/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Interfaces handler. * * Version: @(#)dev.h 1.0.10 08/12/93 * * Authors: Ross Biro * Fred N. van Kempen, * Corey Minyard * Donald J. Becker, * Alan Cox, * Bjorn Ekwall. * Pekka Riikonen * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Moved to /usr/include/linux for NET3 */ #ifndef _LINUX_NETDEVICE_H #define _LINUX_NETDEVICE_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DCB #include #endif #include #include #include #include struct netpoll_info; struct device; struct phy_device; /* 802.11 specific */ struct wireless_dev; /* 802.15.4 specific */ struct wpan_dev; void netdev_set_default_ethtool_ops(struct net_device *dev, const struct ethtool_ops *ops); /* Backlog congestion levels */ #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ #define NET_RX_DROP 1 /* packet dropped */ /* * Transmit return codes: transmit return codes originate from three different * namespaces: * * - qdisc return codes * - driver transmit return codes * - errno values * * Drivers are allowed to return any one of those in their hard_start_xmit() * function. Real network devices commonly used with qdiscs should only return * the driver transmit return codes though - when qdiscs are used, the actual * transmission happens asynchronously, so the value is not propagated to * higher layers. Virtual network devices transmit synchronously, in this case * the driver transmit return codes are consumed by dev_queue_xmit(), all * others are propagated to higher layers. */ /* qdisc ->enqueue() return codes. */ #define NET_XMIT_SUCCESS 0x00 #define NET_XMIT_DROP 0x01 /* skb dropped */ #define NET_XMIT_CN 0x02 /* congestion notification */ #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It * indicates that the device will soon be dropping packets, or already drops * some packets of the same priority; prompting us to send less aggressively. */ #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) /* Driver transmit return codes */ #define NETDEV_TX_MASK 0xf0 enum netdev_tx { __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ NETDEV_TX_OK = 0x00, /* driver took care of packet */ NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ }; typedef enum netdev_tx netdev_tx_t; /* * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. */ static inline bool dev_xmit_complete(int rc) { /* * Positive cases with an skb consumed by a driver: * - successful transmission (rc == NETDEV_TX_OK) * - error while transmitting (rc < 0) * - error while queueing to a different device (rc & NET_XMIT_MASK) */ if (likely(rc < NET_XMIT_MASK)) return true; return false; } /* * Compute the worst case header length according to the protocols * used. */ #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) # if defined(CONFIG_MAC80211_MESH) # define LL_MAX_HEADER 128 # else # define LL_MAX_HEADER 96 # endif #else # define LL_MAX_HEADER 32 #endif #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) #define MAX_HEADER LL_MAX_HEADER #else #define MAX_HEADER (LL_MAX_HEADER + 48) #endif /* * Old network device statistics. Fields are native words * (unsigned long) so they can be read and written atomically. */ struct net_device_stats { unsigned long rx_packets; unsigned long tx_packets; unsigned long rx_bytes; unsigned long tx_bytes; unsigned long rx_errors; unsigned long tx_errors; unsigned long rx_dropped; unsigned long tx_dropped; unsigned long multicast; unsigned long collisions; unsigned long rx_length_errors; unsigned long rx_over_errors; unsigned long rx_crc_errors; unsigned long rx_frame_errors; unsigned long rx_fifo_errors; unsigned long rx_missed_errors; unsigned long tx_aborted_errors; unsigned long tx_carrier_errors; unsigned long tx_fifo_errors; unsigned long tx_heartbeat_errors; unsigned long tx_window_errors; unsigned long rx_compressed; unsigned long tx_compressed; }; #include #include #ifdef CONFIG_RPS #include extern struct static_key rps_needed; #endif struct neighbour; struct neigh_parms; struct sk_buff; struct netdev_hw_addr { struct list_head list; unsigned char addr[MAX_ADDR_LEN]; unsigned char type; #define NETDEV_HW_ADDR_T_LAN 1 #define NETDEV_HW_ADDR_T_SAN 2 #define NETDEV_HW_ADDR_T_SLAVE 3 #define NETDEV_HW_ADDR_T_UNICAST 4 #define NETDEV_HW_ADDR_T_MULTICAST 5 bool global_use; int sync_cnt; int refcount; int synced; struct rcu_head rcu_head; }; struct netdev_hw_addr_list { struct list_head list; int count; }; #define netdev_hw_addr_list_count(l) ((l)->count) #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) #define netdev_hw_addr_list_for_each(ha, l) \ list_for_each_entry(ha, &(l)->list, list) #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) #define netdev_for_each_uc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->uc) #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) #define netdev_for_each_mc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->mc) struct hh_cache { u16 hh_len; u16 __pad; seqlock_t hh_lock; /* cached hardware header; allow for machine alignment needs. */ #define HH_DATA_MOD 16 #define HH_DATA_OFF(__len) \ (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) #define HH_DATA_ALIGN(__len) \ (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; }; /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. * Alternative is: * dev->hard_header_len ? (dev->hard_header_len + * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 * * We could use other alignment values, but we must maintain the * relationship HH alignment <= LL alignment. */ #define LL_RESERVED_SPACE(dev) \ ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) struct header_ops { int (*create) (struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len); int (*parse)(const struct sk_buff *skb, unsigned char *haddr); int (*rebuild)(struct sk_buff *skb); int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); void (*cache_update)(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); }; /* These flag bits are private to the generic network queueing * layer, they may not be explicitly referenced by any other * code. */ enum netdev_state_t { __LINK_STATE_START, __LINK_STATE_PRESENT, __LINK_STATE_NOCARRIER, __LINK_STATE_LINKWATCH_PENDING, __LINK_STATE_DORMANT, }; /* * This structure holds at boot time configured netdevice settings. They * are then used in the device probing. */ struct netdev_boot_setup { char name[IFNAMSIZ]; struct ifmap map; }; #define NETDEV_BOOT_SETUP_MAX 8 int __init netdev_boot_setup(char *str); /* * Structure for NAPI scheduling similar to tasklet but with weighting */ struct napi_struct { /* The poll_list must only be managed by the entity which * changes the state of the NAPI_STATE_SCHED bit. This means * whoever atomically sets that bit can add this napi_struct * to the per-cpu poll_list, and whoever clears that bit * can remove from the list right before clearing the bit. */ struct list_head poll_list; unsigned long state; int weight; unsigned int gro_count; int (*poll)(struct napi_struct *, int); #ifdef CONFIG_NETPOLL spinlock_t poll_lock; int poll_owner; #endif struct net_device *dev; struct sk_buff *gro_list; struct sk_buff *skb; struct hrtimer timer; struct list_head dev_list; struct hlist_node napi_hash_node; unsigned int napi_id; }; enum { NAPI_STATE_SCHED, /* Poll is scheduled */ NAPI_STATE_DISABLE, /* Disable pending */ NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ NAPI_STATE_HASHED, /* In NAPI hash */ }; enum gro_result { GRO_MERGED, GRO_MERGED_FREE, GRO_HELD, GRO_NORMAL, GRO_DROP, }; typedef enum gro_result gro_result_t; /* * enum rx_handler_result - Possible return values for rx_handlers. * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it * further. * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in * case skb->dev was changed by rx_handler. * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. * * rx_handlers are functions called from inside __netif_receive_skb(), to do * special processing of the skb, prior to delivery to protocol handlers. * * Currently, a net_device can only have a single rx_handler registered. Trying * to register a second rx_handler will return -EBUSY. * * To register a rx_handler on a net_device, use netdev_rx_handler_register(). * To unregister a rx_handler on a net_device, use * netdev_rx_handler_unregister(). * * Upon return, rx_handler is expected to tell __netif_receive_skb() what to * do with the skb. * * If the rx_handler consumed to skb in some way, it should return * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for * the skb to be delivered in some other ways. * * If the rx_handler changed skb->dev, to divert the skb to another * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the * new device will be called if it exists. * * If the rx_handler consider the skb should be ignored, it should return * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that * are registered on exact device (ptype->dev == skb->dev). * * If the rx_handler didn't changed skb->dev, but want the skb to be normally * delivered, it should return RX_HANDLER_PASS. * * A device without a registered rx_handler will behave as if rx_handler * returned RX_HANDLER_PASS. */ enum rx_handler_result { RX_HANDLER_CONSUMED, RX_HANDLER_ANOTHER, RX_HANDLER_EXACT, RX_HANDLER_PASS, }; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); void __napi_schedule(struct napi_struct *n); void __napi_schedule_irqoff(struct napi_struct *n); static inline bool napi_disable_pending(struct napi_struct *n) { return test_bit(NAPI_STATE_DISABLE, &n->state); } /** * napi_schedule_prep - check if napi can be scheduled * @n: napi context * * Test if NAPI routine is already running, and if not mark * it as running. This is used as a condition variable * insure only one NAPI poll instance runs. We also make * sure there is no pending NAPI disable. */ static inline bool napi_schedule_prep(struct napi_struct *n) { return !napi_disable_pending(n) && !test_and_set_bit(NAPI_STATE_SCHED, &n->state); } /** * napi_schedule - schedule NAPI poll * @n: napi context * * Schedule NAPI poll routine to be called if it is not already * running. */ static inline void napi_schedule(struct napi_struct *n) { if (napi_schedule_prep(n)) __napi_schedule(n); } /** * napi_schedule_irqoff - schedule NAPI poll * @n: napi context * * Variant of napi_schedule(), assuming hard irqs are masked. */ static inline void napi_schedule_irqoff(struct napi_struct *n) { if (napi_schedule_prep(n)) __napi_schedule_irqoff(n); } /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ static inline bool napi_reschedule(struct napi_struct *napi) { if (napi_schedule_prep(napi)) { __napi_schedule(napi); return true; } return false; } void __napi_complete(struct napi_struct *n); void napi_complete_done(struct napi_struct *n, int work_done); /** * napi_complete - NAPI processing complete * @n: napi context * * Mark NAPI processing as complete. * Consider using napi_complete_done() instead. */ static inline void napi_complete(struct napi_struct *n) { return napi_complete_done(n, 0); } /** * napi_by_id - lookup a NAPI by napi_id * @napi_id: hashed napi_id * * lookup @napi_id in napi_hash table * must be called under rcu_read_lock() */ struct napi_struct *napi_by_id(unsigned int napi_id); /** * napi_hash_add - add a NAPI to global hashtable * @napi: napi context * * generate a new napi_id and store a @napi under it in napi_hash */ void napi_hash_add(struct napi_struct *napi); /** * napi_hash_del - remove a NAPI from global table * @napi: napi context * * Warning: caller must observe rcu grace period * before freeing memory containing @napi */ void napi_hash_del(struct napi_struct *napi); /** * napi_disable - prevent NAPI from scheduling * @n: napi context * * Stop NAPI from being scheduled on this context. * Waits till any outstanding processing completes. */ void napi_disable(struct napi_struct *n); /** * napi_enable - enable NAPI scheduling * @n: napi context * * Resume NAPI from being scheduled on this context. * Must be paired with napi_disable. */ static inline void napi_enable(struct napi_struct *n) { BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); smp_mb__before_atomic(); clear_bit(NAPI_STATE_SCHED, &n->state); } #ifdef CONFIG_SMP /** * napi_synchronize - wait until NAPI is not running * @n: napi context * * Wait until NAPI is done being scheduled on this context. * Waits till any outstanding processing completes but * does not disable future activations. */ static inline void napi_synchronize(const struct napi_struct *n) { while (test_bit(NAPI_STATE_SCHED, &n->state)) msleep(1); } #else # define napi_synchronize(n) barrier() #endif enum netdev_queue_state_t { __QUEUE_STATE_DRV_XOFF, __QUEUE_STATE_STACK_XOFF, __QUEUE_STATE_FROZEN, }; #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ QUEUE_STATE_FROZEN) #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ QUEUE_STATE_FROZEN) /* * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The * netif_tx_* functions below are used to manipulate this flag. The * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit * queue independently. The netif_xmit_*stopped functions below are called * to check if the queue has been stopped by the driver or stack (either * of the XOFF bits are set in the state). Drivers should not need to call * netif_xmit*stopped functions, they should only be using netif_tx_*. */ struct netdev_queue { /* * read mostly part */ struct net_device *dev; struct Qdisc __rcu *qdisc; struct Qdisc *qdisc_sleeping; #ifdef CONFIG_SYSFS struct kobject kobj; #endif #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) int numa_node; #endif /* * write mostly part */ spinlock_t _xmit_lock ____cacheline_aligned_in_smp; int xmit_lock_owner; /* * please use this field instead of dev->trans_start */ unsigned long trans_start; /* * Number of TX timeouts for this queue * (/sys/class/net/DEV/Q/trans_timeout) */ unsigned long trans_timeout; unsigned long state; #ifdef CONFIG_BQL struct dql dql; #endif } ____cacheline_aligned_in_smp; static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) return q->numa_node; #else return NUMA_NO_NODE; #endif } static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) q->numa_node = node; #endif } #ifdef CONFIG_RPS /* * This structure holds an RPS map which can be of variable length. The * map is an array of CPUs. */ struct rps_map { unsigned int len; struct rcu_head rcu; u16 cpus[0]; }; #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) /* * The rps_dev_flow structure contains the mapping of a flow to a CPU, the * tail pointer for that CPU's input queue at the time of last enqueue, and * a hardware filter index. */ struct rps_dev_flow { u16 cpu; u16 filter; unsigned int last_qtail; }; #define RPS_NO_FILTER 0xffff /* * The rps_dev_flow_table structure contains a table of flow mappings. */ struct rps_dev_flow_table { unsigned int mask; struct rcu_head rcu; struct rps_dev_flow flows[0]; }; #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ ((_num) * sizeof(struct rps_dev_flow))) /* * The rps_sock_flow_table contains mappings of flows to the last CPU * on which they were processed by the application (set in recvmsg). */ struct rps_sock_flow_table { unsigned int mask; u16 ents[0]; }; #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ ((_num) * sizeof(u16))) #define RPS_NO_CPU 0xffff static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, u32 hash) { if (table && hash) { unsigned int cpu, index = hash & table->mask; /* We only give a hint, preemption can change cpu under us */ cpu = raw_smp_processor_id(); if (table->ents[index] != cpu) table->ents[index] = cpu; } } static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, u32 hash) { if (table && hash) table->ents[hash & table->mask] = RPS_NO_CPU; } extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; #ifdef CONFIG_RFS_ACCEL bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, u16 filter_id); #endif #endif /* CONFIG_RPS */ /* This structure contains an instance of an RX queue. */ struct netdev_rx_queue { #ifdef CONFIG_RPS struct rps_map __rcu *rps_map; struct rps_dev_flow_table __rcu *rps_flow_table; #endif struct kobject kobj; struct net_device *dev; } ____cacheline_aligned_in_smp; /* * RX queue sysfs structures and functions. */ struct rx_queue_attribute { struct attribute attr; ssize_t (*show)(struct netdev_rx_queue *queue, struct rx_queue_attribute *attr, char *buf); ssize_t (*store)(struct netdev_rx_queue *queue, struct rx_queue_attribute *attr, const char *buf, size_t len); }; #ifdef CONFIG_XPS /* * This structure holds an XPS map which can be of variable length. The * map is an array of queues. */ struct xps_map { unsigned int len; unsigned int alloc_len; struct rcu_head rcu; u16 queues[0]; }; #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ / sizeof(u16)) /* * This structure holds all XPS maps for device. Maps are indexed by CPU. */ struct xps_dev_maps { struct rcu_head rcu; struct xps_map __rcu *cpu_map[0]; }; #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ (nr_cpu_ids * sizeof(struct xps_map *))) #endif /* CONFIG_XPS */ #define TC_MAX_QUEUE 16 #define TC_BITMASK 15 /* HW offloaded queuing disciplines txq count and offset maps */ struct netdev_tc_txq { u16 count; u16 offset; }; #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) /* * This structure is to hold information about the device * configured to run FCoE protocol stack. */ struct netdev_fcoe_hbainfo { char manufacturer[64]; char serial_number[64]; char hardware_version[64]; char driver_version[64]; char optionrom_version[64]; char firmware_version[64]; char model[256]; char model_description[256]; }; #endif #define MAX_PHYS_ITEM_ID_LEN 32 /* This structure holds a unique identifier to identify some * physical item (port for example) used by a netdevice. */ struct netdev_phys_item_id { unsigned char id[MAX_PHYS_ITEM_ID_LEN]; unsigned char id_len; }; typedef u16 (*select_queue_fallback_t)(struct net_device *dev, struct sk_buff *skb); /* * This structure defines the management hooks for network devices. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*ndo_init)(struct net_device *dev); * This function is called once when network device is registered. * The network device can use this to any late stage initializaton * or semantic validattion. It can fail with an error code which will * be propogated back to register_netdev * * void (*ndo_uninit)(struct net_device *dev); * This function is called when device is unregistered or when registration * fails. It is not called if init fails. * * int (*ndo_open)(struct net_device *dev); * This function is called when network device transistions to the up * state. * * int (*ndo_stop)(struct net_device *dev); * This function is called when network device transistions to the down * state. * * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, * struct net_device *dev); * Called when a packet needs to be transmitted. * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) * Required can not be NULL. * * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, * void *accel_priv, select_queue_fallback_t fallback); * Called to decide which queue to when device supports multiple * transmit queues. * * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); * This function is called to allow device receiver to make * changes to configuration when multicast or promiscious is enabled. * * void (*ndo_set_rx_mode)(struct net_device *dev); * This function is called device changes address list filtering. * If driver handles unicast address filtering, it should set * IFF_UNICAST_FLT to its priv_flags. * * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); * This function is called when the Media Access Control address * needs to be changed. If this interface is not defined, the * mac address can not be changed. * * int (*ndo_validate_addr)(struct net_device *dev); * Test if Media Access Control address is valid for the device. * * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); * Called when a user request an ioctl which can't be handled by * the generic interface code. If not defined ioctl's return * not supported error code. * * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); * Used to set network devices bus interface parameters. This interface * is retained for legacy reason, new devices should use the bus * interface (PCI) for low level management. * * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); * Called when a user wants to change the Maximum Transfer Unit * of a device. If not defined, any request to change MTU will * will return an error. * * void (*ndo_tx_timeout)(struct net_device *dev); * Callback uses when the transmitter has not made any progress * for dev->watchdog ticks. * * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, * struct rtnl_link_stats64 *storage); * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); * Called when a user wants to get the network device usage * statistics. Drivers must do one of the following: * 1. Define @ndo_get_stats64 to fill in a zero-initialised * rtnl_link_stats64 structure passed by the caller. * 2. Define @ndo_get_stats to update a net_device_stats structure * (which should normally be dev->stats) and return a pointer to * it. The structure may be changed asynchronously only if each * field is written atomically. * 3. Update dev->stats asynchronously and atomically, and define * neither operation. * * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); * If device support VLAN filtering this function is called when a * VLAN id is registered. * * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); * If device support VLAN filtering this function is called when a * VLAN id is unregistered. * * void (*ndo_poll_controller)(struct net_device *dev); * * SR-IOV management functions. * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, * int max_tx_rate); * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); * int (*ndo_get_vf_config)(struct net_device *dev, * int vf, struct ifla_vf_info *ivf); * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); * int (*ndo_set_vf_port)(struct net_device *dev, int vf, * struct nlattr *port[]); * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) * Called to setup 'tc' number of traffic classes in the net device. This * is always called from the stack with the rtnl lock held and netif tx * queues stopped. This allows the netdevice to perform queue management * safely. * * Fiber Channel over Ethernet (FCoE) offload functions. * int (*ndo_fcoe_enable)(struct net_device *dev); * Called when the FCoE protocol stack wants to start using LLD for FCoE * so the underlying device can perform whatever needed configuration or * initialization to support acceleration of FCoE traffic. * * int (*ndo_fcoe_disable)(struct net_device *dev); * Called when the FCoE protocol stack wants to stop using LLD for FCoE * so the underlying device can perform whatever needed clean-ups to * stop supporting acceleration of FCoE traffic. * * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Initiator wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); * Called when the FCoE Initiator/Target is done with the DDPed I/O as * indicated by the FC exchange id 'xid', so the underlying device can * clean up and reuse resources for later DDP requests. * * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Target wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, * struct netdev_fcoe_hbainfo *hbainfo); * Called when the FCoE Protocol stack wants information on the underlying * device. This information is utilized by the FCoE protocol stack to * register attributes with Fiber Channel management service as per the * FC-GS Fabric Device Management Information(FDMI) specification. * * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); * Called when the underlying device wants to override default World Wide * Name (WWN) generation mechanism in FCoE protocol stack to pass its own * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE * protocol stack to use. * * RFS acceleration. * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, * u16 rxq_index, u32 flow_id); * Set hardware filter for RFS. rxq_index is the target queue index; * flow_id is a flow ID to be passed to rps_may_expire_flow() later. * Return the filter ID on success, or a negative error code. * * Slave management functions (for bridge, bonding, etc). * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to make another netdev an underling. * * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to release previously enslaved netdev. * * Feature/offload setting functions. * netdev_features_t (*ndo_fix_features)(struct net_device *dev, * netdev_features_t features); * Adjusts the requested feature flags according to device-specific * constraints, and returns the resulting flags. Must not modify * the device state. * * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); * Called to update device configuration to new features. Passed * feature set might be less than what was returned by ndo_fix_features()). * Must return >0 or -errno if it changed dev->features itself. * * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], * struct net_device *dev, * const unsigned char *addr, u16 vid, u16 flags) * Adds an FDB entry to dev for addr. * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], * struct net_device *dev, * const unsigned char *addr, u16 vid) * Deletes the FDB entry from dev coresponding to addr. * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, * struct net_device *dev, struct net_device *filter_dev, * int idx) * Used to add FDB entries to dump requests. Implementers should add * entries to skb and update idx with the number of entries. * * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, * struct net_device *dev, u32 filter_mask) * * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); * Called to change device carrier. Soft-devices (like dummy, team, etc) * which do not represent real hardware may define this to allow their * userspace components to manage their virtual carrier state. Devices * that determine carrier state from physical hardware properties (eg * network cables) or protocol-dependent mechanisms (eg * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. * * int (*ndo_get_phys_port_id)(struct net_device *dev, * struct netdev_phys_item_id *ppid); * Called to get ID of physical port of this device. If driver does * not implement this, it is assumed that the hw is not able to have * multiple net devices on single physical port. * * void (*ndo_add_vxlan_port)(struct net_device *dev, * sa_family_t sa_family, __be16 port); * Called by vxlan to notiy a driver about the UDP port and socket * address family that vxlan is listnening to. It is called only when * a new port starts listening. The operation is protected by the * vxlan_net->sock_lock. * * void (*ndo_del_vxlan_port)(struct net_device *dev, * sa_family_t sa_family, __be16 port); * Called by vxlan to notify the driver about a UDP port and socket * address family that vxlan is not listening to anymore. The operation * is protected by the vxlan_net->sock_lock. * * void* (*ndo_dfwd_add_station)(struct net_device *pdev, * struct net_device *dev) * Called by upper layer devices to accelerate switching or other * station functionality into hardware. 