/* * linux/drivers/mmc/core/mmc.c * * Copyright (C) 2003-2004 Russell King, All Rights Reserved. * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "core.h" #include "card.h" #include "host.h" #include "bus.h" #include "mmc_ops.h" #include "quirks.h" #include "sd_ops.h" #include "pwrseq.h" #define DEFAULT_CMD6_TIMEOUT_MS 500 static const unsigned int tran_exp[] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; static const unsigned char tran_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const unsigned int taac_exp[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, }; static const unsigned int taac_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; #define UNSTUFF_BITS(resp,start,size) \ ({ \ const int __size = size; \ const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ const int __off = 3 - ((start) / 32); \ const int __shft = (start) & 31; \ u32 __res; \ \ __res = resp[__off] >> __shft; \ if (__size + __shft > 32) \ __res |= resp[__off-1] << ((32 - __shft) % 32); \ __res & __mask; \ }) /* * Given the decoded CSD structure, decode the raw CID to our CID structure. */ static int mmc_decode_cid(struct mmc_card *card) { u32 *resp = card->raw_cid; /* * The selection of the format here is based upon published * specs from sandisk and from what people have reported. */ switch (card->csd.mmca_vsn) { case 0: /* MMC v1.0 - v1.2 */ case 1: /* MMC v1.4 */ card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); card->cid.serial = UNSTUFF_BITS(resp, 16, 24); card->cid.month = UNSTUFF_BITS(resp, 12, 4); card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; break; case 2: /* MMC v2.0 - v2.2 */ case 3: /* MMC v3.1 - v3.3 */ case 4: /* MMC v4 */ card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); card->cid.prv = UNSTUFF_BITS(resp, 48, 8); card->cid.serial = UNSTUFF_BITS(resp, 16, 32); card->cid.month = UNSTUFF_BITS(resp, 12, 4); card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; break; default: pr_err("%s: card has unknown MMCA version %d\n", mmc_hostname(card->host), card->csd.mmca_vsn); return -EINVAL; } return 0; } static void mmc_set_erase_size(struct mmc_card *card) { if (card->ext_csd.erase_group_def & 1) card->erase_size = card->ext_csd.hc_erase_size; else card->erase_size = card->csd.erase_size; mmc_init_erase(card); } /* * Given a 128-bit response, decode to our card CSD structure. */ static int mmc_decode_csd(struct mmc_card *card) { struct mmc_csd *csd = &card->csd; unsigned int e, m, a, b; u32 *resp = card->raw_csd; /* * We only understand CSD structure v1.1 and v1.2. * v1.2 has extra information in bits 15, 11 and 10. * We also support eMMC v4.4 & v4.41. */ csd->structure = UNSTUFF_BITS(resp, 126, 2); if (csd->structure == 0) { pr_err("%s: unrecognised CSD structure version %d\n", mmc_hostname(card->host), csd->structure); return -EINVAL; } csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); m = UNSTUFF_BITS(resp, 115, 4); e = UNSTUFF_BITS(resp, 112, 3); csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; m = UNSTUFF_BITS(resp, 99, 4); e = UNSTUFF_BITS(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); e = UNSTUFF_BITS(resp, 47, 3); m = UNSTUFF_BITS(resp, 62, 12); csd->capacity = (1 + m) << (e + 2); csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); csd->read_partial = UNSTUFF_BITS(resp, 79, 1); csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); csd->write_partial = UNSTUFF_BITS(resp, 21, 1); if (csd->write_blkbits >= 9) { a = UNSTUFF_BITS(resp, 42, 5); b = UNSTUFF_BITS(resp, 37, 5); csd->erase_size = (a + 1) * (b + 1); csd->erase_size <<= csd->write_blkbits - 9; } return 0; } static void mmc_select_card_type(struct mmc_card *card) { struct mmc_host *host = card->host; u8 card_type = card->ext_csd.raw_card_type; u32 caps = host->caps, caps2 = host->caps2; unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; unsigned int avail_type = 0; if (caps & MMC_CAP_MMC_HIGHSPEED && card_type & EXT_CSD_CARD_TYPE_HS_26) { hs_max_dtr = MMC_HIGH_26_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS_26; } if (caps & MMC_CAP_MMC_HIGHSPEED && card_type & EXT_CSD_CARD_TYPE_HS_52) { hs_max_dtr = MMC_HIGH_52_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS_52; } if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; } if (caps & MMC_CAP_1_2V_DDR && card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; } if (caps2 & MMC_CAP2_HS200_1_8V_SDR && card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { hs200_max_dtr = MMC_HS200_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; } if (caps2 & MMC_CAP2_HS200_1_2V_SDR && card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { hs200_max_dtr = MMC_HS200_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; } if (caps2 & MMC_CAP2_HS400_1_8V && card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { hs200_max_dtr = MMC_HS200_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; } if (caps2 & MMC_CAP2_HS400_1_2V && card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { hs200_max_dtr = MMC_HS200_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; } if ((caps2 & MMC_CAP2_HS400_ES) && card->ext_csd.strobe_support && (avail_type & EXT_CSD_CARD_TYPE_HS400)) avail_type |= EXT_CSD_CARD_TYPE_HS400ES; card->ext_csd.hs_max_dtr = hs_max_dtr; card->ext_csd.hs200_max_dtr = hs200_max_dtr; card->mmc_avail_type = avail_type; } static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) { u8 hc_erase_grp_sz, hc_wp_grp_sz; /* * Disable these attributes by default */ card->ext_csd.enhanced_area_offset = -EINVAL; card->ext_csd.enhanced_area_size = -EINVAL; /* * Enhanced area feature support -- check whether the eMMC * card has the Enhanced area enabled. If so, export enhanced * area offset and size to user by adding sysfs interface. */ if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { if (card->ext_csd.partition_setting_completed) { hc_erase_grp_sz = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; hc_wp_grp_sz = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; /* * calculate the enhanced data area offset, in bytes */ card->ext_csd.enhanced_area_offset = (((unsigned long long)ext_csd[139]) << 24) + (((unsigned long long)ext_csd[138]) << 16) + (((unsigned long long)ext_csd[137]) << 8) + (((unsigned long long)ext_csd[136])); if (mmc_card_blockaddr(card)) card->ext_csd.enhanced_area_offset <<= 9; /* * calculate the enhanced data area size, in kilobytes */ card->ext_csd.enhanced_area_size = (ext_csd[142] << 16) + (ext_csd[141] << 8) + ext_csd[140]; card->ext_csd.enhanced_area_size *= (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); card->ext_csd.enhanced_area_size <<= 9; } else { pr_warn("%s: defines enhanced area without partition setting complete\n", mmc_hostname(card->host)); } } } static void mmc_part_add(struct mmc_card *card, unsigned int size, unsigned int part_cfg, char *name, int idx, bool ro, int area_type) { card->part[card->nr_parts].size = size; card->part[card->nr_parts].part_cfg = part_cfg; sprintf(card->part[card->nr_parts].name, name, idx); card->part[card->nr_parts].force_ro = ro; card->part[card->nr_parts].area_type = area_type; card->nr_parts++; } static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) { int idx; u8 hc_erase_grp_sz, hc_wp_grp_sz; unsigned int part_size; /* * General purpose partition feature support -- * If ext_csd has the size of general purpose partitions, * set size, part_cfg, partition name in mmc_part. */ if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & EXT_CSD_PART_SUPPORT_PART_EN) { hc_erase_grp_sz = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; hc_wp_grp_sz = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) continue; if (card->ext_csd.partition_setting_completed == 0) { pr_warn("%s: has partition size defined without partition complete\n", mmc_hostname(card->host)); break; } part_size = (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] << 16) + (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] << 8) + ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; part_size *= (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); mmc_part_add(card, part_size << 19, EXT_CSD_PART_CONFIG_ACC_GP0 + idx, "gp%d", idx, false, MMC_BLK_DATA_AREA_GP); } } } /* Minimum partition switch timeout in milliseconds */ #define MMC_MIN_PART_SWITCH_TIME 300 /* * Decode extended CSD. */ static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) { int err = 0, idx; unsigned int part_size; struct device_node *np; bool broken_hpi = false; /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; if (card->csd.structure == 3) { if (card->ext_csd.raw_ext_csd_structure > 2) { pr_err("%s: unrecognised EXT_CSD structure " "version %d\n", mmc_hostname(card->host), card->ext_csd.raw_ext_csd_structure); err = -EINVAL; goto out; } } np = mmc_of_find_child_device(card->host, 0); if (np && of_device_is_compatible(np, "mmc-card")) broken_hpi = of_property_read_bool(np, "broken-hpi"); of_node_put(np); /* * The EXT_CSD format is meant to be forward compatible. As long * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV * are authorized, see JEDEC JESD84-B50 section B.8. */ card->ext_csd.rev = ext_csd[EXT_CSD_REV]; /* fixup device after ext_csd revision field is updated */ mmc_fixup_device(card, mmc_ext_csd_fixups); card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; if (card->ext_csd.rev >= 2) { card->ext_csd.sectors = ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; /* Cards with density > 2GiB are sector addressed */ if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) mmc_card_set_blockaddr(card); } card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; mmc_select_card_type(card); card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; card->ext_csd.raw_erase_timeout_mult = ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; card->ext_csd.raw_hc_erase_grp_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; if (card->ext_csd.rev >= 3) { u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; /* EXT_CSD value is in units of 10ms, but we store in ms */ card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; /* Some eMMC set the value too low so set a minimum */ if (card->ext_csd.part_time && card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; /* Sleep / awake timeout in 100ns units */ if (sa_shift > 0 && sa_shift <= 0x17) card->ext_csd.sa_timeout = 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; card->ext_csd.erase_group_def = ext_csd[EXT_CSD_ERASE_GROUP_DEF]; card->ext_csd.hc_erase_timeout = 300 * ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; card->ext_csd.hc_erase_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; /* * There are two boot regions of equal size, defined in * multiples of 128K. */ if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; mmc_part_add(card, part_size, EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, "boot%d", idx, true, MMC_BLK_DATA_AREA_BOOT); } } } card->ext_csd.raw_hc_erase_gap_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; card->ext_csd.raw_sec_trim_mult = ext_csd[EXT_CSD_SEC_TRIM_MULT]; card->ext_csd.raw_sec_erase_mult = ext_csd[EXT_CSD_SEC_ERASE_MULT]; card->ext_csd.raw_sec_feature_support = ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; card->ext_csd.raw_trim_mult = ext_csd[EXT_CSD_TRIM_MULT]; card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; if (card->ext_csd.rev >= 4) { if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & EXT_CSD_PART_SETTING_COMPLETED) card->ext_csd.partition_setting_completed = 1; else card->ext_csd.partition_setting_completed = 0; mmc_manage_enhanced_area(card, ext_csd); mmc_manage_gp_partitions(card, ext_csd); card->ext_csd.sec_trim_mult = ext_csd[EXT_CSD_SEC_TRIM_MULT]; card->ext_csd.sec_erase_mult = ext_csd[EXT_CSD_SEC_ERASE_MULT]; card->ext_csd.sec_feature_support = ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; card->ext_csd.trim_timeout = 300 * ext_csd[EXT_CSD_TRIM_MULT]; /* * Note that the call to mmc_part_add above defaults to read * only. If this default assumption is changed, the call must * take into account the value of boot_locked below. */ card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; card->ext_csd.boot_ro_lockable = true; /* Save power class values */ card->ext_csd.raw_pwr_cl_52_195 = ext_csd[EXT_CSD_PWR_CL_52_195]; card->ext_csd.raw_pwr_cl_26_195 = ext_csd[EXT_CSD_PWR_CL_26_195]; card->ext_csd.raw_pwr_cl_52_360 = ext_csd[EXT_CSD_PWR_CL_52_360]; card->ext_csd.raw_pwr_cl_26_360 = ext_csd[EXT_CSD_PWR_CL_26_360]; card->ext_csd.raw_pwr_cl_200_195 = ext_csd[EXT_CSD_PWR_CL_200_195]; card->ext_csd.raw_pwr_cl_200_360 = ext_csd[EXT_CSD_PWR_CL_200_360]; card->ext_csd.raw_pwr_cl_ddr_52_195 = ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; card->ext_csd.raw_pwr_cl_ddr_52_360 = ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; card->ext_csd.raw_pwr_cl_ddr_200_360 = ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; } if (card->ext_csd.rev >= 5) { /* Adjust production date as per JEDEC JESD84-B451 */ if (card->cid.year < 2010) card->cid.year += 16; /* check whether the eMMC card supports BKOPS */ if (!mmc_card_broken_hpi(card) && ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { card->ext_csd.bkops = 1; card->ext_csd.man_bkops_en = (ext_csd[EXT_CSD_BKOPS_EN] & EXT_CSD_MANUAL_BKOPS_MASK); card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; if (card->ext_csd.man_bkops_en) pr_debug("%s: MAN_BKOPS_EN bit is set\n", mmc_hostname(card->host)); card->ext_csd.auto_bkops_en = (ext_csd[EXT_CSD_BKOPS_EN] & EXT_CSD_AUTO_BKOPS_MASK); if (card->ext_csd.auto_bkops_en) pr_debug("%s: AUTO_BKOPS_EN bit is set\n", mmc_hostname(card->host)); } /* check whether the eMMC card supports HPI */ if (!mmc_card_broken_hpi(card) && !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { card->ext_csd.hpi = 1; if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; else card->ext_csd.hpi_cmd = MMC_SEND_STATUS; /* * Indicate the maximum timeout to close * a command interrupted by HPI */ card->ext_csd.out_of_int_time = ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; } card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; /* * RPMB regions are defined in multiples of 128K. */ card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, EXT_CSD_PART_CONFIG_ACC_RPMB, "rpmb", 0, false, MMC_BLK_DATA_AREA_RPMB); } } card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) card->erased_byte = 0xFF; else card->erased_byte = 0x0; /* eMMC v4.5 or later */ card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; if (card->ext_csd.rev >= 6) { card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; card->ext_csd.generic_cmd6_time = 10 * ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; card->ext_csd.power_off_longtime = 10 * ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; card->ext_csd.cache_size = ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) card->ext_csd.data_sector_size = 4096; else card->ext_csd.data_sector_size = 512; if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { card->ext_csd.data_tag_unit_size = ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * (card->ext_csd.data_sector_size); } else { card->ext_csd.data_tag_unit_size = 0; } card->ext_csd.max_packed_writes = ext_csd[EXT_CSD_MAX_PACKED_WRITES]; card->ext_csd.max_packed_reads = ext_csd[EXT_CSD_MAX_PACKED_READS]; } else { card->ext_csd.data_sector_size = 512; } /* eMMC v5 or later */ if (card->ext_csd.rev >= 7) { memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], MMC_FIRMWARE_LEN); card->ext_csd.ffu_capable = (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; card->ext_csd.device_life_time_est_typ_a = ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; card->ext_csd.device_life_time_est_typ_b = ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; } /* eMMC v5.1 or later */ if (card->ext_csd.rev >= 8) { card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & EXT_CSD_CMDQ_SUPPORTED; card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & EXT_CSD_CMDQ_DEPTH_MASK) + 1; /* Exclude inefficiently small queue depths */ if (card->ext_csd.cmdq_depth <= 2) { card->ext_csd.cmdq_support = false; card->ext_csd.cmdq_depth = 0; } if (card->ext_csd.cmdq_support) { pr_debug("%s: Command Queue supported depth %u\n", mmc_hostname(card->host), card->ext_csd.cmdq_depth); } } out: return err; } static int mmc_read_ext_csd(struct mmc_card *card) { u8 *ext_csd; int err; if (!mmc_can_ext_csd(card)) return 0; err = mmc_get_ext_csd(card, &ext_csd); if (err) { /* If the host or the card can't do the switch, * fail more gracefully. */ if ((err != -EINVAL) && (err != -ENOSYS) && (err != -EFAULT)) return err; /* * High capacity cards should have this "magic" size * stored in their CSD. */ if (card->csd.capacity == (4096 * 512)) { pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", mmc_hostname(card->host)); } else { pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", mmc_hostname(card->host)); err = 0; } return err; } err = mmc_decode_ext_csd(card, ext_csd); kfree(ext_csd); return err; } static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) { u8 *bw_ext_csd; int err; if (bus_width == MMC_BUS_WIDTH_1) return 0; err = mmc_get_ext_csd(card, &bw_ext_csd); if (err) return err; /* only compare read only fields */ err = !((card->ext_csd.raw_partition_support == bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && (card->ext_csd.raw_erased_mem_count == bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && (card->ext_csd.rev == bw_ext_csd[EXT_CSD_REV]) && (card->ext_csd.raw_ext_csd_structure == bw_ext_csd[EXT_CSD_STRUCTURE]) && (card->ext_csd.raw_card_type == bw_ext_csd[EXT_CSD_CARD_TYPE]) && (card->ext_csd.raw_s_a_timeout == bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && (card->ext_csd.raw_hc_erase_gap_size == bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && (card->ext_csd.raw_erase_timeout_mult == bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && (card->ext_csd.raw_hc_erase_grp_size == bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && (card->ext_csd.raw_sec_trim_mult == bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && (card->ext_csd.raw_sec_erase_mult == bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && (card->ext_csd.raw_sec_feature_support == bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && (card->ext_csd.raw_trim_mult == bw_ext_csd[EXT_CSD_TRIM_MULT]) && (card->ext_csd.raw_sectors[0] == bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && (card->ext_csd.raw_sectors[1] == bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && (card->ext_csd.raw_sectors[2] == bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && (card->ext_csd.raw_sectors[3] == bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && (card->ext_csd.raw_pwr_cl_52_195 == bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && (card->ext_csd.raw_pwr_cl_26_195 == bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && (card->ext_csd.raw_pwr_cl_52_360 == bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && (card->ext_csd.raw_pwr_cl_26_360 == bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && (card->ext_csd.raw_pwr_cl_200_195 == bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && (card->ext_csd.raw_pwr_cl_200_360 == bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && (card->ext_csd.raw_pwr_cl_ddr_52_195 == bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && (card->ext_csd.raw_pwr_cl_ddr_52_360 == bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && (card->ext_csd.raw_pwr_cl_ddr_200_360 == bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); if (err) err = -EINVAL; kfree(bw_ext_csd); return err; } MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], card->raw_cid[2], card->raw_cid[3]); MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], card->raw_csd[2], card->raw_csd[3]); MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); MMC_DEV_ATTR(pre_eol_info, "%02x\n", card->ext_csd.pre_eol_info); MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", card->ext_csd.device_life_time_est_typ_a, card->ext_csd.device_life_time_est_typ_b); MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", card->ext_csd.enhanced_area_offset); MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); MMC_DEV_ATTR(ocr, "%08x\n", card->ocr); MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); static ssize_t mmc_fwrev_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_card *card = mmc_dev_to_card(dev); if (card->ext_csd.rev < 7) { return sprintf(buf, "0x%x\n", card->cid.fwrev); } else { return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, card->ext_csd.fwrev); } } static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_card *card = mmc_dev_to_card(dev); struct mmc_host *host = card->host; if (card->csd.dsr_imp && host->dsr_req) return sprintf(buf, "0x%x\n", host->dsr); else /* return default DSR value */ return sprintf(buf, "0x%x\n", 0x404); } static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); static struct attribute *mmc_std_attrs[] = { &dev_attr_cid.attr, &dev_attr_csd.attr, &dev_attr_date.attr, &dev_attr_erase_size.attr, &dev_attr_preferred_erase_size.attr, &dev_attr_fwrev.attr, &dev_attr_ffu_capable.attr, &dev_attr_hwrev.attr, &dev_attr_manfid.attr, &dev_attr_name.attr, &dev_attr_oemid.attr, &dev_attr_prv.attr, &dev_attr_rev.attr, &dev_attr_pre_eol_info.attr, &dev_attr_life_time.attr, &dev_attr_serial.attr, &dev_attr_enhanced_area_offset.attr, &dev_attr_enhanced_area_size.attr, &dev_attr_raw_rpmb_size_mult.attr, &dev_attr_rel_sectors.attr, &dev_attr_ocr.attr, &dev_attr_dsr.attr, &dev_attr_cmdq_en.attr, NULL, }; ATTRIBUTE_GROUPS(mmc_std); static struct device_type mmc_type = { .groups = mmc_std_groups, }; /* * Select the PowerClass for the current bus width * If power class is defined for 4/8 bit bus in the * extended CSD register, select it by executing the * mmc_switch command. */ static int __mmc_select_powerclass(struct mmc_card *card, unsigned int bus_width) { struct mmc_host *host = card->host; struct mmc_ext_csd *ext_csd = &card->ext_csd; unsigned int pwrclass_val = 0; int err = 0; switch (1 << host->ios.vdd) { case MMC_VDD_165_195: if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) pwrclass_val = ext_csd->raw_pwr_cl_26_195; else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? ext_csd->raw_pwr_cl_52_195 : ext_csd->raw_pwr_cl_ddr_52_195; else if (host->ios.clock <= MMC_HS200_MAX_DTR) pwrclass_val = ext_csd->raw_pwr_cl_200_195; break; case MMC_VDD_27_28: case MMC_VDD_28_29: case MMC_VDD_29_30: case MMC_VDD_30_31: case MMC_VDD_31_32: case MMC_VDD_32_33: case MMC_VDD_33_34: case MMC_VDD_34_35: case MMC_VDD_35_36: if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) pwrclass_val = ext_csd->raw_pwr_cl_26_360; else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? ext_csd->raw_pwr_cl_52_360 : ext_csd->raw_pwr_cl_ddr_52_360; else if (host->ios.clock <= MMC_HS200_MAX_DTR) pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? ext_csd->raw_pwr_cl_ddr_200_360 : ext_csd->raw_pwr_cl_200_360; break; default: pr_warn("%s: Voltage range not supported for power class\n", mmc_hostname(host)); return -EINVAL; } if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> EXT_CSD_PWR_CL_8BIT_SHIFT; else pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> EXT_CSD_PWR_CL_4BIT_SHIFT; /* If the power class is different from the default value */ if (pwrclass_val > 0) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_POWER_CLASS, pwrclass_val, card->ext_csd.generic_cmd6_time); } return err; } static int mmc_select_powerclass(struct mmc_card *card) { struct mmc_host *host = card->host; u32 bus_width, ext_csd_bits; int err, ddr; /* Power class selection is supported for versions >= 4.0 */ if (!mmc_can_ext_csd(card)) return 0; bus_width = host->ios.bus_width; /* Power class values are defined only for 4/8 bit bus */ if (bus_width == MMC_BUS_WIDTH_1) return 0; ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; if (ddr) ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; else ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; err = __mmc_select_powerclass(card, ext_csd_bits); if (err) pr_warn("%s: power class selection to bus width %d ddr %d failed\n", mmc_hostname(host), 1 << bus_width, ddr); return err; } /* * Set the bus speed for the selected speed mode. */ static void mmc_set_bus_speed(struct mmc_card *card) { unsigned int max_dtr = (unsigned int)-1; if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && max_dtr > card->ext_csd.hs200_max_dtr) max_dtr = card->ext_csd.hs200_max_dtr; else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) max_dtr = card->ext_csd.hs_max_dtr; else if (max_dtr > card->csd.max_dtr) max_dtr = card->csd.max_dtr; mmc_set_clock(card->host, max_dtr); } /* * Select the bus width amoung 4-bit and 8-bit(SDR). * If the bus width is changed successfully, return the selected width value. * Zero is returned instead of error value if the wide width is not supported. */ static int mmc_select_bus_width(struct mmc_card *card) { static unsigned ext_csd_bits[] = { EXT_CSD_BUS_WIDTH_8, EXT_CSD_BUS_WIDTH_4, }; static unsigned bus_widths[] = { MMC_BUS_WIDTH_8, MMC_BUS_WIDTH_4, }; struct mmc_host *host = card->host; unsigned idx, bus_width = 0; int err = 0; if (!mmc_can_ext_csd(card) || !