2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 10:34:24 +08:00
Commit Graph

572 Commits

Author SHA1 Message Date
KOSAKI Motohiro
929bea7c71 vmscan: all_unreclaimable() use zone->all_unreclaimable as a name
all_unreclaimable check in direct reclaim has been introduced at 2.6.19
by following commit.

	2006 Sep 25; commit 408d8544; oom: use unreclaimable info

And it went through strange history. firstly, following commit broke
the logic unintentionally.

	2008 Apr 29; commit a41f24ea; page allocator: smarter retry of
				      costly-order allocations

Two years later, I've found obvious meaningless code fragment and
restored original intention by following commit.

	2010 Jun 04; commit bb21c7ce; vmscan: fix do_try_to_free_pages()
				      return value when priority==0

But, the logic didn't works when 32bit highmem system goes hibernation
and Minchan slightly changed the algorithm and fixed it .

	2010 Sep 22: commit d1908362: vmscan: check all_unreclaimable
				      in direct reclaim path

But, recently, Andrey Vagin found the new corner case. Look,

	struct zone {
	  ..
	        int                     all_unreclaimable;
	  ..
	        unsigned long           pages_scanned;
	  ..
	}

zone->all_unreclaimable and zone->pages_scanned are neigher atomic
variables nor protected by lock.  Therefore zones can become a state of
zone->page_scanned=0 and zone->all_unreclaimable=1.  In this case, current
all_unreclaimable() return false even though zone->all_unreclaimabe=1.

This resulted in the kernel hanging up when executing a loop of the form

1. fork
2. mmap
3. touch memory
4. read memory
5. munmmap

as described in
http://www.gossamer-threads.com/lists/linux/kernel/1348725#1348725

Is this ignorable minor issue?  No.  Unfortunately, x86 has very small dma
zone and it become zone->all_unreclamble=1 easily.  and if it become
all_unreclaimable=1, it never restore all_unreclaimable=0.  Why?  if
all_unreclaimable=1, vmscan only try DEF_PRIORITY reclaim and
a-few-lru-pages>>DEF_PRIORITY always makes 0.  that mean no page scan at
all!

Eventually, oom-killer never works on such systems.  That said, we can't
use zone->pages_scanned for this purpose.  This patch restore
all_unreclaimable() use zone->all_unreclaimable as old.  and in addition,
to add oom_killer_disabled check to avoid reintroduce the issue of commit
d1908362 ("vmscan: check all_unreclaimable in direct reclaim path").

Reported-by: Andrey Vagin <avagin@openvz.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-04-14 16:06:56 -07:00
Lucas De Marchi
25985edced Fix common misspellings
Fixes generated by 'codespell' and manually reviewed.

Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2011-03-31 11:26:23 -03:00
Linus Torvalds
6c51038900 Merge branch 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block
* 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block: (65 commits)
  Documentation/iostats.txt: bit-size reference etc.
  cfq-iosched: removing unnecessary think time checking
  cfq-iosched: Don't clear queue stats when preempt.
  blk-throttle: Reset group slice when limits are changed
  blk-cgroup: Only give unaccounted_time under debug
  cfq-iosched: Don't set active queue in preempt
  block: fix non-atomic access to genhd inflight structures
  block: attempt to merge with existing requests on plug flush
  block: NULL dereference on error path in __blkdev_get()
  cfq-iosched: Don't update group weights when on service tree
  fs: assign sb->s_bdi to default_backing_dev_info if the bdi is going away
  block: Require subsystems to explicitly allocate bio_set integrity mempool
  jbd2: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
  jbd: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
  fs: make fsync_buffers_list() plug
  mm: make generic_writepages() use plugging
  blk-cgroup: Add unaccounted time to timeslice_used.
  block: fixup plugging stubs for !CONFIG_BLOCK
  block: remove obsolete comments for blkdev_issue_zeroout.
  blktrace: Use rq->cmd_flags directly in blk_add_trace_rq.
  ...

Fix up conflicts in fs/{aio.c,super.c}
2011-03-24 10:16:26 -07:00
Mel Gorman
8afdcece49 mm: vmscan: kswapd should not free an excessive number of pages when balancing small zones
When reclaiming for order-0 pages, kswapd requires that all zones be
balanced.  Each cycle through balance_pgdat() does background ageing on
all zones if necessary and applies equal pressure on the inactive zone
unless a lot of pages are free already.

A "lot of free pages" is defined as a "balance gap" above the high
watermark which is currently 7*high_watermark.  Historically this was
reasonable as min_free_kbytes was small.  However, on systems using huge
pages, it is recommended that min_free_kbytes is higher and it is tuned
with hugeadm --set-recommended-min_free_kbytes.  With the introduction of
transparent huge page support, this recommended value is also applied.  On
X86-64 with 4G of memory, min_free_kbytes becomes 67584 so one would
expect around 68M of memory to be free.  The Normal zone is approximately
35000 pages so under even normal memory pressure such as copying a large
file, it gets exhausted quickly.  As it is getting exhausted, kswapd
applies pressure equally to all zones, including the DMA32 zone.  DMA32 is
approximately 700,000 pages with a high watermark of around 23,000 pages.
In this situation, kswapd will reclaim around (23000*8 where 8 is the high
watermark + balance gap of 7 * high watermark) pages or 718M of pages
before the zone is ignored.  What the user sees is that free memory far
higher than it should be.

To avoid an excessive number of pages being reclaimed from the larger
zones, explicitely defines the "balance gap" to be either 1% of the zone
or the low watermark for the zone, whichever is smaller.  While kswapd
will check all zones to apply pressure, it'll ignore zones that meets the
(high_wmark + balance_gap) watermark.

To test this, 80G were copied from a partition and the amount of memory
being used was recorded.  A comparison of a patch and unpatched kernel can
be seen at
http://www.csn.ul.ie/~mel/postings/minfree-20110222/memory-usage-hydra.ps
and shows that kswapd is not reclaiming as much memory with the patch
applied.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:04 -07:00
Minchan Kim
e64a782fec mm: change __remove_from_page_cache()
Now we renamed remove_from_page_cache with delete_from_page_cache.  As
consistency of __remove_from_swap_cache and remove_from_swap_cache, we
change internal page cache handling function name, too.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:02 -07:00
Andrea Arcangeli
d527caf22e mm: compaction: prevent kswapd compacting memory to reduce CPU usage
This patch reverts 5a03b051 ("thp: use compaction in kswapd for GFP_ATOMIC
order > 0") due to reports stating that kswapd CPU usage was higher and
IRQs were being disabled more frequently.  This was reported at
http://www.spinics.net/linux/fedora/alsa-user/msg09885.html.

Without this patch applied, CPU usage by kswapd hovers around the 20% mark
according to the tester (Arthur Marsh:
http://www.spinics.net/linux/fedora/alsa-user/msg09899.html).  With this
patch applied, it's around 2%.

The problem is not related to THP which specifies __GFP_NO_KSWAPD but is
triggered by high-order allocations hitting the low watermark for their
order and waking kswapd on kernels with CONFIG_COMPACTION set.  The most
common trigger for this is network cards configured for jumbo frames but
it's also possible it'll be triggered by fork-heavy workloads (order-1)
and some wireless cards which depend on order-1 allocations.