'pdev is the lowerdev * to use for the offload and 'dev' is the net device that will * back the offload. Returns a pointer to the private structure * the upper layer will maintain. * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) * Called by upper layer device to delete the station created * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing * the station and priv is the structure returned by the add * operation. * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, * struct net_device *dev, * void *priv); * Callback to use for xmit over the accelerated station. This * is used in place of ndo_start_xmit on accelerated net * devices. * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, * struct net_device *dev * netdev_features_t features); * Called by core transmit path to determine if device is capable of * performing offload operations on a given packet. This is to give * the device an opportunity to implement any restrictions that cannot * be otherwise expressed by feature flags. The check is called with * the set of features that the stack has calculated and it returns * those the driver believes to be appropriate. * * int (*ndo_switch_parent_id_get)(struct net_device *dev, * struct netdev_phys_item_id *psid); * Called to get an ID of the switch chip this port is part of. * If driver implements this, it indicates that it represents a port * of a switch chip. * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state); * Called to notify switch device port of bridge port STP * state change. */ struct net_device_ops { int (*ndo_init)(struct net_device *dev); void (*ndo_uninit)(struct net_device *dev); int (*ndo_open)(struct net_device *dev); int (*ndo_stop)(struct net_device *dev); netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, struct net_device *dev); u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, void *accel_priv, select_queue_fallback_t fallback); void (*ndo_change_rx_flags)(struct net_device *dev, int flags); void (*ndo_set_rx_mode)(struct net_device *dev); int (*ndo_set_mac_address)(struct net_device *dev, void *addr); int (*ndo_validate_addr)(struct net_device *dev); int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); int (*ndo_neigh_setup)(struct net_device *dev, struct neigh_parms *); void (*ndo_tx_timeout) (struct net_device *dev); struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, struct rtnl_link_stats64 *storage); struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); #ifdef CONFIG_NET_POLL_CONTROLLER void (*ndo_poll_controller)(struct net_device *dev); int (*ndo_netpoll_setup)(struct net_device *dev, struct netpoll_info *info); void (*ndo_netpoll_cleanup)(struct net_device *dev); #endif #ifdef CONFIG_NET_RX_BUSY_POLL int (*ndo_busy_poll)(struct napi_struct *dev); #endif int (*ndo_set_vf_mac)(struct net_device *dev, int queue, u8 *mac); int (*ndo_set_vf_vlan)(struct net_device *dev, int queue, u16 vlan, u8 qos); int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, int max_tx_rate); int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); int (*ndo_get_vf_config)(struct net_device *dev, int vf, struct ifla_vf_info *ivf); int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); int (*ndo_set_vf_port)(struct net_device *dev, int vf, struct nlattr *port[]); int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); int (*ndo_setup_tc)(struct net_device *dev, u8 tc); #if IS_ENABLED(CONFIG_FCOE) int (*ndo_fcoe_enable)(struct net_device *dev); int (*ndo_fcoe_disable)(struct net_device *dev); int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, struct netdev_fcoe_hbainfo *hbainfo); #endif #if IS_ENABLED(CONFIG_LIBFCOE) #define NETDEV_FCOE_WWNN 0 #define NETDEV_FCOE_WWPN 1 int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); #endif #ifdef CONFIG_RFS_ACCEL int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id); #endif int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); netdev_features_t (*ndo_fix_features)(struct net_device *dev, netdev_features_t features); int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); int (*ndo_neigh_construct)(struct neighbour *n); void (*ndo_neigh_destroy)(struct neighbour *n); int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags); int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid); int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int idx); int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, u16 flags); int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u32 filter_mask); int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, u16 flags); int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); int (*ndo_get_phys_port_id)(struct net_device *dev, struct netdev_phys_item_id *ppid); void (*ndo_add_vxlan_port)(struct net_device *dev, sa_family_t sa_family, __be16 port); void (*ndo_del_vxlan_port)(struct net_device *dev, sa_family_t sa_family, __be16 port); void* (*ndo_dfwd_add_station)(struct net_device *pdev, struct net_device *dev); void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv); netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, struct net_device *dev, void *priv); int (*ndo_get_lock_subclass)(struct net_device *dev); netdev_features_t (*ndo_features_check) (struct sk_buff *skb, struct net_device *dev, netdev_features_t features); #ifdef CONFIG_NET_SWITCHDEV int (*ndo_switch_parent_id_get)(struct net_device *dev, struct netdev_phys_item_id *psid); int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state); #endif }; /** * enum net_device_priv_flags - &struct net_device priv_flags * * These are the &struct net_device, they are only set internally * by drivers and used in the kernel. These flags are invisible to * userspace, this means that the order of these flags can change * during any kernel release. * * You should have a pretty good reason to be extending these flags. * * @IFF_802_1Q_VLAN: 802.1Q VLAN device * @IFF_EBRIDGE: Ethernet bridging device * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active * @IFF_MASTER_8023AD: bonding master, 802.3ad * @IFF_MASTER_ALB: bonding master, balance-alb * @IFF_BONDING: bonding master or slave * @IFF_SLAVE_NEEDARP: need ARPs for validation * @IFF_ISATAP: ISATAP interface (RFC4214) * @IFF_MASTER_ARPMON: bonding master, ARP mon in use * @IFF_WAN_HDLC: WAN HDLC device * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to * release skb->dst * @IFF_DONT_BRIDGE: disallow bridging this ether dev * @IFF_DISABLE_NETPOLL: disable netpoll at run-time * @IFF_MACVLAN_PORT: device used as macvlan port * @IFF_BRIDGE_PORT: device used as bridge port * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit * @IFF_UNICAST_FLT: Supports unicast filtering * @IFF_TEAM_PORT: device used as team port * @IFF_SUPP_NOFCS: device supports sending custom FCS * @IFF_LIVE_ADDR_CHANGE: device supports hardware address * change when it's running * @IFF_MACVLAN: Macvlan device */ enum netdev_priv_flags { IFF_802_1Q_VLAN = 1<<0, IFF_EBRIDGE = 1<<1, IFF_SLAVE_INACTIVE = 1<<2, IFF_MASTER_8023AD = 1<<3, IFF_MASTER_ALB = 1<<4, IFF_BONDING = 1<<5, IFF_SLAVE_NEEDARP = 1<<6, IFF_ISATAP = 1<<7, IFF_MASTER_ARPMON = 1<<8, IFF_WAN_HDLC = 1<<9, IFF_XMIT_DST_RELEASE = 1<<10, IFF_DONT_BRIDGE = 1<<11, IFF_DISABLE_NETPOLL = 1<<12, IFF_MACVLAN_PORT = 1<<13, IFF_BRIDGE_PORT = 1<<14, IFF_OVS_DATAPATH = 1<<15, IFF_TX_SKB_SHARING = 1<<16, IFF_UNICAST_FLT = 1<<17, IFF_TEAM_PORT = 1<<18, IFF_SUPP_NOFCS = 1<<19, IFF_LIVE_ADDR_CHANGE = 1<<20, IFF_MACVLAN = 1<<21, IFF_XMIT_DST_RELEASE_PERM = 1<<22, IFF_IPVLAN_MASTER = 1<<23, IFF_IPVLAN_SLAVE = 1<<24, }; #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN #define IFF_EBRIDGE IFF_EBRIDGE #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE #define IFF_MASTER_8023AD IFF_MASTER_8023AD #define IFF_MASTER_ALB IFF_MASTER_ALB #define IFF_BONDING IFF_BONDING #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP #define IFF_ISATAP IFF_ISATAP #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON #define IFF_WAN_HDLC IFF_WAN_HDLC #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING #define IFF_UNICAST_FLT IFF_UNICAST_FLT #define IFF_TEAM_PORT IFF_TEAM_PORT #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE #define IFF_MACVLAN IFF_MACVLAN #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE /** * struct net_device - The DEVICE structure. * Actually, this whole structure is a big mistake. It mixes I/O * data with strictly "high-level" data, and it has to know about * almost every data structure used in the INET module. * * @name: This is the first field of the "visible" part of this structure * (i.e. as seen by users in the "Space.c" file). It is the name * of the interface. * * @name_hlist: Device name hash chain, please keep it close to name[] * @ifalias: SNMP alias * @mem_end: Shared memory end * @mem_start: Shared memory start * @base_addr: Device I/O address * @irq: Device IRQ number * * @state: Generic network queuing layer state, see netdev_state_t * @dev_list: The global list of network devices * @napi_list: List entry, that is used for polling napi devices * @unreg_list: List entry, that is used, when we are unregistering the * device, see the function unregister_netdev * @close_list: List entry, that is used, when we are closing the device * * @adj_list: Directly linked devices, like slaves for bonding * @all_adj_list: All linked devices, *including* neighbours * @features: Currently active device features * @hw_features: User-changeable features * * @wanted_features: User-requested features * @vlan_features: Mask of features inheritable by VLAN devices * * @hw_enc_features: Mask of features inherited by encapsulating devices * This field indicates what encapsulation * offloads the hardware is capable of doing, * and drivers will need to set them appropriately. * * @mpls_features: Mask of features inheritable by MPLS * * @ifindex: interface index * @iflink: unique device identifier * * @stats: Statistics struct, which was left as a legacy, use * rtnl_link_stats64 instead * * @rx_dropped: Dropped packets by core network, * do not use this in drivers * @tx_dropped: Dropped packets by core network, * do not use this in drivers * * @carrier_changes: Stats to monitor carrier on<->off transitions * * @wireless_handlers: List of functions to handle Wireless Extensions, * instead of ioctl, * see for details. * @wireless_data: Instance data managed by the core of wireless extensions * * @netdev_ops: Includes several pointers to callbacks, * if one wants to override the ndo_*() functions * @ethtool_ops: Management operations * @fwd_ops: Management operations * @header_ops: Includes callbacks for creating,parsing,rebuilding,etc * of Layer 2 headers. * * @flags: Interface flags (a la BSD) * @priv_flags: Like 'flags' but invisible to userspace, * see if.h for the definitions * @gflags: Global flags ( kept as legacy ) * @padded: How much padding added by alloc_netdev() * @operstate: RFC2863 operstate * @link_mode: Mapping policy to operstate * @if_port: Selectable AUI, TP, ... * @dma: DMA channel * @mtu: Interface MTU value * @type: Interface hardware type * @hard_header_len: Hardware header length * * @needed_headroom: Extra