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) return 0; idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; /* * Unlike SD, MMC cards dont have a configuration register to notify * supported bus width. So bus test command should be run to identify * the supported bus width or compare the ext csd values of current * bus width and ext csd values of 1 bit mode read earlier. */ for (; idx < ARRAY_SIZE(bus_widths); idx++) { /* * Host is capable of 8bit transfer, then switch * the device to work in 8bit transfer mode. If the * mmc switch command returns error then switch to * 4bit transfer mode. On success set the corresponding * bus width on the host. */ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits[idx], card->ext_csd.generic_cmd6_time); if (err) continue; bus_width = bus_widths[idx]; mmc_set_bus_width(host, bus_width); /* * If controller can't handle bus width test, * compare ext_csd previously read in 1 bit mode * against ext_csd at new bus width */ if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) err = mmc_compare_ext_csds(card, bus_width); else err = mmc_bus_test(card, bus_width); if (!err) { err = bus_width; break; } else { pr_warn("%s: switch to bus width %d failed\n", mmc_hostname(host), 1 << bus_width); } } return err; } /* * Switch to the high-speed mode */ static int mmc_select_hs(struct mmc_card *card) { int err; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, true, true, true); if (err) pr_warn("%s: switch to high-speed failed, err:%d\n", mmc_hostname(card->host), err); return err; } /* * Activate wide bus and DDR if supported. */ static int mmc_select_hs_ddr(struct mmc_card *card) { struct mmc_host *host = card->host; u32 bus_width, ext_csd_bits; int err = 0; if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) return 0; bus_width = host->ios.bus_width; if (bus_width == MMC_BUS_WIDTH_1) return 0; ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits, card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_DDR52, true, true, true); if (err) { pr_err("%s: switch to bus width %d ddr failed\n", mmc_hostname(host), 1 << bus_width); return err; } /* * eMMC cards can support 3.3V to 1.2V i/o (vccq) * signaling. * * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. * * 1.8V vccq at 3.3V core voltage (vcc) is not required * in the JEDEC spec for DDR. * * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all * host controller can support this, like some of the SDHCI * controller which connect to an eMMC device. Some of these * host controller still needs to use 1.8v vccq for supporting * DDR mode. * * So the sequence will be: * if (host and device can both support 1.2v IO) * use 1.2v IO; * else if (host and device can both support 1.8v IO) * use 1.8v IO; * so if host and device can only support 3.3v IO, this is the * last choice. * * WARNING: eMMC rules are NOT the same as SD DDR */ if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); if (!err) return 0; } if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && host->caps & MMC_CAP_1_8V_DDR) err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); /* make sure vccq is 3.3v after switching disaster */ if (err) err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); return err; } static int mmc_select_hs400(struct mmc_card *card) { struct mmc_host *host = card->host; unsigned int max_dtr; int err = 0; u8 val; /* * HS400 mode requires 8-bit bus width */ if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && host->ios.bus_width == MMC_BUS_WIDTH_8)) return 0; /* Switch card to HS mode */ val = EXT_CSD_TIMING_HS; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, 0, true, false, true); if (err) { pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", mmc_hostname(host), err); return err; } /* Set host controller to HS timing */ mmc_set_timing(card->host, MMC_TIMING_MMC_HS); /* Reduce frequency to HS frequency */ max_dtr = card->ext_csd.hs_max_dtr; mmc_set_clock(host, max_dtr); err = mmc_switch_status(card); if (err) goto out_err; /* Switch card to DDR */ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_DDR_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time); if (err) { pr_err("%s: switch to bus width for hs400 failed, err:%d\n", mmc_hostname(host), err); return err; } /* Switch card to HS400 */ val = EXT_CSD_TIMING_HS400 | card->drive_strength << EXT_CSD_DRV_STR_SHIFT; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, 0, true, false, true); if (err) { pr_err("%s: switch to hs400 failed, err:%d\n", mmc_hostname(host), err); return err; } /* Set host controller to HS400 timing and frequency */ mmc_set_timing(host, MMC_TIMING_MMC_HS400); mmc_set_bus_speed(card); err = mmc_switch_status(card); if (err) goto out_err; return 0; out_err: pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), __func__, err); return err; } int mmc_hs200_to_hs400(struct mmc_card *card) { return mmc_select_hs400(card); } int mmc_hs400_to_hs200(struct mmc_card *card) { struct mmc_host *host = card->host; unsigned int max_dtr; int err; u8 val; /* Reduce frequency to HS */ max_dtr = card->ext_csd.hs_max_dtr; mmc_set_clock(host, max_dtr); /* Switch HS400 to HS DDR */ val = EXT_CSD_TIMING_HS; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, 0, true, false, true); if (err) goto out_err; mmc_set_timing(host, MMC_TIMING_MMC_DDR52); err = mmc_switch_status(card); if (err) goto out_err; /* Switch HS DDR to HS */ err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 0, true, false, true); if (err) goto out_err; mmc_set_timing(host, MMC_TIMING_MMC_HS); err = mmc_switch_status(card); if (err) goto out_err; /* Switch HS to HS200 */ val = EXT_CSD_TIMING_HS200 | card->drive_strength << EXT_CSD_DRV_STR_SHIFT; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, 0, true, false, true); if (err) goto out_err; mmc_set_timing(host, MMC_TIMING_MMC_HS200); /* * For HS200, CRC errors are not a reliable way to know the switch * failed. If there really is a problem, we would expect tuning will * fail and the result ends up the same. */ err = __mmc_switch_status(card, false); if (err) goto out_err; mmc_set_bus_speed(card); return 0; out_err: pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), __func__, err); return err; } static void mmc_select_driver_type(struct mmc_card *card) { int card_drv_type, drive_strength, drv_type; card_drv_type = card->ext_csd.raw_driver_strength | mmc_driver_type_mask(0); drive_strength = mmc_select_drive_strength(card, card->ext_csd.hs200_max_dtr, card_drv_type, &drv_type); card->drive_strength = drive_strength; if (drv_type) mmc_set_driver_type(card->host, drv_type); } static int mmc_select_hs400es(struct mmc_card *card) { struct mmc_host *host = card->host; int err = -EINVAL; u8 val; if (!