The symptoms for the user will be high CPU usage by kswapd in low-memory
situations which could be confused with another writeback problem.  While
a patch like 5a03b051 may be reintroduced in the future, this patch plays
it safe for now and reverts it.

[mel@csn.ul.ie: Beefed up the changelog]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Arthur Marsh <arthur.marsh@internode.on.net>
Tested-by: Arthur Marsh <arthur.marsh@internode.on.net>
Cc: <stable@kernel.org>		[2.6.38.1]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:00 -07:00
Jens Axboe
4c63f5646e Merge branch 'for-2.6.39/stack-plug' into for-2.6.39/core
Conflicts:
	block/blk-core.c
	block/blk-flush.c
	drivers/md/raid1.c
	drivers/md/raid10.c
	drivers/md/raid5.c
	fs/nilfs2/btnode.c
	fs/nilfs2/mdt.c

Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-10 08:58:35 +01:00
Jens Axboe
7eaceaccab block: remove per-queue plugging
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().

Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-10 08:52:07 +01:00
Mel Gorman
2876592f23 mm: vmscan: stop reclaim/compaction earlier due to insufficient progress if !__GFP_REPEAT
should_continue_reclaim() for reclaim/compaction allows scanning to
continue even if pages are not being reclaimed until the full list is
scanned.  In terms of allocation success, this makes sense but potentially
it introduces unwanted latency for high-order allocations such as
transparent hugepages and network jumbo frames that would prefer to fail
the allocation attempt and fallback to order-0 pages.  Worse, there is a
potential that the full LRU scan will clear all the young bits, distort
page aging information and potentially push pages into swap that would
have otherwise remained resident.

This patch will stop reclaim/compaction if no pages were reclaimed in the
last SWAP_CLUSTER_MAX pages that were considered.  For allocations such as
hugetlbfs that use __GFP_REPEAT and have fewer fallback options, the full
LRU list may still be scanned.

Order-0 allocation should not be affected because RECLAIM_MODE_COMPACTION
is not set so the following avoids the gfp_mask being examined:

        if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
                return false;

A tool was developed based on ftrace that tracked the latency of
high-order allocations while transparent hugepage support was enabled and
three benchmarks were run.  The "fix-infinite" figures are 2.6.38-rc4 with
Johannes's patch "vmscan: fix zone shrinking exit when scan work is done"
applied.

  STREAM Highorder Allocation Latency Statistics
                 fix-infinite     break-early
  1 :: Count            10298           10229
  1 :: Min             0.4560          0.4640
  1 :: Mean            1.0589          1.0183
  1 :: Max            14.5990         11.7510
  1 :: Stddev          0.5208          0.4719
  2 :: Count                2               1
  2 :: Min             1.8610          3.7240
  2 :: Mean            3.4325          3.7240
  2 :: Max             5.0040          3.7240
  2 :: Stddev          1.5715          0.0000
  9 :: Count           111696          111694
  9 :: Min             0.5230          0.4110
  9 :: Mean           10.5831         10.5718
  9 :: Max            38.4480         43.2900
  9 :: Stddev          1.1147          1.1325

Mean time for order-1 allocations is reduced.  order-2 looks increased but
with so few allocations, it's not particularly significant.  THP mean
allocation latency is also reduced.  That said, allocation time varies so
significantly that the reductions are within noise.

Max allocation time is reduced by a significant amount for low-order
allocations but reduced for THP allocations which presumably are now
breaking before reclaim has done enough work.

  SysBench Highorder Allocation Latency Statistics
                 fix-infinite     break-early
  1 :: Count            15745           15677
  1 :: Min             0.4250          0.4550
  1 :: Mean            1.1023          1.0810
  1 :: Max            14.4590         10.8220
  1 :: Stddev          0.5117          0.5100
  2 :: Count                1               1
  2 :: Min             3.0040          2.1530
  2 :: Mean            3.0040          2.1530
  2 :: Max             3.0040          2.1530
  2 :: Stddev          0.0000          0.0000
  9 :: Count             2017            1931
  9 :: Min             0.4980          0.7480
  9 :: Mean           10.4717         10.3840
  9 :: Max            24.9460         26.2500
  9 :: Stddev          1.1726          1.1966

Again, mean time for order-1 allocations is reduced while order-2
allocations are too few to draw conclusions from.  The mean time for THP
allocations is also slightly reduced albeit the reductions are within
varianes.

Once again, our maximum allocation time is significantly reduced for
low-order allocations and slightly increased for THP allocations.

  Anon stream mmap reference Highorder Allocation Latency Statistics
  1 :: Count             1376            1790
  1 :: Min             0.4940          0.5010
  1 :: Mean            1.0289          0.9732
  1 :: Max             6.2670          4.2540
  1 :: Stddev          0.4142          0.2785
  2 :: Count                1               -
  2 :: Min             1.9060               -
  2 :: Mean            1.9060               -
  2 :: Max             1.9060               -
  2 :: Stddev          0.0000               -
  9 :: Count            11266           11257
  9 :: Min             0.4990          0.4940
  9 :: Mean        27250.4669      24256.1919
  9 :: Max      11439211.0000    6008885.0000
  9 :: Stddev     226427.4624     186298.1430

This benchmark creates one thread per CPU which references an amount of
anonymous memory 1.5 times the size of physical RAM.  This pounds swap
quite heavily and is intended to exercise THP a bit.

Mean allocation time for order-1 is reduced as before.  It's also reduced
for THP allocations but the variations here are pretty massive due to
swap.  As before, maximum allocation times are significantly reduced.

Overall, the patch reduces the mean and maximum allocation latencies for
the smaller high-order allocations.  This was with Slab configured so it
would be expected to be more significant with Slub which uses these size
allocations more aggressively.

The mean allocation times for THP allocations are also slightly reduced.
The maximum latency was slightly increased as predicted by the comments
due to reclaim/compaction breaking early.  However, workloads care more
about the latency of lower-order allocations than THP so it's an
acceptable trade-off.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-25 15:07:36 -08:00
Johannes Weiner
f0fdc5e8e6 vmscan: fix zone shrinking exit when scan work is done
Commit 3e7d344970 ("mm: vmscan: reclaim order-0 and use compaction
instead of lumpy reclaim") introduced an indefinite loop in
shrink_zone().

It meant to break out of this loop when no pages had been reclaimed and
not a single page was even scanned.  The way it would detect the latter
is by taking a snapshot of sc->nr_scanned at the beginning of the
function and comparing it against the new sc->nr_scanned after the scan
loop.  But it would re-iterate without updating that snapshot, looping
forever if sc->nr_scanned changed at least once since shrink_zone() was
invoked.

This is not the sole condition that would exit that loop, but it
requires other processes to change the zone state, as the reclaimer that
is stuck obviously can not anymore.