headroom the hardware may need, but not in all * cases can this be guaranteed * @needed_tailroom: Extra tailroom the hardware may need, but not in all * cases can this be guaranteed. Some cases also use * LL_MAX_HEADER instead to allocate the skb * * interface address info: * * @perm_addr: Permanent hw address * @addr_assign_type: Hw address assignment type * @addr_len: Hardware address length * @neigh_priv_len; Used in neigh_alloc(), * initialized only in atm/clip.c * @dev_id: Used to differentiate devices that share * the same link layer address * @dev_port: Used to differentiate devices that share * the same function * @addr_list_lock: XXX: need comments on this one * @uc: unicast mac addresses * @mc: multicast mac addresses * @dev_addrs: list of device hw addresses * @queues_kset: Group of all Kobjects in the Tx and RX queues * @uc_promisc: Counter, that indicates, that promiscuous mode * has been enabled due to the need to listen to * additional unicast addresses in a device that * does not implement ndo_set_rx_mode() * @promiscuity: Number of times, the NIC is told to work in * Promiscuous mode, if it becomes 0 the NIC will * exit from working in Promiscuous mode * @allmulti: Counter, enables or disables allmulticast mode * * @vlan_info: VLAN info * @dsa_ptr: dsa specific data * @tipc_ptr: TIPC specific data * @atalk_ptr: AppleTalk link * @ip_ptr: IPv4 specific data * @dn_ptr: DECnet specific data * @ip6_ptr: IPv6 specific data * @ax25_ptr: AX.25 specific data * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering * * @last_rx: Time of last Rx * @dev_addr: Hw address (before bcast, * because most packets are unicast) * * @_rx: Array of RX queues * @num_rx_queues: Number of RX queues * allocated at register_netdev() time * @real_num_rx_queues: Number of RX queues currently active in device * * @rx_handler: handler for received packets * @rx_handler_data: XXX: need comments on this one * @ingress_queue: XXX: need comments on this one * @broadcast: hw bcast address * * @_tx: Array of TX queues * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time * @real_num_tx_queues: Number of TX queues currently active in device * @qdisc: Root qdisc from userspace point of view * @tx_queue_len: Max frames per queue allowed * @tx_global_lock: XXX: need comments on this one * * @xps_maps: XXX: need comments on this one * * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, * indexed by RX queue number. Assigned by driver. * This must only be set if the ndo_rx_flow_steer * operation is defined * * @trans_start: Time (in jiffies) of last Tx * @watchdog_timeo: Represents the timeout that is used by * the watchdog ( see dev_watchdog() ) * @watchdog_timer: List of timers * * @pcpu_refcnt: Number of references to this device * @todo_list: Delayed register/unregister * @index_hlist: Device index hash chain * @link_watch_list: XXX: need comments on this one * * @reg_state: Register/unregister state machine * @dismantle: Device is going to be freed * @rtnl_link_state: This enum represents the phases of creating * a new link * * @destructor: Called from unregister, * can be used to call free_netdev * @npinfo: XXX: need comments on this one * @nd_net: Network namespace this network device is inside * * @ml_priv: Mid-layer private * @lstats: Loopback statistics * @tstats: Tunnel statistics * @dstats: Dummy statistics * @vstats: Virtual ethernet statistics * * @garp_port: GARP * @mrp_port: MRP * * @dev: Class/net/name entry * @sysfs_groups: Space for optional device, statistics and wireless * sysfs groups * * @sysfs_rx_queue_group: Space for optional per-rx queue attributes * @rtnl_link_ops: Rtnl_link_ops * * @gso_max_size: Maximum size of generic segmentation offload * @gso_max_segs: Maximum number of segments that can be passed to the * NIC for GSO * @gso_min_segs: Minimum number of segments that can be passed to the * NIC for GSO * * @dcbnl_ops: Data Center Bridging netlink ops * @num_tc: Number of traffic classes in the net device * @tc_to_txq: XXX: need comments on this one * @prio_tc_map XXX: need comments on this one * * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp * * @priomap: XXX: need comments on this one * @phydev: Physical device may attach itself * for hardware timestamping * * @qdisc_tx_busylock: XXX: need comments on this one * * @group: The group, that the device belongs to * @pm_qos_req: Power Management QoS object * * FIXME: cleanup struct net_device such that network protocol info * moves out. */ struct net_device { char name[IFNAMSIZ]; struct hlist_node name_hlist; char *ifalias; /* * I/O specific fields * FIXME: Merge these and struct ifmap into one */ unsigned long mem_end; unsigned long mem_start; unsigned long base_addr; int irq; /* * Some hardware also needs these fields (state,dev_list, * napi_list,unreg_list,close_list) but they are not * part of the usual set specified in Space.c. */ unsigned long state; struct list_head dev_list; struct list_head napi_list; struct list_head unreg_list; struct list_head close_list; struct list_head ptype_all; struct list_head ptype_specific; struct { struct list_head upper; struct list_head lower; } adj_list; struct { struct list_head upper; struct list_head lower; } all_adj_list; netdev_features_t features; netdev_features_t hw_features; netdev_features_t wanted_features; netdev_features_t vlan_features; netdev_features_t hw_enc_features; netdev_features_t mpls_features; int ifindex; int iflink; struct net_device_stats stats; atomic_long_t rx_dropped; atomic_long_t tx_dropped; atomic_t carrier_changes; #ifdef CONFIG_WIRELESS_EXT const struct iw_handler_def * wireless_handlers; struct iw_public_data * wireless_data; #endif const struct net_device_ops *netdev_ops; const struct ethtool_ops *ethtool_ops; const struct forwarding_accel_ops *fwd_ops; const struct header_ops *header_ops; unsigned int flags; unsigned int priv_flags; unsigned short gflags; unsigned short padded; unsigned char operstate; unsigned char link_mode; unsigned char if_port; unsigned char dma; unsigned int mtu; unsigned short type; unsigned short hard_header_len; unsigned short needed_headroom; unsigned short needed_tailroom; /* Interface address info. */ unsigned char perm_addr[MAX_ADDR_LEN]; unsigned char addr_assign_type; unsigned char addr_len; unsigned short neigh_priv_len; unsigned short dev_id; unsigned short dev_port; spinlock_t addr_list_lock; struct netdev_hw_addr_list uc; struct netdev_hw_addr_list mc; struct netdev_hw_addr_list dev_addrs; #ifdef CONFIG_SYSFS struct kset *queues_kset; #endif unsigned char name_assign_type; bool uc_promisc; unsigned int promiscuity; unsigned int allmulti; /* Protocol specific pointers */ #if IS_ENABLED(CONFIG_VLAN_8021Q) struct vlan_info __rcu *vlan_info; #endif #if IS_ENABLED(CONFIG_NET_DSA) struct dsa_switch_tree *dsa_ptr; #endif #if IS_ENABLED(CONFIG_TIPC) struct tipc_bearer __rcu *tipc_ptr; #endif void *atalk_ptr; struct in_device __rcu *ip_ptr; struct dn_dev __rcu *dn_ptr; struct inet6_dev __rcu *ip6_ptr; void *ax25_ptr; struct wireless_dev *ieee80211_ptr; struct wpan_dev *ieee802154_ptr; /* * Cache lines mostly used on receive path (including eth_type_trans()) */ unsigned long last_rx; /* Interface address info used in eth_type_trans() */ unsigned char *dev_addr; #ifdef CONFIG_SYSFS struct netdev_rx_queue *_rx; unsigned int num_rx_queues; unsigned int real_num_rx_queues; #endif unsigned long gro_flush_timeout; rx_handler_func_t __rcu *rx_handler; void __rcu *rx_handler_data; struct netdev_queue __rcu *ingress_queue; unsigned char broadcast[MAX_ADDR_LEN]; /* * Cache lines mostly used on transmit path */ struct netdev_queue *_tx ____cacheline_aligned_in_smp; unsigned int num_tx_queues; unsigned int real_num_tx_queues; struct Qdisc *qdisc; unsigned long tx_queue_len; spinlock_t tx_global_lock; #ifdef CONFIG_XPS struct xps_dev_maps __rcu *xps_maps; #endif #ifdef CONFIG_RFS_ACCEL struct cpu_rmap *rx_cpu_rmap; #endif /* These may be needed for future network-power-down code. */ /* * trans_start here is expensive for high speed devices on SMP, * please use netdev_queue->trans_start instead. */ unsigned long trans_start; int watchdog_timeo; struct timer_list watchdog_timer; int __percpu *pcpu_refcnt; struct list_head todo_list; struct hlist_node index_hlist; struct list_head link_watch_list; enum { NETREG_UNINITIALIZED=0, NETREG_REGISTERED, /* completed register_netdevice */ NETREG_UNREGISTERING, /* called unregister_netdevice */ NETREG_UNREGISTERED, /* completed unregister todo */ NETREG_RELEASED, /* called free_netdev */ NETREG_DUMMY, /* dummy device for NAPI poll */ } reg_state:8; bool dismantle; enum { RTNL_LINK_INITIALIZED, RTNL_LINK_INITIALIZING, } rtnl_link_state:16; void (*destructor)(struct net_device *dev); #ifdef CONFIG_NETPOLL struct netpoll_info __rcu *npinfo; #endif #ifdef CONFIG_NET_NS struct net *nd_net; #endif /* mid-layer private */ union { void *ml_priv; struct pcpu_lstats __percpu *lstats; struct pcpu_sw_netstats __percpu *tstats; struct pcpu_dstats __percpu *dstats; struct pcpu_vstats __percpu *vstats; }; struct garp_port __rcu *garp_port; struct mrp_port __rcu *mrp_port; struct device dev; const struct attribute_group *sysfs_groups[4]; const struct attribute_group *sysfs_rx_queue_group; const struct rtnl_link_ops *rtnl_link_ops; /* for setting kernel sock attribute on TCP connection setup */ #define GSO_MAX_SIZE 65536 unsigned int gso_max_size; #define GSO_MAX_SEGS 65535 u16 gso_max_segs; u16 gso_min_segs; #ifdef CONFIG_DCB const struct dcbnl_rtnl_ops *dcbnl_ops; #endif u8 num_tc; struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; u8 prio_tc_map[TC_BITMASK + 1]; #if IS_ENABLED(CONFIG_FCOE) unsigned int fcoe_ddp_xid; #endif #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) struct netprio_map __rcu *priomap; #endif struct phy_device *phydev; struct lock_class_key *qdisc_tx_busylock; int group; struct pm_qos_request pm_qos_req; }; #define to_net_dev(d) container_of(d, struct net_device, dev) #define NETDEV_ALIGN 32 static inline int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) { return dev->prio_tc_map[prio & TC_BITMASK]; } static inline int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) { if (tc >= dev->num_tc) return -EINVAL; dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; return 0; } static inline void netdev_reset_tc(struct net_device *dev) { dev->num_tc = 0; memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); } static inline int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) { if (tc >= dev->num_tc) return -EINVAL; dev->tc_to_txq[tc].count = count; dev->tc_to_txq[tc].offset = offset; return 0; } static inline int netdev_set_num_tc(struct net_device *dev, u8 num_tc) { if (num_tc > TC_MAX_QUEUE) return -EINVAL; dev->num_tc = num_tc; return 0; } static inline int netdev_get_num_tc(struct net_device *dev) { return dev->num_tc; } static inline struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, unsigned int index) { return &dev->_tx[index]; } static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, const struct sk_buff *skb) { return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); } static inline void netdev_for_each_tx_queue(struct net_device *dev, void (*f)(struct net_device *, struct netdev_queue *, void *), void *arg) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) f(dev, &dev->_tx[i], arg); } struct netdev_queue *netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, void *accel_priv); /* * Net namespace inlines */ static inline struct net *dev_net(const struct net_device *dev) { return read_pnet(&dev->nd_net); } static inline void dev_net_set(struct net_device *dev, struct net *net) { #ifdef CONFIG_NET_NS release_net(dev->nd_net); dev->nd_net = hold_net(net); #endif } static inline bool netdev_uses_dsa(struct net_device *dev) { #if IS_ENABLED(CONFIG_NET_DSA) if (dev->dsa_ptr != NULL) return dsa_uses_tagged_protocol(dev->dsa_ptr); #endif return false; } /** * netdev_priv - access network device private data * @dev: network device * * Get network device private data */ static inline void *netdev_priv(const struct net_device *dev) { return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); } /* Set the sysfs physical device reference for the network logical device * if set prior to registration will cause a symlink during initialization. */ #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) /* Set the sysfs device type for the network logical device to allow * fine-grained identification of different network device types. For * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. */ #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) /* Default NAPI poll() weight * Device drivers are strongly advised to not use bigger value */ #define NAPI_POLL_WEIGHT 64 /** * netif_napi_add - initialize a napi context * @dev: network