(host->caps & MMC_CAP_8_BIT_DATA)) { err = -ENOTSUPP; goto out_err; } if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); /* If fails try again during next card power cycle */ if (err) goto out_err; err = mmc_select_bus_width(card); if (err < 0) goto out_err; /* Switch card to HS mode */ err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, card->ext_csd.generic_cmd6_time, 0, true, false, true); if (err) { pr_err("%s: switch to hs for hs400es failed, err:%d\n", mmc_hostname(host), err); goto out_err; } mmc_set_timing(host, MMC_TIMING_MMC_HS); err = mmc_switch_status(card); if (err) goto out_err; mmc_set_clock(host, card->ext_csd.hs_max_dtr); /* Switch card to DDR with strobe bit */ val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, val, card->ext_csd.generic_cmd6_time); if (err) { pr_err("%s: switch to bus width for hs400es failed, err:%d\n", mmc_hostname(host), err); goto out_err; } mmc_select_driver_type(card); /* Switch card to HS400 */ val = EXT_CSD_TIMING_HS400 | card->drive_strength << EXT_CSD_DRV_STR_SHIFT; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, 0, true, false, true); if (err) { pr_err("%s: switch to hs400es failed, err:%d\n", mmc_hostname(host), err); goto out_err; } /* Set host controller to HS400 timing and frequency */ mmc_set_timing(host, MMC_TIMING_MMC_HS400); /* Controller enable enhanced strobe function */ host->ios.enhanced_strobe = true; if (host->ops->hs400_enhanced_strobe) host->ops->hs400_enhanced_strobe(host, &host->ios); err = mmc_switch_status(card); if (err) goto out_err; return 0; out_err: pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), __func__, err); return err; } /* * For device supporting HS200 mode, the following sequence * should be done before executing the tuning process. * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) * 2. switch to HS200 mode * 3. set the clock to > 52Mhz and <=200MHz */ static int mmc_select_hs200(struct mmc_card *card) { struct mmc_host *host = card->host; unsigned int old_timing, old_signal_voltage; int err = -EINVAL; u8 val; old_signal_voltage = host->ios.signal_voltage; if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); /* If fails try again during next card power cycle */ if (err) return err; mmc_select_driver_type(card); /* * Set the bus width(4 or 8) with host's support and * switch to HS200 mode if bus width is set successfully. */ err = mmc_select_bus_width(card); if (err > 0) { val = EXT_CSD_TIMING_HS200 | card->drive_strength << EXT_CSD_DRV_STR_SHIFT; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, 0, true, false, true); if (err) goto err; old_timing = host->ios.timing; mmc_set_timing(host, MMC_TIMING_MMC_HS200); /* * For HS200, CRC errors are not a reliable way to know the * switch failed. If there really is a problem, we would expect * tuning will fail and the result ends up the same. */ err = __mmc_switch_status(card, false); /* * mmc_select_timing() assumes timing has not changed if * it is a switch error. */ if (err == -EBADMSG) mmc_set_timing(host, old_timing); } err: if (err) { /* fall back to the old signal voltage, if fails report error */ if (mmc_set_signal_voltage(host, old_signal_voltage)) err = -EIO; pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), __func__, err); } return err; } /* * Activate High Speed, HS200 or HS400ES mode if supported. */ static int mmc_select_timing(struct mmc_card *card) { int err = 0; if (!mmc_can_ext_csd(card)) goto bus_speed; if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) err = mmc_select_hs400es(card); else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) err = mmc_select_hs200(card); else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) err = mmc_select_hs(card); if (err && err != -EBADMSG) return err; bus_speed: /* * Set the bus speed to the selected bus timing. * If timing is not selected, backward compatible is the default. */ mmc_set_bus_speed(card); return 0; } /* * Execute tuning sequence to seek the proper bus operating * conditions for HS200 and HS400, which sends CMD21 to the device. */ static int mmc_hs200_tuning(struct mmc_card *card) { struct mmc_host *host = card->host; /* * Timing should be adjusted to the HS400 target * operation frequency for tuning process */ if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && host->ios.bus_width == MMC_BUS_WIDTH_8) if (host->ops->prepare_hs400_tuning) host->ops->prepare_hs400_tuning(host, &host->ios); return mmc_execute_tuning(card); } /* * Handle the detection and initialisation of a card. * * In the case of a resume, "oldcard" will contain the card * we're trying to reinitialise. */ static int mmc_init_card(struct mmc_host *host, u32 ocr, struct mmc_card *oldcard) { struct mmc_card *card; int err; u32 cid[4]; u32 rocr; WARN_ON(!host->claimed); /* Set correct bus mode for MMC before attempting init */ if (!mmc_host_is_spi(host)) mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); /* * Since we're changing the OCR value, we seem to * need to tell some cards to go back to the idle * state. We wait 1ms to give cards time to * respond. * mmc_go_idle is needed for eMMC that are asleep */ mmc_go_idle(host); /* The extra bit indicates that we support high capacity */ err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); if (err) goto err; /* * For SPI, enable CRC as appropriate. */ if (mmc_host_is_spi(host)) { err = mmc_spi_set_crc(host, use_spi_crc); if (err) goto err; } /* * Fetch CID from card. */ err = mmc_send_cid(host, cid); if (err) goto err; if (oldcard) { if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { err = -ENOENT; goto err; } card = oldcard; } else { /* * Allocate card structure. */ card = mmc_alloc_card(host, &mmc_type); if (IS_ERR(card)) { err = PTR_ERR(card); goto