This is only happening for higher-order allocations, where reclaim is
run back to back with compaction.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Kent Overstreet<kent.overstreet@gmail.com>
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-11 16:12:20 -08:00
David Rientjes
f33261d75b mm: fix deferred congestion timeout if preferred zone is not allowed
Before 0e093d9976 ("writeback: do not sleep on the congestion queue if
there are no congested BDIs or if significant congestion is not being
encountered in the current zone"), preferred_zone was only used for NUMA
statistics, to determine the zoneidx from which to allocate from given
the type requested, and whether to utilize memory compaction.

wait_iff_congested(), though, uses preferred_zone to determine if the
congestion wait should be deferred because its dirty pages are backed by
a congested bdi.  This incorrectly defers the timeout and busy loops in
the page allocator with various cond_resched() calls if preferred_zone
is not allowed in the current context, usually consuming 100% of a cpu.

This patch ensures preferred_zone is an allowed zone in the fastpath
depending on whether current is constrained by its cpuset or nodes in
its mempolicy (when the nodemask passed is non-NULL).  This is correct
since the fastpath allocation always passes ALLOC_CPUSET when trying to
allocate memory.  In the slowpath, this patch resets preferred_zone to
the first zone of the allowed type when the allocation is not
constrained by current's cpuset, i.e.  it does not pass ALLOC_CPUSET.

This patch also ensures preferred_zone is from the set of allowed nodes
when called from within direct reclaim since allocations are always
constrained by cpusets in this context (it is blockable).

Both of these uses of cpuset_current_mems_allowed are protected by
get_mems_allowed().

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-26 10:50:00 +10:00
Jesper Juhl
3305de51bf mm/vmscan.c: remove duplicate include of compaction.h
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-20 17:02:05 -08:00
Linus Torvalds
7a608572a2 Revert "mm: batch activate_page() to reduce lock contention"
This reverts commit 744ed14427.

Chris Mason ended up chasing down some page allocation errors and pages
stuck waiting on the IO scheduler, and was able to narrow it down to two
commits: commit 744ed14427 ("mm: batch activate_page() to reduce lock
contention") and d8505dee1a ("mm: simplify code of swap.c").

This reverts the first of them.

Reported-and-debugged-by: Chris Mason <chris.mason@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-17 14:42:19 -08:00
Shaohua Li
744ed14427 mm: batch activate_page() to reduce lock contention
The zone->lru_lock is heavily contented in workload where activate_page()
is frequently used.  We could do batch activate_page() to reduce the lock
contention.  The batched pages will be added into zone list when the pool
is full or page reclaim is trying to drain them.

For example, in a 4 socket 64 CPU system, create a sparse file and 64
processes, processes shared map to the file.  Each process read access the
whole file and then exit.  The process exit will do unmap_vmas() and cause
a lot of activate_page() call.  In such workload, we saw about 58% total
time reduction with below patch.  Other workloads with a lot of
activate_page also benefits a lot too.

I tested some microbenchmarks:
case-anon-cow-rand-mt		0.58%
case-anon-cow-rand		-3.30%
case-anon-cow-seq-mt		-0.51%
case-anon-cow-seq		-5.68%
case-anon-r-rand-mt		0.23%
case-anon-r-rand		0.81%
case-anon-r-seq-mt		-0.71%
case-anon-r-seq			-1.99%
case-anon-rx-rand-mt		2.11%
case-anon-rx-seq-mt		3.46%
case-anon-w-rand-mt		-0.03%
case-anon-w-rand		-0.50%
case-anon-w-seq-mt		-1.08%
case-anon-w-seq			-0.12%
case-anon-wx-rand-mt		-5.02%
case-anon-wx-seq-mt		-1.43%
case-fork			1.65%
case-fork-sleep			-0.07%
case-fork-withmem		1.39%
case-hugetlb			-0.59%
case-lru-file-mmap-read-mt	-0.54%
case-lru-file-mmap-read		0.61%
case-lru-file-mmap-read-rand	-2.24%
case-lru-file-readonce		-0.64%
case-lru-file-readtwice		-11.69%
case-lru-memcg			-1.35%
case-mmap-pread-rand-mt		1.88%
case-mmap-pread-rand		-15.26%
case-mmap-pread-seq-mt		0.89%
case-mmap-pread-seq		-69.72%
case-mmap-xread-rand-mt		0.71%
case-mmap-xread-seq-mt		0.38%

The most significent are:
case-lru-file-readtwice		-11.69%
case-mmap-pread-rand		-15.26%
case-mmap-pread-seq		-69.72%

which use activate_page a lot.  others are basically variations because
each run has slightly difference.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:50 -08:00
Rik van Riel
9992af1029 thp: scale nr_rotated to balance memory pressure
Make sure we scale up nr_rotated when we encounter a referenced
transparent huge page.  This ensures pageout scanning balance is not
distorted when there are huge pages on the LRU.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:46 -08:00
Rik van Riel
2c888cfbc1 thp: fix anon memory statistics with transparent hugepages
Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU
statistics, so the Active(anon) and Inactive(anon) statistics in
/proc/meminfo are correct.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:46 -08:00
Andrea Arcangeli
5a03b051ed thp: use compaction in kswapd for GFP_ATOMIC order > 0
This takes advantage of memory compaction to properly generate pages of
order > 0 if regular page reclaim fails and priority level becomes more
severe and we don't reach the proper watermarks.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:46 -08:00
Mel Gorman
dc83edd941 mm: kswapd: use the classzone idx that kswapd was using for sleeping_prematurely()
When kswapd is woken up for a high-order allocation, it takes account of
the highest usable zone by the caller (the classzone idx).  During
allocation, this index is used to select the lowmem_reserve[] that should
be applied to the watermark calculation in zone_watermark_ok().

When balancing a node, kswapd considers the highest unbalanced zone to be
the classzone index.  This will always be at least be the callers
classzone_idx and can be higher.  However, sleeping_prematurely() always
considers the lowest zone (e.g.  ZONE_DMA) to be the classzone index.
This means that sleeping_prematurely() can consider a zone to be balanced
that is unusable by the allocation request that originally woke kswapd.
This patch changes sleeping_prematurely() to use a classzone_idx matching
the value it used in balance_pgdat().

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:37 -08:00
Mel Gorman
355b09c47a mm: kswapd: treat zone->all_unreclaimable in sleeping_prematurely similar to balance_pgdat()
After DEF_PRIORITY, balance_pgdat() considers all_unreclaimable zones to
be balanced but sleeping_prematurely does not.  This can force kswapd to
stay awake longer than it should.  This patch fixes it.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:37 -08:00
Mel Gorman
4d40502ea5 mm: kswapd: reset kswapd_max_order and classzone_idx after reading
When kswapd wakes up, it reads its order and classzone from pgdat and
calls balance_pgdat.  While its awake, it potentially reclaimes at a high
order and a low classzone index.  This might have been a once-off that was
not required by subsequent callers.  However, because the pgdat values
were not reset, they remain artifically high while balance_pgdat() is
running and potentially kswapd enters a second unnecessary reclaim cycle.
Reset the pgdat order and classzone index after reading.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:37 -08:00
Mel Gorman
0abdee2bd4 mm: kswapd: use the order that kswapd was reclaiming at for sleeping_prematurely()
Before kswapd goes to sleep, it uses sleeping_prematurely() to check if
there was a race pushing a zone below its watermark.  If the race
happened, it stays awake.  However, balance_pgdat() can decide to reclaim
at order-0 if it decides that high-order reclaim is not working as
expected.  This information is not passed back to sleeping_prematurely().
The impact is that kswapd remains awake reclaiming pages long after it
should have gone to sleep.  This patch passes the adjusted order to
sleeping_prematurely and uses the same logic as balance_pgdat to decide if
it's ok to go to sleep.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:37 -08:00
Mel Gorman
1741c87757 mm: kswapd: keep kswapd awake for high-order allocations until a percentage of the node is balanced
When reclaiming for high-orders, kswapd is responsible for balancing a
node but it should not reclaim excessively.  It avoids excessive reclaim
by considering if any zone in a node is balanced then the node is
balanced.  In the cases where there are imbalanced zone sizes (e.g.
ZONE_DMA with both ZONE_DMA32 and ZONE_NORMAL), kswapd can go to sleep
prematurely as just one small zone was balanced.