device * @napi: napi context * @poll: polling function * @weight: default weight * * netif_napi_add() must be used to initialize a napi context prior to calling * *any* of the other napi related functions. */ void netif_napi_add(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int), int weight); /** * netif_napi_del - remove a napi context * @napi: napi context * * netif_napi_del() removes a napi context from the network device napi list */ void netif_napi_del(struct napi_struct *napi); struct napi_gro_cb { /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ void *frag0; /* Length of frag0. */ unsigned int frag0_len; /* This indicates where we are processing relative to skb->data. */ int data_offset; /* This is non-zero if the packet cannot be merged with the new skb. */ u16 flush; /* Save the IP ID here and check when we get to the transport layer */ u16 flush_id; /* Number of segments aggregated. */ u16 count; /* This is non-zero if the packet may be of the same flow. */ u8 same_flow; /* Free the skb? */ u8 free; #define NAPI_GRO_FREE 1 #define NAPI_GRO_FREE_STOLEN_HEAD 2 /* jiffies when first packet was created/queued */ unsigned long age; /* Used in ipv6_gro_receive() and foo-over-udp */ u16 proto; /* Used in udp_gro_receive */ u8 udp_mark:1; /* GRO checksum is valid */ u8 csum_valid:1; /* Number of checksums via CHECKSUM_UNNECESSARY */ u8 csum_cnt:3; /* Used in foo-over-udp, set in udp[46]_gro_receive */ u8 is_ipv6:1; /* used to support CHECKSUM_COMPLETE for tunneling protocols */ __wsum csum; /* used in skb_gro_receive() slow path */ struct sk_buff *last; }; #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) struct packet_type { __be16 type; /* This is really htons(ether_type). */ struct net_device *dev; /* NULL is wildcarded here */ int (*func) (struct sk_buff *, struct net_device *, struct packet_type *, struct net_device *); bool (*id_match)(struct packet_type *ptype, struct sock *sk); void *af_packet_priv; struct list_head list; }; struct offload_callbacks { struct sk_buff *(*gso_segment)(struct sk_buff *skb, netdev_features_t features); struct sk_buff **(*gro_receive)(struct sk_buff **head, struct sk_buff *skb); int (*gro_complete)(struct sk_buff *skb, int nhoff); }; struct packet_offload { __be16 type; /* This is really htons(ether_type). */ struct offload_callbacks callbacks; struct list_head list; }; struct udp_offload; struct udp_offload_callbacks { struct sk_buff **(*gro_receive)(struct sk_buff **head, struct sk_buff *skb, struct udp_offload *uoff); int (*gro_complete)(struct sk_buff *skb, int nhoff, struct udp_offload *uoff); }; struct udp_offload { __be16 port; u8 ipproto; struct udp_offload_callbacks callbacks; }; /* often modified stats are per cpu, other are shared (netdev->stats) */ struct pcpu_sw_netstats { u64 rx_packets; u64 rx_bytes; u64 tx_packets; u64 tx_bytes; struct u64_stats_sync syncp; }; #define netdev_alloc_pcpu_stats(type) \ ({ \ typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ if (pcpu_stats) { \ int i; \ for_each_possible_cpu(i) { \ typeof(type) *stat; \ stat = per_cpu_ptr(pcpu_stats, i); \ u64_stats_init(&stat->syncp); \ } \ } \ pcpu_stats; \ }) #include /* netdevice notifier chain. Please remember to update the rtnetlink * notification exclusion list in rtnetlink_event() when adding new * types. */ #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ #define NETDEV_DOWN 0x0002 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface detected a hardware crash and restarted - we can use this eg to kick tcp sessions once done */ #define NETDEV_CHANGE 0x0004 /* Notify device state change */ #define NETDEV_REGISTER 0x0005 #define NETDEV_UNREGISTER 0x0006 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ #define NETDEV_CHANGEADDR 0x0008 #define NETDEV_GOING_DOWN 0x0009 #define NETDEV_CHANGENAME 0x000A #define NETDEV_FEAT_CHANGE 0x000B #define NETDEV_BONDING_FAILOVER 0x000C #define NETDEV_PRE_UP 0x000D #define NETDEV_PRE_TYPE_CHANGE 0x000E #define NETDEV_POST_TYPE_CHANGE 0x000F #define NETDEV_POST_INIT 0x0010 #define NETDEV_UNREGISTER_FINAL 0x0011 #define NETDEV_RELEASE 0x0012 #define NETDEV_NOTIFY_PEERS 0x0013 #define NETDEV_JOIN 0x0014 #define NETDEV_CHANGEUPPER 0x0015 #define NETDEV_RESEND_IGMP 0x0016 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ #define NETDEV_CHANGEINFODATA 0x0018 int register_netdevice_notifier(struct notifier_block *nb); int unregister_netdevice_notifier(struct notifier_block *nb); struct netdev_notifier_info { struct net_device *dev; }; struct netdev_notifier_change_info { struct netdev_notifier_info info; /* must be first */ unsigned int flags_changed; }; static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, struct net_device *dev) { info->dev = dev; } static inline struct net_device * netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) { return info->dev; } int call_netdevice_notifiers(unsigned long val, struct net_device *dev); extern rwlock_t dev_base_lock; /* Device list lock */ #define for_each_netdev(net, d) \ list_for_each_entry(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_reverse(net, d) \ list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_rcu(net, d) \ list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_safe(net, d, n) \ list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) #define for_each_netdev_continue(net, d) \ list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_continue_rcu(net, d) \ list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_in_bond_rcu(bond, slave) \ for_each_netdev_rcu(&init_net, slave) \ if (netdev_master_upper_dev_get_rcu(slave) == (bond)) #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) static inline struct net_device *next_net_device(struct net_device *dev) { struct list_head *lh; struct net *net; net = dev_net(dev); lh = dev->dev_list.next; return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } static inline struct net_device *next_net_device_rcu(struct net_device *dev) { struct list_head *lh; struct net *net; net = dev_net(dev); lh = rcu_dereference(list_next_rcu(&dev->dev_list)); return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } static inline struct net_device *first_net_device(struct net *net) { return list_empty(&net->dev_base_head) ? NULL : net_device_entry(net->dev_base_head.next); } static inline struct net_device *first_net_device_rcu(struct net *net) { struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } int netdev_boot_setup_check(struct net_device *dev); unsigned long netdev_boot_base(const char *prefix, int unit); struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, const char *hwaddr); struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); void dev_add_pack(struct packet_type *pt); void dev_remove_pack(struct packet_type *pt); void __dev_remove_pack(struct packet_type *pt); void dev_add_offload(struct packet_offload *po); void dev_remove_offload(struct packet_offload *po); struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, unsigned short mask); struct net_device *dev_get_by_name(struct net *net, const char *name); struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); struct net_device *__dev_get_by_name(struct net *net, const char *name); int dev_alloc_name(struct net_device *dev, const char *name); int dev_open(struct net_device *dev); int dev_close(struct net_device *dev); void dev_disable_lro(struct net_device *dev); int dev_loopback_xmit(struct sk_buff *newskb); int dev_queue_xmit(struct sk_buff *skb); int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); int register_netdevice(struct net_device *dev); void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); void unregister_netdevice_many(struct list_head *head); static inline void unregister_netdevice(struct net_device *dev) { unregister_netdevice_queue(dev, NULL); } int netdev_refcnt_read(const struct net_device *dev); void free_netdev(struct net_device *dev); void netdev_freemem(struct net_device *dev); void synchronize_net(void); int init_dummy_netdev(struct net_device *dev); struct net_device *dev_get_by_index(struct net *net, int ifindex); struct net_device *__dev_get_by_index(struct net *net, int ifindex); struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); int netdev_get_name(struct net *net, char *name, int ifindex); int dev_restart(struct net_device *dev); int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); static inline unsigned int skb_gro_offset(const struct sk_buff *skb) { return NAPI_GRO_CB(skb)->data_offset; } static inline unsigned int skb_gro_len(const struct sk_buff *skb) { return skb->len - NAPI_GRO_CB(skb)->data_offset; } static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) { NAPI_GRO_CB(skb)->data_offset += len; } static inline void *skb_gro_header_fast(struct sk_buff *skb, unsigned int offset) { return NAPI_GRO_CB(skb)->frag0 + offset; } static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) { return NAPI_GRO_CB(skb)->frag0_len < hlen; } static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, unsigned int offset) { if (!pskb_may_pull(skb, hlen)) return NULL; NAPI_GRO_CB(skb)->frag0 = NULL; NAPI_GRO_CB(skb)->frag0_len = 0; return skb->data + offset; } static inline void *skb_gro_network_header(struct sk_buff *skb) { return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + skb_network_offset(skb); } static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { if (NAPI_GRO_CB(skb)->csum_valid) NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, csum_partial(start, len, 0)); } /* GRO checksum functions. These are logical equivalents of the normal * checksum functions (in skbuff.h) except that they operate on the GRO * offsets and fields in sk_buff. */ __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, bool zero_okay, __sum16 check) { return (skb->ip_summed != CHECKSUM_PARTIAL && NAPI_GRO_CB(skb)->csum_cnt == 0 && (!zero_okay || check)); } static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, __wsum psum) { if (NAPI_GRO_CB(skb)->csum_valid && !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) return 0; NAPI_GRO_CB(skb)->csum = psum; return __skb_gro_checksum_complete(skb); } static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) { if (NAPI_GRO_CB(skb)->csum_cnt > 0) { /* Consume a checksum from CHECKSUM_UNNECESSARY */ NAPI_GRO_CB(skb)->csum_cnt--; } else { /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we * verified a new top level checksum or an encapsulated one * during GRO. This saves work if we fallback to normal path. */ __skb_incr_checksum_unnecessary(skb); } } #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ compute_pseudo) \ ({ \ __sum16 __ret = 0; \ if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ __ret = __skb_gro_checksum_validate_complete(skb, \ compute_pseudo(skb, proto)); \ if (__ret) \ __skb_mark_checksum_bad(skb); \ else \ skb_gro_incr_csum_unnecessary(skb); \ __ret; \ }) #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ compute_pseudo) \ __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) #define skb_gro_checksum_simple_validate(skb) \ __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) { return (NAPI_GRO_CB(skb)->csum_cnt == 0 && !NAPI_GRO_CB(skb)->csum_valid); } static inline void __skb_gro_checksum_convert(struct sk_buff *skb, __sum16 check, __wsum pseudo) { NAPI_GRO_CB(skb)->csum = ~pseudo; NAPI_GRO_CB(skb)->csum_valid = 1; } #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ do { \ if (__skb_gro_checksum_convert_check(skb)) \ __skb_gro_checksum_convert(skb, check, \ compute_pseudo(skb, proto)); \ } while (0) static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, int start, int offset) { __wsum delta; BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset); /* Adjust skb->csum since we changed the packet */ skb->csum = csum_add(skb->csum, delta); NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); } static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { if (!dev->header_ops || !dev->header_ops->create) return 0; return dev->header_ops->create(skb, dev, type, daddr, saddr, len); } static inline int dev_parse_header(const struct sk_buff *skb, unsigned char *haddr) { const struct net_device *dev = skb->dev; if (!dev->header_ops || !dev->header_ops->parse) return 0; return dev->header_ops->parse(skb, haddr); } static inline int dev_rebuild_header(struct sk_buff *skb) { const struct net_device *dev = skb->dev; if (!dev->header_ops || !dev->header_ops->rebuild) return 0; return dev->header_ops->rebuild(skb); } typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); int register_gifconf(unsigned int family, gifconf_func_t *gifconf); static inline int unregister_gifconf(unsigned int family) { return register_gifconf(family, NULL); } #ifdef CONFIG_NET_FLOW_LIMIT #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ struct sd_flow_limit { u64 count; unsigned int num_buckets; unsigned int history_head; u16 history[FLOW_LIMIT_HISTORY]; u8 buckets[]; }; extern int netdev_flow_limit_table_len; #endif /* CONFIG_NET_FLOW_LIMIT */ /* * Incoming packets are placed on per-cpu queues */ struct softnet_data { struct list_head poll_list; struct sk_buff_head process_queue; /* stats */ unsigned int processed; unsigned int time_squeeze; unsigned int cpu_collision; unsigned int received_rps; #ifdef CONFIG_RPS struct softnet_data *rps_ipi_list; #endif #ifdef CONFIG_NET_FLOW_LIMIT struct sd_flow_limit __rcu *flow_limit; #endif struct Qdisc *output_queue; struct Qdisc **output_queue_tailp; struct sk_buff *completion_queue; #ifdef CONFIG_RPS /* Elements below can be accessed between CPUs for RPS */ struct call_single_data csd ____cacheline_aligned_in_smp; struct softnet_data *rps_ipi_next; unsigned int cpu; unsigned int input_queue_head; unsigned int input_queue_tail; #endif unsigned int dropped; struct sk_buff_head input_pkt_queue; struct napi_struct backlog; }; static inline void input_queue_head_incr(struct softnet_data *sd) { #ifdef CONFIG_RPS sd->input_queue_head++; #endif } static inline void input_queue_tail_incr_save(struct softnet_data *sd, unsigned int *qtail) { #ifdef CONFIG_RPS *qtail = ++sd->input_queue_tail; #endif } DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); void __netif_schedule(struct Qdisc *q); void netif_schedule_queue(struct netdev_queue *txq); static inline void netif_tx_schedule_all(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) netif_schedule_queue(netdev_get_tx_queue(dev, i)); } static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) { clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_start_queue - allow transmit * @dev: network device * * Allow upper layers to call the device hard_start_xmit routine. */ static inline void netif_start_queue(struct net_device *dev) { netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_start_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_start_queue(txq); } } void netif_tx_wake_queue(struct netdev_queue *dev_queue); /** * netif_wake_queue - restart transmit * @dev: network device * * Allow upper layers to call the device hard_start_xmit routine. * Used for flow control when transmit resources are available. */ static inline void netif_wake_queue(struct net_device *dev) { netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_wake_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_wake_queue(txq); } } static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) { if (WARN_ON(!dev_queue)) { pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); return; } set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_stop_queue - stop transmitted packets * @dev: network device * * Stop upper layers calling the device hard_start_xmit routine. * Used for flow control when transmit resources are unavailable. */ static inline void netif_stop_queue(struct net_device *dev) { netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_stop_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_stop_queue(txq); } } static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) { return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_queue_stopped - test if transmit queue is flowblocked * @dev: network device * * Test if transmit queue on device is currently unable to send. */ static inline bool netif_queue_stopped(const struct net_device *dev) { return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); } static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_ANY_XOFF; } static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; } static inline bool netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; } /** * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write * @dev_queue: pointer to transmit queue * * BQL enabled drivers might use this helper in their ndo_start_xmit(), * to give appropriate hint to the cpu. */ static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) { #ifdef CONFIG_BQL prefetchw(&dev_queue->dql.num_queued); #endif } /** * netdev_txq_bql_complete_prefetchw - prefetch bql data for write * @dev_queue: pointer to transmit queue * * BQL enabled drivers might use this helper in their TX completion path, * to give appropriate hint to the cpu. */ static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) { #ifdef CONFIG_BQL prefetchw(&dev_queue->dql.limit); #endif } static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, unsigned int bytes) { #ifdef CONFIG_BQL dql_queued(&dev_queue->dql, bytes); if (likely(dql_avail(&dev_queue->dql) >= 0)) return; set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); /* * The XOFF flag must be set before checking the dql_avail below, * because in netdev_tx_completed_queue we update the dql_completed * before checking the XOFF flag. */ smp_mb(); /* check again in case another CPU has just made room avail */ if (unlikely(dql_avail(&dev_queue->dql) >= 0)) clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); #endif } /** * netdev_sent_queue - report the number of bytes queued to hardware * @dev: network device * @bytes: number of bytes queued to the hardware device queue * * Report the number of bytes queued for sending/completion to the network * device hardware queue. @bytes should be a good approximation and should * exactly match netdev_completed_queue() @bytes */ static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) { netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); } static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, unsigned int pkts, unsigned int bytes) { #ifdef CONFIG_BQL if (unlikely(!bytes)) return; dql_completed(&dev_queue->dql, bytes); /* * Without the memory barrier there is a small possiblity that * netdev_tx_sent_queue will miss the update and cause the queue to * be stopped forever */ smp_mb(); if (dql_avail(&dev_queue->dql) < 0) return; if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) netif_schedule_queue(dev_queue); #endif } /** * netdev_completed_queue - report bytes and packets completed by device * @dev: network device * @pkts: actual number of packets sent over the medium * @bytes: actual number of bytes sent over the medium * * Report the number of bytes and packets transmitted by the network device * hardware queue over the physical medium, @bytes must exactly match the * @bytes amount passed to netdev_sent_queue() */ static inline void netdev_completed_queue(struct net_device *dev, unsigned int pkts, unsigned int bytes) { netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); } static inline void netdev_tx_reset_queue(struct netdev_queue *q) { #ifdef CONFIG_BQL clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); dql_reset(&q->dql); #endif } /** * netdev_reset_queue - reset the packets and bytes count of a network device * @dev_queue: network device * * Reset the bytes and packet count of a network device and clear the * software flow control OFF bit for this network device */ static inline void netdev_reset_queue(struct net_device *dev_queue) { netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); } /** * netdev_cap_txqueue - check if selected tx queue exceeds device queues * @dev: network device * @queue_index: given tx queue index * * Returns 0 if given tx queue index >= number of device tx queues, * otherwise returns the originally passed tx queue index. */ static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) { if (unlikely(queue_index >= dev->real_num_tx_queues)) { net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", dev->name, queue_index, dev->real_num_tx_queues); return 0; } return queue_index; } /** * netif_running - test if up * @dev: network device * * Test if the device has been brought up. */ static inline bool netif_running(const struct net_device *dev) { return test_bit(__LINK_STATE_START, &dev->state); } /* * Routines to manage the subqueues on a device. We only need start * stop, and a check if it's stopped. All other device management is * done at the overall netdevice level. * Also test the device if we're multiqueue. */ /** * netif_start_subqueue - allow sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Start individual transmit queue of a device with multiple transmit queues. */ static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_start_queue(txq); } /** * netif_stop_subqueue - stop sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Stop individual transmit queue of a device with multiple transmit queues. */ static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_stop_queue(txq); } /** * netif_subqueue_stopped - test status of subqueue * @dev: network device * @queue_index: sub queue index * * Check individual transmit queue of a device with multiple transmit queues. */ static inline bool __netif_subqueue_stopped(const struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); return netif_tx_queue_stopped(txq); } static inline bool netif_subqueue_stopped(const struct net_device *dev, struct sk_buff *skb) { return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); } void netif_wake_subqueue(struct net_device *dev, u16 queue_index); #ifdef CONFIG_XPS int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, u16 index); #else static inline int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, u16 index) { return 0; } #endif /* * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used * as a distribution range limit for the returned value. */ static inline u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb) { return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); } /** * netif_is_multiqueue - test if device has multiple transmit queues * @dev: network device * * Check if device has multiple transmit queues */ static inline bool netif_is_multiqueue(const struct net_device *dev) { return dev->num_tx_queues > 1; } int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); #ifdef CONFIG_SYSFS int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); #else static inline int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) { return 0; } #endif #ifdef CONFIG_SYSFS static inline unsigned int get_netdev_rx_queue_index( struct netdev_rx_queue *queue) { struct net_device *dev = queue->dev; int index = queue - dev->_rx; BUG_ON(index >= dev->num_rx_queues); return index; } #endif #define DEFAULT_MAX_NUM_RSS_QUEUES (8) int netif_get_num_default_rss_queues(void); enum skb_free_reason { SKB_REASON_CONSUMED, SKB_REASON_DROPPED, }; void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); /* * It is not allowed to call kfree_skb() or consume_skb() from hardware * interrupt context or with hardware interrupts being disabled. * (in_irq() || irqs_disabled()) * * We provide four helpers that can be used in following contexts : * * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, * replacing kfree_skb(skb) * * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. * Typically used in place of consume_skb(skb) in TX completion path * * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, * replacing kfree_skb(skb) * * dev_consume_skb_any(skb) when caller doesn't know its current irq context, * and consumed a packet. Used in place of consume_skb(skb) */ static inline void dev_kfree_skb_irq(struct sk_buff *skb) { __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); } static inline void dev_consume_skb_irq(struct sk_buff *skb) { __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); } static inline void dev_kfree_skb_any(struct sk_buff *skb) { __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); } static inline void dev_consume_skb_any(struct sk_buff *skb) { __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); } int netif_rx(struct sk_buff *skb); int netif_rx_ni(struct sk_buff *skb); int netif_receive_skb(struct sk_buff *skb); gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); void napi_gro_flush(struct napi_struct *napi, bool flush_old); struct sk_buff *napi_get_frags(struct napi_struct *napi); gro_result_t napi_gro_frags(struct napi_struct *napi); struct packet_offload *gro_find_receive_by_type(__be16 type); struct packet_offload *gro_find_complete_by_type(__be16 type); static inline void napi_free_frags(struct napi_struct *napi) { kfree_skb(napi->skb); napi->skb = NULL; } int netdev_rx_handler_register(struct net_device *dev, rx_handler_func_t *rx_handler, void *rx_handler_data); void netdev_rx_handler_unregister(struct net_device *dev); bool dev_valid_name(const char *name); int dev_ioctl(struct net *net, unsigned int cmd, void __user *); int dev_ethtool(struct net *net, struct ifreq *); unsigned int dev_get_flags(const struct net_device *); int __dev_change_flags(struct net_device *, unsigned int flags); int dev_change_flags(struct net_device *, unsigned int); void __dev_notify_flags(struct net_device *, unsigned int