/* * bcache journalling code, for btree insertions * * Copyright 2012 Google, Inc. */ #include "bcache.h" #include "btree.h" #include "debug.h" #include "request.h" /* * Journal replay/recovery: * * This code is all driven from run_cache_set(); we first read the journal * entries, do some other stuff, then we mark all the keys in the journal * entries (same as garbage collection would), then we replay them - reinserting * them into the cache in precisely the same order as they appear in the * journal. * * We only journal keys that go in leaf nodes, which simplifies things quite a * bit. */ static void journal_read_endio(struct bio *bio, int error) { struct closure *cl = bio->bi_private; closure_put(cl); } static int journal_read_bucket(struct cache *ca, struct list_head *list, struct btree_op *op, unsigned bucket_index) { struct journal_device *ja = &ca->journal; struct bio *bio = &ja->bio; struct journal_replay *i; struct jset *j, *data = ca->set->journal.w[0].data; unsigned len, left, offset = 0; int ret = 0; sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); pr_debug("reading %llu", (uint64_t) bucket); while (offset < ca->sb.bucket_size) { reread: left = ca->sb.bucket_size - offset; len = min_t(unsigned, left, PAGE_SECTORS * 8); bio_reset(bio); bio->bi_sector = bucket + offset; bio->bi_bdev = ca->bdev; bio->bi_rw = READ; bio->bi_size = len << 9; bio->bi_end_io = journal_read_endio; bio->bi_private = &op->cl; bio_map(bio, data); closure_bio_submit(bio, &op->cl, ca); closure_sync(&op->cl); /* This function could be simpler now since we no longer write * journal entries that overlap bucket boundaries; this means * the start of a bucket will always have a valid journal entry * if it has any journal entries at all. */ j = data; while (len) { struct list_head *where; size_t blocks, bytes = set_bytes(j); if (j->magic != jset_magic(ca->set)) return ret; if (bytes > left << 9) return ret; if (bytes > len << 9) goto reread; if (j->csum != csum_set(j)) return ret; blocks = set_blocks(j, ca->set); while (!list_empty(list)) { i = list_first_entry(list, struct journal_replay, list); if (i->j.seq >= j->last_seq) break; list_del(&i->list); kfree(i); } list_for_each_entry_reverse(i, list, list) { if (j->seq == i->j.seq) goto next_set; if (j->seq < i->j.last_seq) goto next_set; if (j->seq > i->j.seq) { where = &i->list; goto add; } } where = list; add: i = kmalloc(offsetof(struct journal_replay, j) + bytes, GFP_KERNEL); if (!i) return -ENOMEM; memcpy(&i->j, j, bytes); list_add(&i->list, where); ret = 1; ja->seq[bucket_index] = j->seq; next_set: offset += blocks * ca->sb.block_size; len -= blocks * ca->sb.block_size; j = ((void *) j) + blocks * block_bytes(ca); } } return ret; } int bch_journal_read(struct cache_set *c, struct list_head *list, struct btree_op *op) { #define read_bucket(b) \ ({ \ int ret = journal_read_bucket(ca, list, op, b); \ __set_bit(b, bitmap); \ if (ret < 0) \ return ret; \ ret; \ }) struct cache *ca; unsigned iter; for_each_cache(ca, c, iter) { struct journal_device *ja = &ca->journal; unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG]; unsigned i, l, r, m; uint64_t seq; bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); pr_debug("%u journal buckets", ca->sb.njournal_buckets); /* Read journal buckets ordered by golden ratio hash to quickly * find a sequence of buckets with valid journal entries */ for (i = 0; i < ca->sb.njournal_buckets; i++) { l = (i * 2654435769U) % ca->sb.njournal_buckets; if (test_bit(l, bitmap)) break; if (read_bucket(l)) goto bsearch; } /* If that fails, check all the buckets we haven't checked * already */ pr_debug("falling back to linear search"); for (l = 0; l < ca->sb.njournal_buckets; l++) { if (test_bit(l, bitmap)) continue; if (read_bucket(l)) goto bsearch; } bsearch: /* Binary search */ m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); pr_debug("starting binary search, l %u r %u", l, r); while (l + 1 < r) { m = (l + r) >> 1; if (read_bucket(m)) l = m; else r = m; } /* Read buckets in reverse order until we stop finding more * journal entries */ pr_debug("finishing up"); l = m; while (1) { if (!l--) l = ca->sb.njournal_buckets - 1; if (l == m) break; if (test_bit(l, bitmap)) continue; if (!read_bucket(l)) break; } seq = 0; for (i = 0; i < ca->sb.njournal_buckets; i++) if (ja->seq[i] > seq) { seq = ja->seq[i]; ja->cur_idx = ja->discard_idx = ja->last_idx = i; } } c->journal.seq = list_entry(list->prev, struct journal_replay, list)->j.seq; return 0; #undef read_bucket } void bch_journal_mark(struct cache_set *c, struct list_head *list) { atomic_t p = { 0 }; struct bkey *k; struct journal_replay *i; struct journal *j = &c->journal; uint64_t last = j->seq; /* * journal.pin should never fill up - we never write a journal * entry when it would fill up. But if for some reason it does, we * iterate over the list in reverse order so that we can just skip that * refcount instead of bugging. */ list_for_each_entry_reverse(i, list, list) { BUG_ON(last < i->j.seq); i->pin = NULL; while (last-- != i->j.seq) if (fifo_free(&j->pin) > 1) { fifo_push_front(&j->pin, p); atomic_set(&fifo_front(&j->pin), 0); } if (fifo_free(&j->pin) > 1) { fifo_push_front(&j->pin, p); i->pin = &fifo_front(&j->pin); atomic_set(i->pin, 1); } for (k = i->j.start; k < end(&i->j); k = bkey_next(k)) { unsigned j; for (j = 0; j < KEY_PTRS(k); j++) { struct bucket *g = PTR_BUCKET(c, k, j); atomic_inc(&g->pin); if (g->prio == BTREE_PRIO && !ptr_stale(c, k, j)) g->prio = INITIAL_PRIO; } __bch_btree_mark_key(c, 0, k); } } } int bch_journal_replay(struct cache_set *s, struct list_head *list, struct btree_op *op) { int ret = 0, keys = 0, entries = 0; struct bkey *k; struct journal_replay *i = list_entry(list->prev, struct journal_replay, list); uint64_t start = i->j.last_seq, end = i->j.seq, n = start; list_for_each_entry(i, list, list) { BUG_ON(i->pin && atomic_read(i->pin) != 1); if (n != i->j.seq) pr_err("journal entries %llu-%llu " "missing! (replaying %llu-%llu)\n", n, i->j.seq - 1, start, end); for (k = i->j.start; k < end(&i->j); k = bkey_next(k)) { pr_debug("%s", pkey(k)); bkey_copy(op->keys.top, k); bch_keylist_push(&op->keys); op->journal = i->pin; atomic_inc(op->journal); ret = bch_btree_insert(op, s); if (ret) goto err; BUG_ON(!bch_keylist_empty(&op->keys)); keys++; cond_resched(); } if (i->pin) atomic_dec(i->pin); n = i->j.seq + 1; entries++; } pr_info("journal replay done, %i keys in %i entries, seq %llu", keys, entries, end); while (!list_empty(list)) { i = list_first_entry(list, struct journal_replay, list); list_del(&i->list); kfree(i); } err: closure_sync(&op->cl); return ret; } /* Journalling */ static void btree_flush_write(struct cache_set *c) { /* * Try to find the btree node with that references the oldest journal * entry, best is our current candidate and is locked if non NULL: */ struct btree *b, *best = NULL; unsigned iter; for_each_cached_btree(b, c, iter) { if (!down_write_trylock(&b->lock)) continue; if (!btree_node_dirty(b) || !btree_current_write(b)->journal) { rw_unlock(true, b); continue; } if (!best) best = b; else if (journal_pin_cmp(c, btree_current_write(best), btree_current_write(b))) { rw_unlock(true, best); best = b; } else rw_unlock(true, b); } if (best) goto out; /* We can't find the best btree node, just pick the first */ list_for_each_entry(b, &c->btree_cache, list) if (!b->level && btree_node_dirty(b)) { best = b; rw_lock(true, best, best->level); goto found; } out: if (!best) return; found: if (btree_node_dirty(best)) bch_btree_write(best, true, NULL); rw_unlock(true, best); } #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) static void journal_discard_endio(struct bio *bio, int error) { struct journal_device *ja = container_of(bio, struct journal_device, discard_bio); struct cache *ca = container_of(ja, struct cache, journal); atomic_set(&ja->discard_in_flight, DISCARD_DONE); closure_wake_up(&ca->set->journal.wait); closure_put(&ca->set->cl); } static void journal_discard_work(struct work_struct *work) { struct journal_device *ja = container_of(work, struct journal_device, discard_work); submit_bio(0, &ja->discard_bio); } static void do_journal_discard(struct cache *ca) { struct journal_device *ja = &ca->journal; struct bio *bio = &ja->discard_bio; if (!ca->discard) { ja->discard_idx = ja->last_idx; return; } switch (atomic_read(&ja->discard_in_flight) == DISCARD_IN_FLIGHT) { case DISCARD_IN_FLIGHT: return; case DISCARD_DONE: ja->discard_idx = (ja->discard_idx + 1) % ca->sb.njournal_buckets; atomic_set(&ja->discard_in_flight, DISCARD_READY); /* fallthrough */ case DISCARD_READY: if (ja->discard_idx == ja->last_idx) return; atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); bio_init(bio); bio->bi_sector = bucket_to_sector(ca->set, ca->sb.d[ja->discard_idx]); bio->bi_bdev = ca->bdev; bio->bi_rw = REQ_WRITE|REQ_DISCARD; bio->bi_max_vecs = 1; bio->bi_io_vec = bio->bi_inline_vecs; bio->bi_size = bucket_bytes(ca); bio->bi_end_io = journal_discard_endio; closure_get(&ca->set->cl); INIT_WORK(&ja->discard_work, journal_discard_work); schedule_work(&ja->discard_work); } } static void journal_reclaim(struct cache_set *c) { struct bkey *k = &c->journal.key; struct cache *ca; uint64_t last_seq; unsigned iter, n = 0; atomic_t p; while (!atomic_read(&fifo_front(&c->journal.pin))) fifo_pop(&c->journal.pin, p); last_seq = last_seq(&c->journal); /* Update last_idx */ for_each_cache(ca, c, iter) { struct journal_device *ja = &ca->journal; while (ja->last_idx != ja->cur_idx && ja->seq[ja->last_idx] < last_seq) ja->last_idx = (ja->last_idx + 1) % ca->sb.njournal_buckets; } for_each_cache(ca, c, iter) do_journal_discard(ca); if (c->journal.blocks_free) return; /* * Allocate: * XXX: Sort by free journal space */ for_each_cache(ca, c, iter) { struct journal_device *ja = &ca->journal; unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; /* No space available on this device */ if (next == ja->discard_idx) continue; ja->cur_idx = next; k->ptr[n++] = PTR(0, bucket_to_sector(c, ca->sb.d[ja->cur_idx]), ca->sb.nr_this_dev); } bkey_init(k); SET_KEY_PTRS(k, n); if (n) c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; if (!journal_full(&c->journal)) __closure_wake_up(&c->journal.wait); } void bch_journal_next(struct journal *j) { atomic_t p = { 1 }; j->cur = (j->cur == j->w) ? &j->w[1] : &j->w[0]; /* * The fifo_push() needs to happen at the same time as j->seq is * incremented for last_seq() to be calculated correctly */ BUG_ON(!fifo_push(&j->pin, p)); atomic_set(&fifo_back(&j->pin), 1); j->cur->data->seq = ++j->seq; j->cur->need_write = false; j->cur->data->keys = 0; if (fifo_full(&j->pin)) pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); } static void journal_write_endio(struct bio *bio, int error) { struct journal_write *w = bio->bi_private; cache_set_err_on(error, w->c, "journal io error"); closure_put(&w->c->journal.io.cl); } static void journal_write(struct closure *); static void journal_write_done(struct closure *cl) { struct journal *j = container_of(cl, struct journal, io.cl); struct cache_set *c = container_of(j, struct cache_set, journal); struct journal_write *w = (j->cur == j->w) ? &j->w[1] : &j->w[0]; __closure_wake_up(&w->wait); if (c->journal_delay_ms) closure_delay(&j->io, msecs_to_jiffies(c->journal_delay_ms)); continue_at(cl, journal_write, system_wq); } static void journal_write_unlocked(struct closure *cl) { struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); struct cache *ca; struct journal_write *w = c->journal.cur; struct bkey *k = &c->journal.key; unsigned i, sectors = set_blocks(w->data, c) * c->sb.block_size; struct bio *bio; struct bio_list list; bio_list_init(&list); if (!w->need_write) { /* * XXX: have to unlock closure before we unlock journal lock, * else we race with bch_journal(). But this way we race * against cache set unregister. Doh. */ set_closure_fn(cl, NULL, NULL); closure_sub(cl, CLOSURE_RUNNING + 1); spin_unlock(&c->journal.lock); return; } else if (journal_full(&c->journal)) { journal_reclaim(c); spin_unlock(&c->journal.lock); btree_flush_write(c); continue_at(cl, journal_write, system_wq); } c->journal.blocks_free -= set_blocks(w->data, c); w->data->btree_level = c->root->level; bkey_copy(&w->data->btree_root, &c->root->key); bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); for_each_cache(ca, c, i) w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; w->data->magic = jset_magic(c); w->data->version = BCACHE_JSET_VERSION; w->data->last_seq = last_seq(&c->journal); w->data->csum = csum_set(w->data); for (i = 0; i < KEY_PTRS(k); i++) { ca = PTR_CACHE(c, k, i); bio = &ca->journal.bio; atomic_long_add(sectors, &ca->meta_sectors_written); bio_reset(bio); bio->bi_sector = PTR_OFFSET(k, i); bio->bi_bdev = ca->bdev; bio->bi_rw = REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH; bio->bi_size = sectors << 9; bio->bi_end_io = journal_write_endio; bio->bi_private = w; bio_map(bio, w->data); trace_bcache_journal_write(bio); bio_list_add(&list, bio); SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); ca->journal.seq[ca->journal.cur_idx] = w->data->seq; } atomic_dec_bug(&fifo_back(&c->journal.pin)); bch_journal_next(&c->journal); journal_reclaim(c); spin_unlock(&c->journal.lock); while ((bio = bio_list_pop(&list))) closure_bio_submit(bio, cl, c->cache[0]); continue_at(cl, journal_write_done, NULL); } static void journal_write(struct closure *cl) { struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); spin_lock(&c->journal.lock); journal_write_unlocked(cl); } static void __journal_try_write(struct cache_set *c, bool noflush) { struct closure *cl = &c->journal.io.cl; if (!closure_trylock(cl, &c->cl)) spin_unlock(&c->journal.lock); else if (noflush && journal_full(&c->journal)) { spin_unlock(&c->journal.lock); continue_at(cl, journal_write, system_wq); } else journal_write_unlocked(cl); } #define journal_try_write(c) __journal_try_write(c, false) void bch_journal_meta(struct cache_set *c, struct closure *cl) { struct journal_write *w; if (CACHE_SYNC(&c->sb)) { spin_lock(&c->journal.lock); w = c->journal.cur; w->need_write = true; if (cl) BUG_ON(!closure_wait(&w->wait, cl)); __journal_try_write(c, true); } } /* * Entry point to the journalling code - bio_insert() and btree_invalidate() * pass bch_journal() a list of keys to be journalled, and then * bch_journal() hands those same keys off to btree_insert_async() */ void bch_journal(struct closure *cl) { struct btree_op *op = container_of(cl, struct btree_op, cl); struct cache_set *c = op->c; struct journal_write *w; size_t b, n = ((uint64_t *) op->keys.top) - op->keys.list; if (op->type != BTREE_INSERT || !CACHE_SYNC(&c->sb)) goto out; /* * If we're looping because we errored, might already be waiting on * another journal write: */ while (atomic_read(&cl->parent->remaining) & CLOSURE_WAITING) closure_sync(cl->parent); spin_lock(&c->journal.lock); if (journal_full(&c->journal)) { /* XXX: tracepoint */ closure_wait(&c->journal.wait, cl); journal_reclaim(c); spin_unlock(&c->journal.lock); btree_flush_write(c); continue_at(cl, bch_journal, bcache_wq); } w = c->journal.cur; w->need_write = true; b = __set_blocks(w->data, w->data->keys + n, c); if (b * c->sb.block_size > PAGE_SECTORS << JSET_BITS || b > c->journal.blocks_free) { /* XXX: If we were inserting so many keys that they won't fit in * an _empty_ journal write, we'll deadlock. For now, handle * this in bch_keylist_realloc() - but something to think about. */ BUG_ON(!w->data->keys); /* XXX: tracepoint */ BUG_ON(!closure_wait(&w->wait, cl)); closure_flush(&c->journal.io); journal_try_write(c); continue_at(cl, bch_journal, bcache_wq); } memcpy(end(w->data), op->keys.list, n * sizeof(uint64_t)); w->data->keys += n; op->journal = &fifo_back(&c->journal.pin); atomic_inc(op->journal); if (op->flush_journal) { closure_flush(&c->journal.io); closure_wait(&w->wait, cl->parent); } journal_try_write(c); out: bch_btree_insert_async(cl); } void bch_journal_free(struct cache_set *c) { free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); free_fifo(&c->journal.pin); } int bch_journal_alloc(struct cache_set *c) { struct journal *j = &c->journal; closure_init_unlocked(&j->io); spin_lock_init(&j->lock); c->journal_delay_ms = 100; j->w[0].c = c; j->w[1].c = c; if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) return -ENOMEM; return 0; }