This alters the sleep logic of kswapd slightly.  It counts the number of
pages that make up the balanced zones.  If the total number of balanced
pages is more than a quarter of the zone, kswapd will go back to sleep.
This should keep a node balanced without reclaiming an excessive number of
pages.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:37 -08:00
Mel Gorman
9950474883 mm: kswapd: stop high-order balancing when any suitable zone is balanced
Simon Kirby reported the following problem

   We're seeing cases on a number of servers where cache never fully
   grows to use all available memory.  Sometimes we see servers with 4 GB
   of memory that never seem to have less than 1.5 GB free, even with a
   constantly-active VM.  In some cases, these servers also swap out while
   this happens, even though they are constantly reading the working set
   into memory.  We have been seeing this happening for a long time; I
   don't think it's anything recent, and it still happens on 2.6.36.

After some debugging work by Simon, Dave Hansen and others, the prevaling
theory became that kswapd is reclaiming order-3 pages requested by SLUB
too aggressive about it.

There are two apparent problems here.  On the target machine, there is a
small Normal zone in comparison to DMA32.  As kswapd tries to balance all
zones, it would continually try reclaiming for Normal even though DMA32
was balanced enough for callers.  The second problem is that
sleeping_prematurely() does not use the same logic as balance_pgdat() when
deciding whether to sleep or not.  This keeps kswapd artifically awake.

A number of tests were run and the figures from previous postings will
look very different for a few reasons.  One, the old figures were forcing
my network card to use GFP_ATOMIC in attempt to replicate Simon's problem.
 Second, I previous specified slub_min_order=3 again in an attempt to
reproduce Simon's problem.  In this posting, I'm depending on Simon to say
whether his problem is fixed or not and these figures are to show the
impact to the ordinary cases.  Finally, the "vmscan" figures are taken
from /proc/vmstat instead of the tracepoints.  There is less information
but recording is less disruptive.

The first test of relevance was postmark with a process running in the
background reading a large amount of anonymous memory in blocks.  The
objective was to vaguely simulate what was happening on Simon's machine
and it's memory intensive enough to have kswapd awake.

POSTMARK
                                            traceonly          kanyzone
Transactions per second:              156.00 ( 0.00%)   153.00 (-1.96%)
Data megabytes read per second:        21.51 ( 0.00%)    21.52 ( 0.05%)
Data megabytes written per second:     29.28 ( 0.00%)    29.11 (-0.58%)
Files created alone per second:       250.00 ( 0.00%)   416.00 (39.90%)
Files create/transact per second:      79.00 ( 0.00%)    76.00 (-3.95%)
Files deleted alone per second:       520.00 ( 0.00%)   420.00 (-23.81%)
Files delete/transact per second:      79.00 ( 0.00%)    76.00 (-3.95%)

MMTests Statistics: duration
User/Sys Time Running Test (seconds)         16.58      17.4
Total Elapsed Time (seconds)                218.48    222.47

VMstat Reclaim Statistics: vmscan
Direct reclaims                                  0          4
Direct reclaim pages scanned                     0        203
Direct reclaim pages reclaimed                   0        184
Kswapd pages scanned                        326631     322018
Kswapd pages reclaimed                      312632     309784
Kswapd low wmark quickly                         1          4
Kswapd high wmark quickly                      122        475
Kswapd skip congestion_wait                      1          0
Pages activated                             700040     705317
Pages deactivated                           212113     203922
Pages written                                 9875       6363

Total pages scanned                         326631    322221
Total pages reclaimed                       312632    309968
%age total pages scanned/reclaimed          95.71%    96.20%
%age total pages scanned/written             3.02%     1.97%

proc vmstat: Faults
Major Faults                                   300       254
Minor Faults                                645183    660284
Page ins                                    493588    486704
Page outs                                  4960088   4986704
Swap ins                                      1230       661
Swap outs                                     9869      6355

Performance is mildly affected because kswapd is no longer doing as much
work and the background memory consumer process is getting in the way.
Note that kswapd scanned and reclaimed fewer pages as it's less aggressive
and overall fewer pages were scanned and reclaimed.  Swap in/out is
particularly reduced again reflecting kswapd throwing out fewer pages.

The slight performance impact is unfortunate here but it looks like a
direct result of kswapd being less aggressive.  As the bug report is about
too many pages being freed by kswapd, it may have to be accepted for now.

The second test is a streaming IO benchmark that was previously used by
Johannes to show regressions in page reclaim.

MICRO
					 traceonly  kanyzone
User/Sys Time Running Test (seconds)         29.29     28.87
Total Elapsed Time (seconds)                492.18    488.79

VMstat Reclaim Statistics: vmscan
Direct reclaims                               2128       1460
Direct reclaim pages scanned               2284822    1496067
Direct reclaim pages reclaimed              148919     110937
Kswapd pages scanned                      15450014   16202876
Kswapd pages reclaimed                     8503697    8537897
Kswapd low wmark quickly                      3100       3397
Kswapd high wmark quickly                     1860       7243
Kswapd skip congestion_wait                    708        801
Pages activated                               9635       9573
Pages deactivated                             1432       1271
Pages written                                  223       1130

Total pages scanned                       17734836  17698943
Total pages reclaimed                      8652616   8648834
%age total pages scanned/reclaimed          48.79%    48.87%
%age total pages scanned/written             0.00%     0.01%

proc vmstat: Faults
Major Faults                                   165       221
Minor Faults                               9655785   9656506
Page ins                                      3880      7228
Page outs                                 37692940  37480076
Swap ins                                         0        69
Swap outs                                       19        15

Again fewer pages are scanned and reclaimed as expected and this time the
test completed faster.  Note that kswapd is hitting its watermarks faster
(low and high wmark quickly) which I expect is due to kswapd reclaiming
fewer pages.

I also ran fs-mark, iozone and sysbench but there is nothing interesting
to report in the figures.  Performance is not significantly changed and
the reclaim statistics look reasonable.

Tgis patch:

When the allocator enters its slow path, kswapd is woken up to balance the
node.  It continues working until all zones within the node are balanced.
For order-0 allocations, this makes perfect sense but for higher orders it
can have unintended side-effects.  If the zone sizes are imbalanced,
kswapd may reclaim heavily within a smaller zone discarding an excessive
number of pages.  The user-visible behaviour is that kswapd is awake and
reclaiming even though plenty of pages are free from a suitable zone.