old_flags, unsigned int gchanges); int dev_change_name(struct net_device *, const char *); int dev_set_alias(struct net_device *, const char *, size_t); int dev_change_net_namespace(struct net_device *, struct net *, const char *); int dev_set_mtu(struct net_device *, int); void dev_set_group(struct net_device *, int); int dev_set_mac_address(struct net_device *, struct sockaddr *); int dev_change_carrier(struct net_device *, bool new_carrier); int dev_get_phys_port_id(struct net_device *dev, struct netdev_phys_item_id *ppid); struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, struct netdev_queue *txq, int *ret); int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); extern int netdev_budget; /* Called by rtnetlink.c:rtnl_unlock() */ void netdev_run_todo(void); /** * dev_put - release reference to device * @dev: network device * * Release reference to device to allow it to be freed. */ static inline void dev_put(struct net_device *dev) { this_cpu_dec(*dev->pcpu_refcnt); } /** * dev_hold - get reference to device * @dev: network device * * Hold reference to device to keep it from being freed. */ static inline void dev_hold(struct net_device *dev) { this_cpu_inc(*dev->pcpu_refcnt); } /* Carrier loss detection, dial on demand. The functions netif_carrier_on * and _off may be called from IRQ context, but it is caller * who is responsible for serialization of these calls. * * The name carrier is inappropriate, these functions should really be * called netif_lowerlayer_*() because they represent the state of any * kind of lower layer not just hardware media. */ void linkwatch_init_dev(struct net_device *dev); void linkwatch_fire_event(struct net_device *dev); void linkwatch_forget_dev(struct net_device *dev); /** * netif_carrier_ok - test if carrier present * @dev: network device * * Check if carrier is present on device */ static inline bool netif_carrier_ok(const struct net_device *dev) { return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); } unsigned long dev_trans_start(struct net_device *dev); void __netdev_watchdog_up(struct net_device *dev); void netif_carrier_on(struct net_device *dev); void netif_carrier_off(struct net_device *dev); /** * netif_dormant_on - mark device as dormant. * @dev: network device * * Mark device as dormant (as per RFC2863). * * The dormant state indicates that the relevant interface is not * actually in a condition to pass packets (i.e., it is not 'up') but is * in a "pending" state, waiting for some external event. For "on- * demand" interfaces, this new state identifies the situation where the * interface is waiting for events to place it in the up state. * */ static inline void netif_dormant_on(struct net_device *dev) { if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) linkwatch_fire_event(dev); } /** * netif_dormant_off - set device as not dormant. * @dev: network device * * Device is not in dormant state. */ static inline void netif_dormant_off(struct net_device *dev) { if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) linkwatch_fire_event(dev); } /** * netif_dormant - test if carrier present * @dev: network device * * Check if carrier is present on device */ static inline bool netif_dormant(const struct net_device *dev) { return test_bit(__LINK_STATE_DORMANT, &dev->state); } /** * netif_oper_up - test if device is operational * @dev: network device * * Check if carrier is operational */ static inline bool netif_oper_up(const struct net_device *dev) { return (dev->operstate == IF_OPER_UP || dev->operstate == IF_OPER_UNKNOWN /* backward compat */); } /** * netif_device_present - is device available or removed * @dev: network device * * Check if device has not been removed from system. */ static inline bool netif_device_present(struct net_device *dev) { return test_bit(__LINK_STATE_PRESENT, &dev->state); } void netif_device_detach(struct net_device *dev); void netif_device_attach(struct net_device *dev); /* * Network interface message level settings */ enum { NETIF_MSG_DRV = 0x0001, NETIF_MSG_PROBE = 0x0002, NETIF_MSG_LINK = 0x0004, NETIF_MSG_TIMER = 0x0008, NETIF_MSG_IFDOWN = 0x0010, NETIF_MSG_IFUP = 0x0020, NETIF_MSG_RX_ERR = 0x0040, NETIF_MSG_TX_ERR = 0x0080, NETIF_MSG_TX_QUEUED = 0x0100, NETIF_MSG_INTR = 0x0200, NETIF_MSG_TX_DONE = 0x0400, NETIF_MSG_RX_STATUS = 0x0800, NETIF_MSG_PKTDATA = 0x1000, NETIF_MSG_HW = 0x2000, NETIF_MSG_WOL = 0x4000, }; #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) { /* use default */ if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) return default_msg_enable_bits; if (debug_value == 0) /* no output */ return 0; /* set low N bits */ return (1 << debug_value) - 1; } static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) { spin_lock(&txq->_xmit_lock); txq->xmit_lock_owner = cpu; } static inline void __netif_tx_lock_bh(struct netdev_queue *txq) { spin_lock_bh(&txq->_xmit_lock); txq->xmit_lock_owner = smp_processor_id(); } static inline bool __netif_tx_trylock(struct netdev_queue *txq) { bool ok = spin_trylock(&txq->_xmit_lock); if (likely(ok)) txq->xmit_lock_owner = smp_processor_id(); return ok; } static inline void __netif_tx_unlock(struct netdev_queue *txq) { txq->xmit_lock_owner = -1; spin_unlock(&txq->_xmit_lock); } static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) { txq->xmit_lock_owner = -1; spin_unlock_bh(&txq->_xmit_lock); } static inline void txq_trans_update(struct netdev_queue *txq) { if (txq->xmit_lock_owner != -1) txq->trans_start = jiffies; } /** * netif_tx_lock - grab network device transmit lock * @dev: network device * * Get network device transmit lock */ static inline void netif_tx_lock(struct net_device *dev) { unsigned int i; int cpu; spin_lock(&dev->tx_global_lock); cpu = smp_processor_id(); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); /* We are the only thread of execution doing a * freeze, but we have to grab the _xmit_lock in * order to synchronize with threads which are in * the ->hard_start_xmit() handler and already * checked the frozen bit. */ __netif_tx_lock(txq, cpu); set_bit(__QUEUE_STATE_FROZEN, &txq->state); __netif_tx_unlock(txq); } } static inline void netif_tx_lock_bh(struct net_device *dev) { local_bh_disable(); netif_tx_lock(dev); } static inline void netif_tx_unlock(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); /* No need to grab the _xmit_lock here. If the * queue is not stopped for another reason, we * force a schedule. */ clear_bit(__QUEUE_STATE_FROZEN, &txq->state); netif_schedule_queue(txq); } spin_unlock(&dev->tx_global_lock); } static inline void netif_tx_unlock_bh(struct net_device *dev) { netif_tx_unlock(dev); local_bh_enable(); } #define HARD_TX_LOCK(dev, txq, cpu) { \ if ((dev->features & NETIF_F_LLTX) == 0) { \ __netif_tx_lock(txq, cpu); \ } \ } #define HARD_TX_TRYLOCK(dev, txq) \ (((dev->features & NETIF_F_LLTX) == 0) ? \ __netif_tx_trylock(txq) : \ true ) #define HARD_TX_UNLOCK(dev, txq) { \ if ((dev->features & NETIF_F_LLTX) == 0) { \ __netif_tx_unlock(txq); \ } \ } static inline void netif_tx_disable(struct net_device *dev) { unsigned int i; int cpu; local_bh_disable(); cpu = smp_processor_id(); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); } local_bh_enable(); } static inline void netif_addr_lock(struct net_device *dev) { spin_lock(&dev->addr_list_lock); } static inline void netif_addr_lock_nested(struct net_device *dev) { int subclass = SINGLE_DEPTH_NESTING; if (dev->netdev_ops->ndo_get_lock_subclass) subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); spin_lock_nested(&dev->addr_list_lock, subclass); } static inline void netif_addr_lock_bh(struct net_device *dev) { spin_lock_bh(&dev->addr_list_lock); } static inline void netif_addr_unlock(struct net_device *dev) { spin_unlock(&dev->addr_list_lock); } static inline void netif_addr_unlock_bh(struct net_device *dev) { spin_unlock_bh(&dev->addr_list_lock); } /* * dev_addrs walker. Should be used only for read access. Call with * rcu_read_lock held. */ #define for_each_dev_addr(dev, ha) \ list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) /* These functions live elsewhere (drivers/net/net_init.c, but related) */ void ether_setup(struct net_device *dev); /* Support for loadable net-drivers */ struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *), unsigned int txqs, unsigned int rxqs); #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ count) int register_netdev(struct net_device *dev); void unregister_netdev(struct net_device *dev); /* General hardware address lists handling functions */ int __hw_addr_sync(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len); void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len); int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)); void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)); void __hw_addr_init(struct netdev_hw_addr_list *list); /* Functions used for device addresses handling */ int dev_addr_add(struct net_device *dev, const unsigned char *addr, unsigned char addr_type); int dev_addr_del(struct net_device *dev, const unsigned char *addr, unsigned char addr_type); void dev_addr_flush(struct net_device *dev); int dev_addr_init(struct net_device *dev); /* Functions used for unicast addresses handling */ int dev_uc_add(struct net_device *dev, const unsigned char *addr); int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); int dev_uc_del(struct net_device *dev, const unsigned char *addr); int dev_uc_sync(struct net_device *to, struct net_device *from); int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); void dev_uc_unsync(struct net_device *to, struct net_device *from); void dev_uc_flush(struct net_device *dev); void dev_uc_init(struct net_device *dev); /** * __dev_uc_sync - Synchonize device's unicast list * @dev: device to sync * @sync: function to call if address should be added * @unsync: function to call if address should be removed * * Add newly added addresses to the interface, and release * addresses that have been deleted. **/ static inline int __dev_uc_sync(struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)) { return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); } /** * __dev_uc_unsync - Remove synchronized addresses from device * @dev: device to sync * @unsync: function to call if address should be removed * * Remove all addresses that were added to the device by dev_uc_sync(). **/ static inline void __dev_uc_unsync(struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)) { __hw_addr_unsync_dev(&dev->uc, dev, unsync); } /* Functions used for multicast addresses handling */ int dev_mc_add(struct net_device *dev, const unsigned char *addr); int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); int dev_mc_del(struct net_device *dev, const unsigned char *addr); int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); int dev_mc_sync(struct net_device *to, struct net_device *from); int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); void dev_mc_unsync(struct net_device *to, struct net_device *from); void dev_mc_flush(struct net_device *dev); void dev_mc_init(struct net_device *dev); /** * __dev_mc_sync - Synchonize device's multicast list * @dev: device to sync * @sync: function to call if address should be added * @unsync: function to call if address should be removed * * Add newly added addresses to the interface, and release * addresses that have been deleted. **/ static inline int __dev_mc_sync(struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)) { return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); } /** * __dev_mc_unsync - Remove synchronized addresses from device * @dev: device to sync * @unsync: function to call if address should be removed * * Remove all addresses that were added to the device by dev_mc_sync(). **/ static inline void __dev_mc_unsync(struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)) { __hw_addr_unsync_dev(&dev->mc, dev, unsync); } /* Functions used for secondary unicast and multicast support */ void dev_set_rx_mode(struct net_device *dev); void __dev_set_rx_mode(struct net_device *dev); int dev_set_promiscuity(struct net_device *dev, int inc); int dev_set_allmulti(struct net_device *dev, int inc); void netdev_state_change(struct net_device *dev); void netdev_notify_peers(struct net_device *dev); void netdev_features_change(struct net_device *dev); /* Load a device via the kmod */ void dev_load(struct net *net, const char *name); struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, struct rtnl_link_stats64 *storage); void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, const struct net_device_stats *netdev_stats); extern int netdev_max_backlog; extern int netdev_tstamp_prequeue; extern int weight_p; extern int bpf_jit_enable; bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, struct list_head **iter); struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, struct