/* * Copyright (c) 2014 Zhang, Keguang * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #ifdef CONFIG_CEVT_CSRC_LS1X #if defined(CONFIG_TIMER_USE_PWM1) #define LS1X_TIMER_BASE LS1X_PWM1_BASE #define LS1X_TIMER_IRQ LS1X_PWM1_IRQ #elif defined(CONFIG_TIMER_USE_PWM2) #define LS1X_TIMER_BASE LS1X_PWM2_BASE #define LS1X_TIMER_IRQ LS1X_PWM2_IRQ #elif defined(CONFIG_TIMER_USE_PWM3) #define LS1X_TIMER_BASE LS1X_PWM3_BASE #define LS1X_TIMER_IRQ LS1X_PWM3_IRQ #else #define LS1X_TIMER_BASE LS1X_PWM0_BASE #define LS1X_TIMER_IRQ LS1X_PWM0_IRQ #endif DEFINE_RAW_SPINLOCK(ls1x_timer_lock); static void __iomem *timer_reg_base; static uint32_t ls1x_jiffies_per_tick; static inline void ls1x_pwmtimer_set_period(uint32_t period) { __raw_writel(period, timer_reg_base + PWM_HRC); __raw_writel(period, timer_reg_base + PWM_LRC); } static inline void ls1x_pwmtimer_restart(void) { __raw_writel(0x0, timer_reg_base + PWM_CNT); __raw_writel(INT_EN | CNT_EN, timer_reg_base + PWM_CTRL); } void __init ls1x_pwmtimer_init(void) { timer_reg_base = ioremap_nocache(LS1X_TIMER_BASE, SZ_16); if (!timer_reg_base) panic("Failed to remap timer registers"); ls1x_jiffies_per_tick = DIV_ROUND_CLOSEST(mips_hpt_frequency, HZ); ls1x_pwmtimer_set_period(ls1x_jiffies_per_tick); ls1x_pwmtimer_restart(); } static u64 ls1x_clocksource_read(struct clocksource *cs) { unsigned long flags; int count; u32 jifs; static int old_count; static u32 old_jifs; raw_spin_lock_irqsave(&ls1x_timer_lock, flags); /* * Although our caller may have the read side of xtime_lock, * this is now a seqlock, and we are cheating in this routine * by having side effects on state that we cannot undo if * there is a collision on the seqlock and our caller has to * retry. (Namely, old_jifs and old_count.) So we must treat * jiffies as volatile despite the lock. We read jiffies * before latching the timer count to guarantee that although * the jiffies value might be older than the count (that is, * the counter may underflow between the last point where * jiffies was incremented and the point where we latch the * count), it cannot be newer. */ jifs = jiffies; /* read the count */ count = __raw_readl(timer_reg_base + PWM_CNT); /* * It's possible for count to appear to go the wrong way for this * reason: * * The timer counter underflows, but we haven't handled the resulting * interrupt and incremented jiffies yet. * * Previous attempts to handle these cases intelligently were buggy, so * we just do the simple thing now. */ if (count < old_count && jifs == old_jifs) count = old_count; old_count = count; old_jifs = jifs; raw_spin_unlock_irqrestore(&ls1x_timer_lock, flags); return (u64) (jifs * ls1x_jiffies_per_tick) + count; } static struct clocksource ls1x_clocksource = { .name = "ls1x-pwmtimer", .read = ls1x_clocksource_read, .mask = CLOCKSOURCE_MASK(24), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static irqreturn_t ls1x_clockevent_isr(int irq, void *devid) { struct clock_event_device *cd = devid; ls1x_pwmtimer_restart(); cd->event_handler(cd); return IRQ_HANDLED; } static int ls1x_clockevent_set_state_periodic(struct clock_event_device *cd) { raw_spin_lock(&ls1x_timer_lock); ls1x_pwmtimer_set_period(ls1x_jiffies_per_tick); ls1x_pwmtimer_restart(); __raw_writel(INT_EN | CNT_EN, timer_reg_base + PWM_CTRL); raw_spin_unlock(&ls1x_timer_lock); return 0; } static int ls1x_clockevent_tick_resume(struct clock_event_device *cd) { raw_spin_lock(&ls1x_timer_lock); __raw_writel(INT_EN | CNT_EN, timer_reg_base + PWM_CTRL); raw_spin_unlock(&ls1x_timer_lock); return 0; } static int ls1x_clockevent_set_state_shutdown(struct clock_event_device *cd) { raw_spin_lock(&ls1x_timer_lock); __raw_writel(__raw_readl(timer_reg_base + PWM_CTRL) & ~CNT_EN, timer_reg_base + PWM_CTRL); raw_spin_unlock(&ls1x_timer_lock); return 0; } static int ls1x_clockevent_set_next(unsigned long evt, struct clock_event_device *cd) { raw_spin_lock(&ls1x_timer_lock); ls1x_pwmtimer_set_period(evt); ls1x_pwmtimer_restart(); raw_spin_unlock(&ls1x_timer_lock); return 0; } static struct clock_event_device ls1x_clockevent = { .name = "ls1x-pwmtimer", .features = CLOCK_EVT_FEAT_PERIODIC, .rating = 300, .irq = LS1X_TIMER_IRQ, .set_next_event = ls1x_clockevent_set_next, .set_state_shutdown = ls1x_clockevent_set_state_shutdown, .set_state_periodic = ls1x_clockevent_set_state_periodic, .set_state_oneshot = ls1x_clockevent_set_state_shutdown, .tick_resume = ls1x_clockevent_tick_resume, }; static struct irqaction ls1x_pwmtimer_irqaction = { .name = "ls1x-pwmtimer", .handler = ls1x_clockevent_isr, .dev_id = &ls1x_clockevent, .flags = IRQF_PERCPU | IRQF_TIMER, }; static void __init ls1x_time_init(void) { struct clock_event_device *cd = &ls1x_clockevent; int ret; if (!mips_hpt_frequency) panic("Invalid timer clock rate"); ls1x_pwmtimer_init(); clockevent_set_clock(cd, mips_hpt_frequency); cd->max_delta_ns = clockevent_delta2ns(0xffffff, cd); cd->min_delta_ns = clockevent_delta2ns(0x000300, cd); cd->cpumask = cpumask_of(smp_processor_id()); clockevents_register_device(cd); ls1x_clocksource.rating = 200 + mips_hpt_frequency / 10000000; ret = clocksource_register_hz(&ls1x_clocksource, mips_hpt_frequency); if (ret) panic(KERN_ERR "Failed to register clocksource: %d\n", ret); setup_irq(LS1X_TIMER_IRQ, &ls1x_pwmtimer_irqaction); } #endif /* CONFIG_CEVT_CSRC_LS1X */ void __init plat_time_init(void) { struct clk *clk = NULL; /* initialize LS1X clocks */ ls1x_clk_init(); #ifdef CONFIG_CEVT_CSRC_LS1X /* setup LS1X PWM timer */ clk = clk_get(NULL, "ls1x-pwmtimer"); if (IS_ERR(clk)) panic("unable to get timer clock, err=%ld", PTR_ERR(clk)); mips_hpt_frequency = clk_get_rate(clk); ls1x_time_init(); #else /* setup mips r4k timer */ clk = clk_get(NULL, "cpu_clk"); if (IS_ERR(clk)) panic("unable to get cpu clock, err=%ld", PTR_ERR(clk)); mips_hpt_frequency = clk_get_rate(clk) / 2; #endif /* CONFIG_CEVT_CSRC_LS1X */ }