This patch alters the "balance" logic for high-order reclaim allowing
kswapd to stop if any suitable zone becomes balanced to reduce the number
of pages it reclaims from other zones.  kswapd still tries to ensure that
order-0 watermarks for all zones are met before sleeping.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:37 -08:00
Mel Gorman
f3a310bc4e mm: vmscan: rename lumpy_mode to reclaim_mode
With compaction being used instead of lumpy reclaim, the name lumpy_mode
and associated variables is a bit misleading.  Rename lumpy_mode to
reclaim_mode which is a better fit.  There is no functional change.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
Mel Gorman
77f1fe6b08 mm: migration: allow migration to operate asynchronously and avoid synchronous compaction in the faster path
Migration synchronously waits for writeback if the initial passes fails.
Callers of memory compaction do not necessarily want this behaviour if the
caller is latency sensitive or expects that synchronous migration is not
going to have a significantly better success rate.

This patch adds a sync parameter to migrate_pages() allowing the caller to
indicate if wait_on_page_writeback() is allowed within migration or not.
For reclaim/compaction, try_to_compact_pages() is first called
asynchronously, direct reclaim runs and then try_to_compact_pages() is
called synchronously as there is a greater expectation that it'll succeed.

[akpm@linux-foundation.org: build/merge fix]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
Mel Gorman
3e7d344970 mm: vmscan: reclaim order-0 and use compaction instead of lumpy reclaim
Lumpy reclaim is disruptive.  It reclaims a large number of pages and
ignores the age of the pages it reclaims.  This can incur significant
stalls and potentially increase the number of major faults.

Compaction has reached the point where it is considered reasonably stable
(meaning it has passed a lot of testing) and is a potential candidate for
displacing lumpy reclaim.  This patch introduces an alternative to lumpy
reclaim whe compaction is available called reclaim/compaction.  The basic
operation is very simple - instead of selecting a contiguous range of
pages to reclaim, a number of order-0 pages are reclaimed and then
compaction is later by either kswapd (compact_zone_order()) or direct
compaction (__alloc_pages_direct_compact()).

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: use conventional task_struct naming]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:33 -08:00
Mel Gorman
ee64fc9354 mm: vmscan: convert lumpy_mode into a bitmask
Currently lumpy_mode is an enum and determines if lumpy reclaim is off,
syncronous or asyncronous.  In preparation for using compaction instead of
lumpy reclaim, this patch converts the flags into a bitmap.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:33 -08:00
KOSAKI Motohiro
f0bc0a60b1 vmscan: factor out kswapd sleeping logic from kswapd()
Currently, kswapd() has deep nesting and is slightly hard to read.  Clean
this up.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:32 -08:00
Mel Gorman
b44129b306 mm: vmstat: use a single setter function and callback for adjusting percpu thresholds
reduce_pgdat_percpu_threshold() and restore_pgdat_percpu_threshold() exist
to adjust the per-cpu vmstat thresholds while kswapd is awake to avoid
errors due to counter drift.  The functions duplicate some code so this
patch replaces them with a single set_pgdat_percpu_threshold() that takes
a callback function to calculate the desired threshold as a parameter.

[akpm@linux-foundation.org: readability tweak]
[kosaki.motohiro@jp.fujitsu.com: set_pgdat_percpu_threshold(): don't use for_each_online_cpu]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:31 -08:00
Mel Gorman
88f5acf88a mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES.  To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold.  On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high.  The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues.  The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.

Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing.  This patch takes a different approach.  For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level.  This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node.  There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.

To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat().  We are still using an expensive
function but limiting how often it is called.

When the test case is reproduced, the time spent in the watermark
functions is reduced.  The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().

vanilla                      11.6615%
disable-threshold            0.2584%

David said:

: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity.  I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org>		[2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:31 -08:00
Linus Torvalds
6072d13c42 Call the filesystem back whenever a page is removed from the page cache
NFS needs to be able to release objects that are stored in the page
cache once the page itself is no longer visible from the page cache.

This patch adds a callback to the address space operations that allows
filesystems to perform page cleanups once the page has been removed
from the page cache.

Original patch by: Linus Torvalds <torvalds@linux-foundation.org>
[trondmy: cover the cases of invalidate_inode_pages2() and
          truncate_inode_pages()]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2010-12-02 09:55:21 -05:00
Shaohua Li
1dce071e18 vmscan: avoid setting zone congested if no page dirty
nr_dirty and nr_congested are increased only when the page is dirty.  So
if all pages are clean, both them will be zero.  In this case, we should
not mark the zone congested.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-11-12 07:55:31 -08:00
KOSAKI Motohiro
2e30244a7c vmscan,tmpfs: treat used once pages on tmpfs as used once
When a page has PG_referenced, shrink_page_list() discards it only if it
is not dirty.  This rule works fine if the backing filesystem is a regular
one.  PG_dirty is a good signal that the page was used recently because
the flusher threads clean pages periodically.  In addition, page writeback
is costlier than simple page discard.

However, when a page is on tmpfs this heuristic doesn't work because
flusher threads don't write back tmpfs pages.  Consequently tmpfs pages
always rotate around the lru twice at least and adds unnecessary lru
churn.  Simple tmpfs streaming io shouldn't cause large anonymous page
swap-out.

Remove this unncessary reclaim bonus of tmpfs pages.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:08 -07:00
Mel Gorman
0e093d9976 writeback: do not sleep on the congestion queue if there are no congested BDIs or if significant congestion is not being encountered in the current zone
If congestion_wait() is called with no BDI congested, the caller will
sleep for the full timeout and this may be an unnecessary sleep.  This
patch adds a wait_iff_congested() that checks congestion and only sleeps
if a BDI is congested else, it calls cond_resched() to ensure the caller
is not hogging the CPU longer than its quota but otherwise will not sleep.

This is aimed at reducing some of the major desktop stalls reported during
IO.  For example, while kswapd is operating, it calls congestion_wait()
but it could just have been reclaiming clean page cache pages with no
congestion.  Without this patch, it would sleep for a full timeout but
after this patch, it'll just call schedule() if it has been on the CPU too
long.  Similar logic applies to direct reclaimers that are not making
enough progress.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
KOSAKI Motohiro
08fc468f4e vmscan: isolate_lru_pages(): stop neighbour search if neighbour cannot be isolated
isolate_lru_pages() does not just isolate LRU tail pages, but also
isolates neighbour pages of the eviction page.  The neighbour search does
not stop even if neighbours cannot be isolated which is excessive as the
lumpy reclaim will no longer result in a successful higher order
allocation.  This patch stops the PFN neighbour pages if an isolation
fails and moves on to the next block.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
KOSAKI Motohiro
4718505216 vmscan: remove dead code in shrink_inactive_list()
After synchrounous lumpy reclaim, the page_list is guaranteed to not have
active pages as page activation in shrink_page_list() disables lumpy
reclaim.  Remove the dead code.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
KOSAKI Motohiro
7d3579e8e6 vmscan: narrow the scenarios in whcih lumpy reclaim uses synchrounous reclaim
shrink_page_list() can decide to give up reclaiming a page under a
number of conditions such as

  1. trylock_page() failure
  2. page is unevictable
  3. zone reclaim and page is mapped
  4. PageWriteback() is true
  5. page is swapbacked and swap is full
  6. add_to_swap() failure
  7. page is dirty and gfpmask don't have GFP_IO, GFP_FS
  8. page is pinned
  9. IO queue is congested
 10. pageout() start IO, but not finished

With lumpy reclaim, failures result in entering synchronous lumpy reclaim
but this can be unnecessary.  In cases (2), (3), (5), (6), (7) and (8),
there is no point retrying.  This patch causes lumpy reclaim to abort when
it is known it will fail.