err; } card->ocr = ocr; card->type = MMC_TYPE_MMC; card->rca = 1; memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); } /* * Call the optional HC's init_card function to handle quirks. */ if (host->ops->init_card) host->ops->init_card(host, card); /* * For native busses: set card RCA and quit open drain mode. */ if (!mmc_host_is_spi(host)) { err = mmc_set_relative_addr(card); if (err) goto free_card; mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); } if (!oldcard) { /* * Fetch CSD from card. */ err = mmc_send_csd(card, card->raw_csd); if (err) goto free_card; err = mmc_decode_csd(card); if (err) goto free_card; err = mmc_decode_cid(card); if (err) goto free_card; } /* * handling only for cards supporting DSR and hosts requesting * DSR configuration */ if (card->csd.dsr_imp && host->dsr_req) mmc_set_dsr(host); /* * Select card, as all following commands rely on that. */ if (!mmc_host_is_spi(host)) { err = mmc_select_card(card); if (err) goto free_card; } if (!oldcard) { /* Read extended CSD. */ err = mmc_read_ext_csd(card); if (err) goto free_card; /* * If doing byte addressing, check if required to do sector * addressing. Handle the case of <2GB cards needing sector * addressing. See section 8.1 JEDEC Standard JED84-A441; * ocr register has bit 30 set for sector addressing. */ if (rocr & BIT(30)) mmc_card_set_blockaddr(card); /* Erase size depends on CSD and Extended CSD */ mmc_set_erase_size(card); } /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ if (card->ext_csd.rev >= 3) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ERASE_GROUP_DEF, 1, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) goto free_card; if (err) { err = 0; /* * Just disable enhanced area off & sz * will try to enable ERASE_GROUP_DEF * during next time reinit */ card->ext_csd.enhanced_area_offset = -EINVAL; card->ext_csd.enhanced_area_size = -EINVAL; } else { card->ext_csd.erase_group_def = 1; /* * enable ERASE_GRP_DEF successfully. * This will affect the erase size, so * here need to reset erase size */ mmc_set_erase_size(card); } } /* * Ensure eMMC user default partition is enabled */ if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, card->ext_csd.part_config, card->ext_csd.part_time); if (err && err != -EBADMSG) goto free_card; } /* * Enable power_off_notification byte in the ext_csd register */ if (card->ext_csd.rev >= 6) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_POWER_OFF_NOTIFICATION, EXT_CSD_POWER_ON, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) goto free_card; /* * The err can be -EBADMSG or 0, * so check for success and update the flag */ if (!err) card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; } /* * Select timing interface */ err = mmc_select_timing(card); if (err) goto free_card; if (mmc_card_hs200(card)) { err = mmc_hs200_tuning(card); if (err) goto free_card; err = mmc_select_hs400(card); if (err) goto free_card; } else if (!mmc_card_hs400es(card)) { /* Select the desired bus width optionally */ err = mmc_select_bus_width(card); if (err > 0 && mmc_card_hs(card)) { err = mmc_select_hs_ddr(card); if (err) goto free_card; } } /* * Choose the power class with selected bus interface */ mmc_select_powerclass(card); /* * Enable HPI feature (if supported) */ if (card->ext_csd.hpi) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HPI_MGMT, 1, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) goto free_card; if (err) { pr_warn("%s: Enabling HPI failed\n", mmc_hostname(card->host)); err = 0; } else card->ext_csd.hpi_en = 1; } /* * If cache size is higher than 0, this indicates * the existence of cache and it can be turned on. */ if (!mmc_card_broken_hpi(card) && card->ext_csd.cache_size > 0) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CACHE_CTRL, 1, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) goto free_card; /* * Only if no error, cache is turned on successfully. */ if (err) { pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", mmc_hostname(card->host), err); card->ext_csd.cache_ctrl = 0; err = 0; } else { card->ext_csd.cache_ctrl = 1; } } /* * Enable Command Queue if supported. Note that Packed Commands cannot * be used with Command Queue. */ card->ext_csd.cmdq_en = false; if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { err = mmc_cmdq_enable(card); if (err && err != -EBADMSG) goto free_card; if (err) { pr_warn("%s: Enabling CMDQ failed\n", mmc_hostname(card->host)); card->ext_csd.cmdq_support = false; card->ext_csd.cmdq_depth = 0; err = 0; } } /* * In some cases (e.g. RPMB or mmc_test), the Command Queue must be * disabled for a time, so a flag is needed to indicate to re-enable the * Command Queue. */ card->reenable_cmdq = card->ext_csd.cmdq_en; if (card->ext_csd.cmdq_en && !host->cqe_enabled) { err = host->cqe_ops->cqe_enable(host, card); if (err) { pr_err("%s: Failed to enable CQE, error %d\n", mmc_hostname(host), err); } else { host->cqe_enabled = true; pr_info("%s: Command Queue Engine enabled\n", mmc_hostname(host)); } } if (!oldcard) host->card = card; return 0; free_card: if (!oldcard) mmc_remove_card(card); err: return err; } static int mmc_can_sleep(struct mmc_card *card) { return (card && card->ext_csd.rev >= 3); } static int mmc_sleep(struct mmc_host *host) { struct mmc_command cmd = {}; struct mmc_card *card = host->card; unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); int err; /* Re-tuning can't be done once the card is deselected */ mmc_retune_hold(host); err = mmc_deselect_cards(host); if (err) goto out_release; cmd.opcode = MMC_SLEEP_AWAKE; cmd.arg = card->rca << 16; cmd.arg |= 1 << 15; /* * If the max_busy_timeout of the host is specified, validate it against * the sleep cmd timeout. A failure means we need to prevent the host * from doing hw busy detection, which is done by converting to a R1 * response instead of a R1B. */ if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; } else { cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; cmd.busy_timeout = timeout_ms; } err = mmc_wait_for_cmd(host, &cmd, 0); if (err) goto out_release; /* * If the host does not wait while the card signals busy, then we will * will have to wait the sleep/awake timeout. Note, we cannot use the * SEND_STATUS command to poll the status because that command (and most * others) is