num_tclassid_users = 0; #endif error = ip_fib_net_init(net); if (error < 0) goto out; error = nl_fib_lookup_init(net); if (error < 0) goto out_nlfl; error = fib_proc_init(net); if (error < 0) goto out_proc; out: return error; out_proc: nl_fib_lookup_exit(net); out_nlfl: ip_fib_net_exit(net); goto out; } static void __net_exit fib_net_exit(struct net *net) { fib_proc_exit(net); nl_fib_lookup_exit(net); ip_fib_net_exit(net); } static struct pernet_operations fib_net_ops = { .init = fib_net_init, .exit = fib_net_exit, }; void __init ip_fib_init(void) { rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL); rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL); rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL); register_pernet_subsys(&fib_net_ops); register_netdevice_notifier(&fib_netdev_notifier); register_inetaddr_notifier(&fib_inetaddr_notifier); fib_trie_init(); }