Case (9) is more interesting. current behavior is,
  1. start shrink_page_list(async)
  2. found queue_congested()
  3. skip pageout write
  4. still start shrink_page_list(sync)
  5. wait on a lot of pages
  6. again, found queue_congested()
  7. give up pageout write again

So, it's useless time wasting.  However, just skipping page reclaim is
also notgood as x86 allocating a huge page needs 512 pages for example.
It can have more dirty pages than queue congestion threshold (~=128).

After this patch, pageout() behaves as follows;

 - If order > PAGE_ALLOC_COSTLY_ORDER
	Ignore queue congestion always.
 - If order <= PAGE_ALLOC_COSTLY_ORDER
	skip write page and disable lumpy reclaim.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
KOSAKI Motohiro
bc57e00f5e vmscan: synchronous lumpy reclaim should not call congestion_wait()
congestion_wait() means "wait until queue congestion is cleared".
However, synchronous lumpy reclaim does not need this congestion_wait() as
shrink_page_list(PAGEOUT_IO_SYNC) uses wait_on_page_writeback() and it
provides the necessary waiting.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
Mel Gorman
e11da5b4fd tracing, vmscan: add trace events for LRU list shrinking
There have been numerous reports of stalls that pointed at the problem
being somewhere in the VM.  There are multiple roots to the problems which
means dealing with any of the root problems in isolation is tricky to
justify on their own and they would still need integration testing.  This
patch series puts together two different patch sets which in combination
should tackle some of the root causes of latency problems being reported.

Patch 1 adds a tracepoint for shrink_inactive_list.  For this series, the
most important results is being able to calculate the scanning/reclaim
ratio as a measure of the amount of work being done by page reclaim.

Patch 2 accounts for time spent in congestion_wait.

Patches 3-6 were originally developed by Kosaki Motohiro but reworked for
this series.  It has been noted that lumpy reclaim is far too aggressive
and trashes the system somewhat.  As SLUB uses high-order allocations, a
large cost incurred by lumpy reclaim will be noticeable.  It was also
reported during transparent hugepage support testing that lumpy reclaim
was trashing the system and these patches should mitigate that problem
without disabling lumpy reclaim.

Patch 7 adds wait_iff_congested() and replaces some callers of
congestion_wait().  wait_iff_congested() only sleeps if there is a BDI
that is currently congested.  Patch 8 notes that any BDI being congested
is not necessarily a problem because there could be multiple BDIs of
varying speeds and numberous zones.  It attempts to track when a zone
being reclaimed contains many pages backed by a congested BDI and if so,
reclaimers wait on the congestion queue.

I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each
machine had 3G of RAM and the CPUs were

X86:    Intel P4 2-core
X86-64: AMD Phenom 4-core
PPC64:  PPC970MP

Each used a single disk and the onboard IO controller.  Dirty ratio was
left at 20.  I'm just going to report for X86-64 and PPC64 in a vague
attempt to keep this report short.  Four kernels were tested each based on
v2.6.36-rc4

traceonly-v2r2:     Patches 1 and 2 to instrument vmscan reclaims and congestion_wait
lowlumpy-v2r3:      Patches 1-6 to test if lumpy reclaim is better
waitcongest-v2r3:   Patches 1-7 to only wait on congestion
waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested

nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion
nodirect-v1r5:  Patches 1-10 to disable filesystem writeback for better IO

The tests run were as follows

kernbench
	compile-based benchmark. Smoke test performance

sysbench
	OLTP read-only benchmark. Will be re-run in the future as read-write

micro-mapped-file-stream
	This is a micro-benchmark from Johannes Weiner that accesses a
	large sparse-file through mmap(). It was configured to run in only
	single-CPU mode but can be indicative of how well page reclaim
	identifies suitable pages.

stress-highalloc
	Tries to allocate huge pages under heavy load.

kernbench, iozone and sysbench did not report any performance regression
on any machine.  sysbench did pressure the system lightly and there was
reclaim activity but there were no difference of major interest between
the kernels.

X86-64 micro-mapped-file-stream

                                      traceonly-v2r2           lowlumpy-v2r3        waitcongest-v2r3     waitwriteback-v2r4
pgalloc_dma                       1639.00 (   0.00%)       667.00 (-145.73%)      1167.00 ( -40.45%)       578.00 (-183.56%)
pgalloc_dma32                  2842410.00 (   0.00%)   2842626.00 (   0.01%)   2843043.00 (   0.02%)   2843014.00 (   0.02%)
pgalloc_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgsteal_dma                        729.00 (   0.00%)        85.00 (-757.65%)       609.00 ( -19.70%)       125.00 (-483.20%)
pgsteal_dma32                  2338721.00 (   0.00%)   2447354.00 (   4.44%)   2429536.00 (   3.74%)   2436772.00 (   4.02%)
pgsteal_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgscan_kswapd_dma                 1469.00 (   0.00%)       532.00 (-176.13%)      1078.00 ( -36.27%)       220.00 (-567.73%)
pgscan_kswapd_dma32            4597713.00 (   0.00%)   4503597.00 (  -2.09%)   4295673.00 (  -7.03%)   3891686.00 ( -18.14%)
pgscan_kswapd_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgscan_direct_dma                   71.00 (   0.00%)       134.00 (  47.01%)       243.00 (  70.78%)       352.00 (  79.83%)
pgscan_direct_dma32             305820.00 (   0.00%)    280204.00 (  -9.14%)    600518.00 (  49.07%)    957485.00 (  68.06%)
pgscan_direct_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pageoutrun                       16296.00 (   0.00%)     21254.00 (  23.33%)     18447.00 (  11.66%)     20067.00 (  18.79%)
allocstall                         443.00 (   0.00%)       273.00 ( -62.27%)       513.00 (  13.65%)      1568.00 (  71.75%)

These are based on the raw figures taken from /proc/vmstat.  It's a rough
measure of reclaim activity.  Note that allocstall counts are higher
because we are entering direct reclaim more often as a result of not
sleeping in congestion.  In itself, it's not necessarily a bad thing.
It's easier to get a view of what happened from the vmscan tracepoint
report.