invalid while the card sleeps. */ if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) mmc_delay(timeout_ms); out_release: mmc_retune_release(host); return err; } static int mmc_can_poweroff_notify(const struct mmc_card *card) { return card && mmc_card_mmc(card) && (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); } static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) { unsigned int timeout = card->ext_csd.generic_cmd6_time; int err; /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ if (notify_type == EXT_CSD_POWER_OFF_LONG) timeout = card->ext_csd.power_off_longtime; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_POWER_OFF_NOTIFICATION, notify_type, timeout, 0, true, false, false); if (err) pr_err("%s: Power Off Notification timed out, %u\n", mmc_hostname(card->host), timeout); /* Disable the power off notification after the switch operation. */ card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; return err; } /* * Host is being removed. Free up the current card. */ static void mmc_remove(struct mmc_host *host) { mmc_remove_card(host->card); host->card = NULL; } /* * Card detection - card is alive. */ static int mmc_alive(struct mmc_host *host) { return mmc_send_status(host->card, NULL); } /* * Card detection callback from host. */ static void mmc_detect(struct mmc_host *host) { int err; mmc_get_card(host->card, NULL); /* * Just check if our card has been removed. */ err = _mmc_detect_card_removed(host); mmc_put_card(host->card, NULL); if (err) { mmc_remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_power_off(host); mmc_release_host(host); } } static int _mmc_suspend(struct mmc_host *host, bool is_suspend) { int err = 0; unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : EXT_CSD_POWER_OFF_LONG; mmc_claim_host(host); if (mmc_card_suspended(host->card)) goto out; if (mmc_card_doing_bkops(host->card)) { err = mmc_stop_bkops(host->card); if (err) goto out; } err = mmc_flush_cache(host->card); if (err) goto out; if (mmc_can_poweroff_notify(host->card) && ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) err = mmc_poweroff_notify(host->card, notify_type); else if (mmc_can_sleep(host->card)) err = mmc_sleep(host); else if (!mmc_host_is_spi(host)) err = mmc_deselect_cards(host); if (!err) { mmc_power_off(host); mmc_card_set_suspended(host->card); } out: mmc_release_host(host); return err; } /* * Suspend callback */ static int mmc_suspend(struct mmc_host *host) { int err; err = _mmc_suspend(host, true); if (!err) { pm_runtime_disable(&host->card->dev); pm_runtime_set_suspended(&host->card->dev); } return err; } /* * This function tries to determine if the same card is still present * and, if so, restore all state to it. */ static int _mmc_resume(struct mmc_host *host) { int err = 0; mmc_claim_host(host); if (!mmc_card_suspended(host->card)) goto out; mmc_power_up(host, host->card->ocr); err = mmc_init_card(host, host->card->ocr, host->card); mmc_card_clr_suspended(host->card); out: mmc_release_host(host); return err; } /* * Shutdown callback */ static int mmc_shutdown(struct mmc_host *host) { int err = 0; /* * In a specific case for poweroff notify, we need to resume the card * before we can shutdown it properly. */ if (mmc_can_poweroff_notify(host->card) && !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) err = _mmc_resume(host); if (!err) err = _mmc_suspend(host, false); return err; } /* * Callback for resume. */ static int mmc_resume(struct mmc_host *host) { pm_runtime_enable(&host->card->dev); return 0; } /* * Callback for runtime_suspend. */ static int mmc_runtime_suspend(struct mmc_host *host) { int err; if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) return 0; err = _mmc_suspend(host, true); if (err) pr_err("%s: error %d doing aggressive suspend\n", mmc_hostname(host), err); return err; } /* * Callback for runtime_resume. */ static int mmc_runtime_resume(struct mmc_host *host) { int err; err = _mmc_resume(host); if (err && err != -ENOMEDIUM) pr_err("%s: error %d doing runtime resume\n", mmc_hostname(host), err); return 0; } static int mmc_can_reset(struct mmc_card *card) { u8 rst_n_function; rst_n_function = card->ext_csd.rst_n_function; if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) return 0; return 1; } static int mmc_reset(struct mmc_host *host) { struct mmc_card *card = host->card; /* * In the case of recovery, we can't expect flushing the cache to work * always, but we have a go and ignore errors. */ mmc_flush_cache(host->card); if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && mmc_can_reset(card)) { /* If the card accept RST_n signal, send it. */ mmc_set_clock(host, host->f_init); host->ops->hw_reset(host); /* Set initial state and call mmc_set_ios */ mmc_set_initial_state(host); } else { /* Do a brute force power cycle */ mmc_power_cycle(host, card->ocr); mmc_pwrseq_reset(host); } return mmc_init_card(host, card->ocr, card); } static const struct mmc_bus_ops mmc_ops = { .remove = mmc_remove, .detect = mmc_detect, .suspend = mmc_suspend, .resume = mmc_resume, .runtime_suspend = mmc_runtime_suspend, .runtime_resume = mmc_runtime_resume, .alive = mmc_alive, .shutdown = mmc_shutdown, .reset = mmc_reset, }; /* * Starting point for MMC card init. */ int mmc_attach_mmc(struct mmc_host *host) { int err; u32 ocr, rocr; WARN_ON(!host->claimed); /* Set correct bus mode for MMC before attempting attach */ if (!mmc_host_is_spi(host)) mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); err = mmc_send_op_cond(host, 0, &ocr); if (err) return err; mmc_attach_bus(host, &mmc_ops); if (host->ocr_avail_mmc) host->ocr_avail = host->ocr_avail_mmc; /* * We need to get OCR a different way for SPI. */ if (mmc_host_is_spi(host)) { err = mmc_spi_read_ocr(host, 1, &ocr); if (err) goto err; } rocr = mmc_select_voltage(host, ocr); /* * Can we support the voltage of the card? */ if (!rocr) { err = -EINVAL; goto err; } /* * Detect and init the card. */ err = mmc_init_card(host, rocr, NULL); if (err) goto err; mmc_release_host(host); err = mmc_add_card(host->card); if (err) goto remove_card; mmc_claim_host(host); return 0; remove_card: mmc_remove_card(host->card); mmc_claim_host(host); host->card = NULL; err: mmc_detach_bus(host); pr_err("%s: error %d whilst initialising MMC card\n", mmc_hostname(host), err); return err; }