// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014 Sergey Senozhatsky. */ #include <linux/kernel.h> #include <linux/string.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/cpu.h> #include <linux/crypto.h> #include "zcomp.h" static const char * const backends[] = { #if IS_ENABLED(CONFIG_CRYPTO_LZO) "lzo", "lzo-rle", #endif #if IS_ENABLED(CONFIG_CRYPTO_LZ4) "lz4", #endif #if IS_ENABLED(CONFIG_CRYPTO_LZ4HC) "lz4hc", #endif #if IS_ENABLED(CONFIG_CRYPTO_842) "842", #endif #if IS_ENABLED(CONFIG_CRYPTO_ZSTD) "zstd", #endif }; static void zcomp_strm_free(struct zcomp_strm *zstrm) { if (!IS_ERR_OR_NULL(zstrm->tfm)) crypto_free_comp(zstrm->tfm); free_pages((unsigned long)zstrm->buffer, 1); zstrm->tfm = NULL; zstrm->buffer = NULL; } /* * Initialize zcomp_strm structure with ->tfm initialized by backend, and * ->buffer. Return a negative value on error. */ static int zcomp_strm_init(struct zcomp_strm *zstrm, struct zcomp *comp) { zstrm->tfm = crypto_alloc_comp(comp->name, 0, 0); /* * allocate 2 pages. 1 for compressed data, plus 1 extra for the * case when compressed size is larger than the original one */ zstrm->buffer = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1); if (IS_ERR_OR_NULL(zstrm->tfm) || !zstrm->buffer) { zcomp_strm_free(zstrm); return -ENOMEM; } return 0; } bool zcomp_available_algorithm(const char *comp) { int i; i = sysfs_match_string(backends, comp); if (i >= 0) return true; /* * Crypto does not ignore a trailing new line symbol, * so make sure you don't supply a string containing * one. * This also means that we permit zcomp initialisation * with any compressing algorithm known to crypto api. */ return crypto_has_comp(comp, 0, 0) == 1; } /* show available compressors */ ssize_t zcomp_available_show(const char *comp, char *buf) { bool known_algorithm = false; ssize_t sz = 0; int i; for (i = 0; i < ARRAY_SIZE(backends); i++) { if (!strcmp(comp, backends[i])) { known_algorithm = true; sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "[%s] ", backends[i]); } else { sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "%s ", backends[i]); } } /* * Out-of-tree module known to crypto api or a missing * entry in `backends'. */ if (!known_algorithm && crypto_has_comp(comp, 0, 0) == 1) sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "[%s] ", comp); sz += scnprintf(buf + sz, PAGE_SIZE - sz, "\n"); return sz; } struct zcomp_strm *zcomp_stream_get(struct zcomp *comp) { local_lock(&comp->stream->lock); return this_cpu_ptr(comp->stream); } void zcomp_stream_put(struct zcomp *comp) { local_unlock(&comp->stream->lock); } int zcomp_compress(struct zcomp_strm *zstrm, const void *src, unsigned int *dst_len) { /* * Our dst memory (zstrm->buffer) is always `2 * PAGE_SIZE' sized * because sometimes we can endup having a bigger compressed data * due to various reasons: for example compression algorithms tend * to add some padding to the compressed buffer. Speaking of padding, * comp algorithm `842' pads the compressed length to multiple of 8 * and returns -ENOSP when the dst memory is not big enough, which * is not something that ZRAM wants to see. We can handle the * `compressed_size > PAGE_SIZE' case easily in ZRAM, but when we * receive -ERRNO from the compressing backend we can't help it * anymore. To make `842' happy we need to tell the exact size of * the dst buffer, zram_drv will take care of the fact that * compressed buffer is too big. */ *dst_len = PAGE_SIZE * 2; return crypto_comp_compress(zstrm->tfm, src, PAGE_SIZE, zstrm->buffer, dst_len); } int zcomp_decompress(struct zcomp_strm *zstrm, const void *src, unsigned int src_len, void *dst) { unsigned int dst_len = PAGE_SIZE; return crypto_comp_decompress(zstrm->tfm, src, src_len, dst, &dst_len); } int zcomp_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) { struct zcomp *comp = hlist_entry(node, struct zcomp, node); struct zcomp_strm *zstrm; int ret; zstrm = per_cpu_ptr(comp->stream, cpu); local_lock_init(&zstrm->lock); ret = zcomp_strm_init(zstrm, comp); if (ret) pr_err("Can't allocate a compression stream\n"); return ret; } int zcomp_cpu_dead(unsigned int cpu, struct hlist_node *node) { struct zcomp *comp = hlist_entry(node, struct zcomp, node); struct zcomp_strm *zstrm; zstrm = per_cpu_ptr(comp->stream, cpu); zcomp_strm_free(zstrm); return 0; } static int zcomp_init(struct zcomp *comp) { int ret; comp->stream = alloc_percpu(struct zcomp_strm); if (!comp->stream) return -ENOMEM; ret = cpuhp_state_add_instance(CPUHP_ZCOMP_PREPARE, &comp->node); if (ret < 0) goto cleanup; return 0; cleanup: free_percpu(comp->stream); return ret; } void zcomp_destroy(struct zcomp *comp) { cpuhp_state_remove_instance(CPUHP_ZCOMP_PREPARE, &comp->node); free_percpu(comp->stream); kfree(comp); } /* * search available compressors for requested algorithm. * allocate new zcomp and initialize it. return compressing * backend pointer or ERR_PTR if things went bad. ERR_PTR(-EINVAL) * if requested algorithm is not supported, ERR_PTR(-ENOMEM) in * case of allocation error, or any other error potentially * returned by zcomp_init(). */ struct zcomp *zcomp_create(const char *compress) { struct zcomp *comp; int error; if (!zcomp_available_algorithm(compress)) return ERR_PTR(-EINVAL); comp = kzalloc(sizeof(struct zcomp), GFP_KERNEL); if (!comp) return ERR_PTR(-ENOMEM); comp->name = compress; error = zcomp_init(comp); if (error) { kfree(comp); return ERR_PTR(error); } return comp; }