FTrace Reclaim Statistics: vmscan

                                traceonly-v2r2   lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4
Direct reclaims                                443        273        513       1568
Direct reclaim pages scanned                305968     280402     600825     957933
Direct reclaim pages reclaimed               43503      19005      30327     117191
Direct reclaim write file async I/O              0          0          0          0
Direct reclaim write anon async I/O              0          3          4         12
Direct reclaim write file sync I/O               0          0          0          0
Direct reclaim write anon sync I/O               0          0          0          0
Wake kswapd requests                        187649     132338     191695     267701
Kswapd wakeups                                   3          1          4          1
Kswapd pages scanned                       4599269    4454162    4296815    3891906
Kswapd pages reclaimed                     2295947    2428434    2399818    2319706
Kswapd reclaim write file async I/O              1          0          1          1
Kswapd reclaim write anon async I/O             59        187         41        222
Kswapd reclaim write file sync I/O               0          0          0          0
Kswapd reclaim write anon sync I/O               0          0          0          0
Time stalled direct reclaim (seconds)         4.34       2.52       6.63       2.96
Time kswapd awake (seconds)                  11.15      10.25      11.01      10.19

Total pages scanned                        4905237   4734564   4897640   4849839
Total pages reclaimed                      2339450   2447439   2430145   2436897
%age total pages scanned/reclaimed          47.69%    51.69%    49.62%    50.25%
%age total pages scanned/written             0.00%     0.00%     0.00%     0.00%
%age  file pages scanned/written             0.00%     0.00%     0.00%     0.00%
Percentage Time Spent Direct Reclaim        29.23%    19.02%    38.48%    20.25%
Percentage Time kswapd Awake                78.58%    78.85%    76.83%    79.86%

What is interesting here for nocongest in particular is that while direct
reclaim scans more pages, the overall number of pages scanned remains the
same and the ratio of pages scanned to pages reclaimed is more or less the
same.  In other words, while we are sleeping less, reclaim is not doing
more work and as direct reclaim and kswapd is awake for less time, it
would appear to be doing less work.

FTrace Reclaim Statistics: congestion_wait
Direct number congest     waited                87        196         64          0
Direct time   congest     waited            4604ms     4732ms     5420ms        0ms
Direct full   congest     waited                72        145         53          0
Direct number conditional waited                 0          0        324       1315
Direct time   conditional waited               0ms        0ms        0ms        0ms
Direct full   conditional waited                 0          0          0          0
KSwapd number congest     waited                20         10         15          7
KSwapd time   congest     waited            1264ms      536ms      884ms      284ms
KSwapd full   congest     waited                10          4          6          2
KSwapd number conditional waited                 0          0          0          0
KSwapd time   conditional waited               0ms        0ms        0ms        0ms
KSwapd full   conditional waited                 0          0          0          0

The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at
all asleep with the patches.

MMTests Statistics: duration
User/Sys Time Running Test (seconds)         10.51     10.73      10.6     11.66
Total Elapsed Time (seconds)                 14.19     13.00     14.33     12.76

Overall, the tests completed faster. It is interesting to note that backing off further
when a zone is congested and not just a BDI was more efficient overall.

PPC64 micro-mapped-file-stream
pgalloc_dma                    3024660.00 (   0.00%)   3027185.00 (   0.08%)   3025845.00 (   0.04%)   3026281.00 (   0.05%)
pgalloc_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgsteal_dma                    2508073.00 (   0.00%)   2565351.00 (   2.23%)   2463577.00 (  -1.81%)   2532263.00 (   0.96%)
pgsteal_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgscan_kswapd_dma              4601307.00 (   0.00%)   4128076.00 ( -11.46%)   3912317.00 ( -17.61%)   3377165.00 ( -36.25%)
pgscan_kswapd_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgscan_direct_dma               629825.00 (   0.00%)    971622.00 (  35.18%)   1063938.00 (  40.80%)   1711935.00 (  63.21%)
pgscan_direct_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pageoutrun                       27776.00 (   0.00%)     20458.00 ( -35.77%)     18763.00 ( -48.04%)     18157.00 ( -52.98%)
allocstall                         977.00 (   0.00%)      2751.00 (  64.49%)      2098.00 (  53.43%)      5136.00 (  80.98%)

Similar trends to x86-64. allocstalls are up but it's not necessarily bad.

FTrace Reclaim Statistics: vmscan
Direct reclaims                                977       2709       2098       5136
Direct reclaim pages scanned                629825     963814    1063938    1711935
Direct reclaim pages reclaimed               75550     242538     150904     387647
Direct reclaim write file async I/O              0          0          0          2
Direct reclaim write anon async I/O              0         10          0          4
Direct reclaim write file sync I/O               0          0          0          0
Direct reclaim write anon sync I/O               0          0          0          0
Wake kswapd requests                        392119    1201712     571935     571921
Kswapd wakeups                                   3          2          3          3
Kswapd pages scanned                       4601307    4128076    3912317    3377165
Kswapd pages reclaimed                     2432523    2318797    2312673    2144616
Kswapd reclaim write file async I/O             20          1          1          1
Kswapd reclaim write anon async I/O             57        132         11        121
Kswapd reclaim write file sync I/O               0          0          0          0
Kswapd reclaim write anon sync I/O               0          0          0          0
Time stalled direct reclaim (seconds)         6.19       7.30      13.04      10.88
Time kswapd awake (seconds)                  21.73      26.51      25.55      23.90

Total pages scanned                        5231132   5091890   4976255   5089100
Total pages reclaimed                      2508073   2561335   2463577   2532263
%age total pages scanned/reclaimed          47.95%    50.30%    49.51%    49.76%
%age total pages scanned/written             0.00%     0.00%     0.00%     0.00%
%age  file pages scanned/written             0.00%     0.00%     0.00%     0.00%
Percentage Time Spent Direct Reclaim        18.89%    20.65%    32.65%    27.65%
Percentage Time kswapd Awake                72.39%    80.68%    78.21%    77.40%

Again, a similar trend that the congestion_wait changes mean that direct
reclaim scans more pages but the overall number of pages scanned while
slightly reduced, are very similar.  The ratio of scanning/reclaimed
remains roughly similar.  The downside is that kswapd and direct reclaim
was awake longer and for a larger percentage of the overall workload.
It's possible there were big differences in the amount of time spent
reclaiming slab pages between the different kernels which is plausible
considering that the micro tests runs after fsmark and sysbench.

Trace Reclaim Statistics: congestion_wait
Direct number congest     waited               845       1312        104          0
Direct time   congest     waited           19416ms    26560ms     7544ms        0ms
Direct full   congest     waited               745       1105         72          0
Direct number conditional waited                 0          0       1322       2935
Direct time   conditional waited               0ms        0ms       12ms      312ms
Direct full   conditional waited                 0          0          0          3
KSwapd number congest     waited                39        102         75         63
KSwapd time   congest     waited            2484ms     6760ms     5756ms     3716ms
KSwapd full   congest     waited                20         48         46         25
KSwapd number conditional waited                 0          0          0          0
KSwapd time   conditional waited               0ms        0ms        0ms        0ms
KSwapd full   conditional waited                 0          0          0          0

The vanilla kernel spent 20 seconds asleep in direct reclaim and only
312ms asleep with the patches.  The time kswapd spent congest waited was
also reduced by a large factor.