list_head **iter); /* iterate through upper list, must be called under RCU read lock */ #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ for (iter = &(dev)->adj_list.upper, \ updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ updev; \ updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) /* iterate through upper list, must be called under RCU read lock */ #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ for (iter = &(dev)->all_adj_list.upper, \ updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ updev; \ updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) void *netdev_lower_get_next_private(struct net_device *dev, struct list_head **iter); void *netdev_lower_get_next_private_rcu(struct net_device *dev, struct list_head **iter); #define netdev_for_each_lower_private(dev, priv, iter) \ for (iter = (dev)->adj_list.lower.next, \ priv = netdev_lower_get_next_private(dev, &(iter)); \ priv; \ priv = netdev_lower_get_next_private(dev, &(iter))) #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ for (iter = &(dev)->adj_list.lower, \ priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ priv; \ priv = netdev_lower_get_next_private_rcu(dev, &(iter))) void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter); #define netdev_for_each_lower_dev(dev, ldev, iter) \ for (iter = &(dev)->adj_list.lower, \ ldev = netdev_lower_get_next(dev, &(iter)); \ ldev; \ ldev = netdev_lower_get_next(dev, &(iter))) void *netdev_adjacent_get_private(struct list_head *adj_list); void *netdev_lower_get_first_private_rcu(struct net_device *dev); struct net_device *netdev_master_upper_dev_get(struct net_device *dev); struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); int netdev_master_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); int netdev_master_upper_dev_link_private(struct net_device *dev, struct net_device *upper_dev, void *private); void netdev_upper_dev_unlink(struct net_device *dev, struct net_device *upper_dev); void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); void *netdev_lower_dev_get_private(struct net_device *dev, struct net_device *lower_dev); /* RSS keys are 40 or 52 bytes long */ #define NETDEV_RSS_KEY_LEN 52 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; void netdev_rss_key_fill(void *buffer, size_t len); int dev_get_nest_level(struct net_device *dev, bool (*type_check)(struct net_device *dev)); int skb_checksum_help(struct sk_buff *skb); struct sk_buff *__skb_gso_segment(struct sk_buff *skb, netdev_features_t features, bool tx_path); struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, netdev_features_t features); static inline struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) { return __skb_gso_segment(skb, features, true); } __be16 skb_network_protocol(struct sk_buff *skb, int *depth); static inline bool can_checksum_protocol(netdev_features_t features, __be16 protocol) { return ((features & NETIF_F_GEN_CSUM) || ((features & NETIF_F_V4_CSUM) && protocol == htons(ETH_P_IP)) || ((features & NETIF_F_V6_CSUM) && protocol == htons(ETH_P_IPV6)) || ((features & NETIF_F_FCOE_CRC) && protocol == htons(ETH_P_FCOE))); } #ifdef CONFIG_BUG void netdev_rx_csum_fault(struct net_device *dev); #else static inline void netdev_rx_csum_fault(struct net_device *dev) { } #endif /* rx skb timestamps */ void net_enable_timestamp(void); void net_disable_timestamp(void); #ifdef CONFIG_PROC_FS int __init dev_proc_init(void); #else #define dev_proc_init() 0 #endif static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, struct sk_buff *skb, struct net_device *dev, bool more) { skb->xmit_more = more ? 1 : 0; return ops->ndo_start_xmit(skb, dev); } static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, struct netdev_queue *txq, bool more) { const struct net_device_ops *ops = dev->netdev_ops; int rc; rc = __netdev_start_xmit(ops, skb, dev, more); if (rc == NETDEV_TX_OK) txq_trans_update(txq); return rc; } int netdev_class_create_file_ns(struct class_attribute *class_attr, const void *ns); void netdev_class_remove_file_ns(struct class_attribute *class_attr, const void *ns); static inline int netdev_class_create_file(struct class_attribute *class_attr) { return netdev_class_create_file_ns(class_attr, NULL); } static inline void netdev_class_remove_file(struct class_attribute *class_attr) { netdev_class_remove_file_ns(class_attr, NULL); } extern struct kobj_ns_type_operations net_ns_type_operations; const char *netdev_drivername(const struct net_device *dev); void linkwatch_run_queue(void); static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, netdev_features_t f2) { if (f1 & NETIF_F_GEN_CSUM) f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); if (f2 & NETIF_F_GEN_CSUM) f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); f1 &= f2; if (f1 & NETIF_F_GEN_CSUM) f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); return f1; } static inline netdev_features_t netdev_get_wanted_features( struct net_device *dev) { return (dev->features & ~dev->hw_features) | dev->wanted_features; } netdev_features_t netdev_increment_features(netdev_features_t all, netdev_features_t one, netdev_features_t mask); /* Allow TSO being used on stacked device : * Performing the GSO segmentation before last device * is a performance improvement. */ static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, netdev_features_t mask) { return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); } int __netdev_update_features(struct net_device *dev); void netdev_update_features(struct net_device *dev); void netdev_change_features(struct net_device *dev); void netif_stacked_transfer_operstate(const struct net_device *rootdev, struct net_device *dev); netdev_features_t netif_skb_features(struct sk_buff *skb); static inline bool net_gso_ok(netdev_features_t features, int gso_type) { netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; /* check flags correspondence */ BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); return (features & feature) == feature; } static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) { return net_gso_ok(features, skb_shinfo(skb)->gso_type) && (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); } static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb, netdev_features_t features) { return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && (skb->ip_summed != CHECKSUM_UNNECESSARY))); } static inline void netif_set_gso_max_size(struct net_device *dev, unsigned int size) { dev->gso_max_size = size; } static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, int pulled_hlen, u16 mac_offset, int mac_len) { skb->protocol = protocol; skb->encapsulation = 1; skb_push(skb, pulled_hlen); skb_reset_transport_header(skb); skb->mac_header = mac_offset; skb->network_header = skb->mac_header + mac_len; skb->mac_len = mac_len; } static inline bool netif_is_macvlan(struct net_device *dev) { return dev->priv_flags & IFF_MACVLAN; } static inline bool netif_is_macvlan_port(struct net_device *dev) { return dev->priv_flags & IFF_MACVLAN_PORT; } static inline bool netif_is_ipvlan(struct net_device *dev) { return dev->priv_flags & IFF_IPVLAN_SLAVE; } static inline bool netif_is_ipvlan_port(struct net_device *dev) { return dev->priv_flags & IFF_IPVLAN_MASTER; } static inline bool netif_is_bond_master(struct net_device *dev) { return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; } static inline bool netif_is_bond_slave(struct net_device *dev) { return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; } static inline bool netif_supports_nofcs(struct net_device *dev) { return dev->priv_flags & IFF_SUPP_NOFCS; } /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ static inline void netif_keep_dst(struct net_device *dev) { dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); } extern struct pernet_operations __net_initdata loopback_net_ops; /* Logging, debugging and troubleshooting/diagnostic helpers. */ /* netdev_printk helpers, similar to dev_printk */ static inline const char *netdev_name(const struct net_device *dev) { if (!dev->name[0] || strchr(dev->name, '%')) return "(unnamed net_device)"; return dev->name; } static inline const char *netdev_reg_state(const struct net_device *dev) { switch (dev->reg_state) { case NETREG_UNINITIALIZED: return " (uninitialized)"; case NETREG_REGISTERED: return ""; case NETREG_UNREGISTERING: return " (unregistering)"; case NETREG_UNREGISTERED: return " (unregistered)"; case NETREG_RELEASED: return " (released)"; case NETREG_DUMMY: return " (dummy)"; } WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); return " (unknown)"; } __printf(3, 4) void netdev_printk(const char *level, const struct net_device *dev, const char *format, ...); __printf(2, 3) void netdev_emerg(const struct net_device *dev, const char *format, ...); __printf(2, 3) void netdev_alert(const struct net_device *dev, const char *format, ...); __printf(2, 3) void netdev_crit(const struct net_device *dev, const char *format, ...); __printf(2, 3) void netdev_err(const struct net_device *dev, const char *format, ...); __printf(2, 3) void netdev_warn(const struct net_device *dev, const char *format, ...); __printf(2, 3) void netdev_notice(const struct net_device *dev, const char *format, ...); __printf(2, 3) void netdev_info(const struct net_device *dev, const char *format, ...); #define MODULE_ALIAS_NETDEV(device) \ MODULE_ALIAS("netdev-" device) #if defined(CONFIG_DYNAMIC_DEBUG) #define netdev_dbg(__dev, format, args...) \ do { \ dynamic_netdev_dbg(__dev, format, ##args); \ } while (0) #elif defined(DEBUG) #define netdev_dbg(__dev, format, args...) \ netdev_printk(KERN_DEBUG, __dev, format, ##args) #else #define netdev_dbg(__dev, format, args...) \ ({ \ if (0) \ netdev_printk(KERN_DEBUG, __dev, format, ##args); \ }) #endif #if defined(VERBOSE_DEBUG) #define netdev_vdbg netdev_dbg #else #define netdev_vdbg(dev, format, args...) \ ({ \ if (0) \ netdev_printk(KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif /* * netdev_WARN() acts like dev_printk(), but with the key difference * of using a WARN/WARN_ON to get the message out, including the * file/line information and a backtrace. */ #define netdev_WARN(dev, format, args...) \ WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ netdev_reg_state(dev), ##args) /* netif printk helpers, similar to netdev_printk */ #define netif_printk(priv, type, level, dev, fmt, args...) \ do { \ if (netif_msg_##type(priv)) \ netdev_printk(level, (dev), fmt, ##args); \ } while (0) #define netif_level(level, priv, type, dev, fmt, args...) \ do { \ if (netif_msg_##type(priv)) \ netdev_##level(dev, fmt, ##args); \ } while (0) #define netif_emerg(priv, type, dev, fmt, args...) \ netif_level(emerg, priv, type, dev, fmt, ##args) #define netif_alert(priv, type, dev, fmt, args...) \ netif_level(alert, priv, type, dev, fmt, ##args) #define netif_crit(priv, type, dev, fmt, args...) \ netif_level(crit, priv, type, dev, fmt, ##args) #define netif_err(priv, type, dev, fmt, args...) \ netif_level(err, priv, type, dev, fmt, ##args) #define netif_warn(priv, type, dev, fmt, args...) \ netif_level(warn, priv, type, dev, fmt, ##args) #define netif_notice(priv, type, dev, fmt, args...) \ netif_level(notice, priv, type, dev, fmt, ##args) #define netif_info(priv, type, dev, fmt, args...) \ netif_level(info, priv, type, dev, fmt, ##args) #if defined(CONFIG_DYNAMIC_DEBUG) #define netif_dbg(priv, type, netdev, format, args...) \ do { \ if (netif_msg_##type(priv)) \ dynamic_netdev_dbg(netdev, format, ##args); \ } while (0) #elif defined(DEBUG) #define netif_dbg(priv, type, dev, format, args...) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) #else #define netif_dbg(priv, type, dev, format, args...) \ ({ \ if (0) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif #if defined(VERBOSE_DEBUG) #define netif_vdbg netif_dbg #else #define netif_vdbg(priv, type, dev, format, args...) \ ({ \ if (0) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif /* * The list of packet types we will receive (as opposed to discard) * and the routines to invoke. * * Why 16. Because with 16 the only overlap we get on a hash of the * low nibble of the protocol value is RARP/SNAP/X.25. * * NOTE: That is no longer true with the addition of VLAN tags. Not * sure which should go first, but I bet it won't make much * difference if we are running VLANs. The good news is that * this protocol won't be in the list unless compiled in, so * the average user (w/out VLANs) will not be adversely affected. * --BLG * * 0800 IP * 8100 802.1Q VLAN * 0001 802.3 * 0002 AX.25 * 0004 802.2 * 8035 RARP * 0005 SNAP * 0805 X.25 * 0806 ARP * 8137 IPX * 0009 Localtalk * 86DD IPv6 */ #define PTYPE_HASH_SIZE (16) #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) #endif /* _LINUX_NETDEVICE_H */