MMTests Statistics: duration
ser/Sys Time Running Test (seconds)         26.58     28.05      26.9     28.47
Total Elapsed Time (seconds)                 30.02     32.86     32.67     30.88

With all patches applies, the completion times are very similar.

X86-64 STRESS-HIGHALLOC
                traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
Pass 1          82.00 ( 0.00%)    84.00 ( 2.00%)    85.00 ( 3.00%)    85.00 ( 3.00%)
Pass 2          90.00 ( 0.00%)    87.00 (-3.00%)    88.00 (-2.00%)    89.00 (-1.00%)
At Rest         92.00 ( 0.00%)    90.00 (-2.00%)    90.00 (-2.00%)    91.00 (-1.00%)

Success figures across the board are broadly similar.

                traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
Direct reclaims                               1045        944        886        887
Direct reclaim pages scanned                135091     119604     109382     101019
Direct reclaim pages reclaimed               88599      47535      47863      46671
Direct reclaim write file async I/O            494        283        465        280
Direct reclaim write anon async I/O          29357      13710      16656      13462
Direct reclaim write file sync I/O             154          2          2          3
Direct reclaim write anon sync I/O           14594        571        509        561
Wake kswapd requests                          7491        933        872        892
Kswapd wakeups                                 814        778        731        780
Kswapd pages scanned                       7290822   15341158   11916436   13703442
Kswapd pages reclaimed                     3587336    3142496    3094392    3187151
Kswapd reclaim write file async I/O          91975      32317      28022      29628
Kswapd reclaim write anon async I/O        1992022     789307     829745     849769
Kswapd reclaim write file sync I/O               0          0          0          0
Kswapd reclaim write anon sync I/O               0          0          0          0
Time stalled direct reclaim (seconds)      4588.93    2467.16    2495.41    2547.07
Time kswapd awake (seconds)                2497.66    1020.16    1098.06    1176.82

Total pages scanned                        7425913  15460762  12025818  13804461
Total pages reclaimed                      3675935   3190031   3142255   3233822
%age total pages scanned/reclaimed          49.50%    20.63%    26.13%    23.43%
%age total pages scanned/written            28.66%     5.41%     7.28%     6.47%
%age  file pages scanned/written             1.25%     0.21%     0.24%     0.22%
Percentage Time Spent Direct Reclaim        57.33%    42.15%    42.41%    42.99%
Percentage Time kswapd Awake                43.56%    27.87%    29.76%    31.25%

Scanned/reclaimed ratios again look good with big improvements in
efficiency.  The Scanned/written ratios also look much improved.  With a
better scanned/written ration, there is an expectation that IO would be
more efficient and indeed, the time spent in direct reclaim is much
reduced by the full series and kswapd spends a little less time awake.

Overall, indications here are that allocations were happening much faster
and this can be seen with a graph of the latency figures as the
allocations were taking place
http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps

FTrace Reclaim Statistics: congestion_wait
Direct number congest     waited              1333        204        169          4
Direct time   congest     waited           78896ms     8288ms     7260ms      200ms
Direct full   congest     waited               756         92         69          2
Direct number conditional waited                 0          0         26        186
Direct time   conditional waited               0ms        0ms        0ms     2504ms
Direct full   conditional waited                 0          0          0         25
KSwapd number congest     waited                 4        395        227        282
KSwapd time   congest     waited             384ms    25136ms    10508ms    18380ms
KSwapd full   congest     waited                 3        232         98        176
KSwapd number conditional waited                 0          0          0          0
KSwapd time   conditional waited               0ms        0ms        0ms        0ms
KSwapd full   conditional waited                 0          0          0          0
KSwapd full   conditional waited               318          0        312          9

Overall, the time spent speeping is reduced.  kswapd is still hitting
congestion_wait() but that is because there are callers remaining where it
wasn't clear in advance if they should be changed to wait_iff_congested()
or not.  Overall the sleep imes are reduced though - from 79ish seconds to
about 19.

MMTests Statistics: duration
User/Sys Time Running Test (seconds)       3415.43   3386.65   3388.39    3377.5
Total Elapsed Time (seconds)               5733.48   3660.33   3689.41   3765.39

With the full series, the time to complete the tests are reduced by 30%

PPC64 STRESS-HIGHALLOC
                traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
Pass 1          17.00 ( 0.00%)    34.00 (17.00%)    38.00 (21.00%)    43.00 (26.00%)
Pass 2          25.00 ( 0.00%)    37.00 (12.00%)    42.00 (17.00%)    46.00 (21.00%)
At Rest         49.00 ( 0.00%)    43.00 (-6.00%)    45.00 (-4.00%)    51.00 ( 2.00%)

Success rates there are *way* up particularly considering that the 16MB
huge pages on PPC64 mean that it's always much harder to allocate them.

FTrace Reclaim Statistics: vmscan
              stress-highalloc  stress-highalloc  stress-highalloc  stress-highalloc
                traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
Direct reclaims                                499        505        564        509
Direct reclaim pages scanned                223478      41898      51818      45605
Direct reclaim pages reclaimed              137730      21148      27161      23455
Direct reclaim write file async I/O            399        136        162        136
Direct reclaim write anon async I/O          46977       2865       4686       3998
Direct reclaim write file sync I/O              29          0          1          3
Direct reclaim write anon sync I/O           31023        159        237        239
Wake kswapd requests                           420        351        360        326
Kswapd wakeups                                 185        294        249        277
Kswapd pages scanned                      15703488   16392500   17821724   17598737
Kswapd pages reclaimed                     5808466    2908858    3139386    3145435
Kswapd reclaim write file async I/O         159938      18400      18717      13473
Kswapd reclaim write anon async I/O        3467554     228957     322799     234278
Kswapd reclaim write file sync I/O               0          0          0          0
Kswapd reclaim write anon sync I/O               0          0          0          0
Time stalled direct reclaim (seconds)      9665.35    1707.81    2374.32    1871.23
Time kswapd awake (seconds)                9401.21    1367.86    1951.75    1328.88

Total pages scanned                       15926966  16434398  17873542  17644342
Total pages reclaimed                      5946196   2930006   3166547   3168890
%age total pages scanned/reclaimed          37.33%    17.83%    17.72%    17.96%
%age total pages scanned/written            23.27%     1.52%     1.94%     1.43%
%age  file pages scanned/written             1.01%     0.11%     0.11%     0.08%
Percentage Time Spent Direct Reclaim        44.55%    35.10%    41.42%    36.91%
Percentage Time kswapd Awake                86.71%    43.58%    52.67%    41.14%

While the scanning rates are slightly up, the scanned/reclaimed and
scanned/written figures are much improved.  The time spent in direct
reclaim and with kswapd are massively reduced, mostly by the lowlumpy
patches.

FTrace Reclaim Statistics: congestion_wait
Direct number congest     waited               725        303        126          3
Direct time   congest     waited           45524ms     9180ms     5936ms      300ms
Direct full   congest     waited               487        190         52          3
Direct number conditional waited                 0          0        200        301
Direct time   conditional waited               0ms        0ms        0ms     1904ms
Direct full   conditional waited                 0          0          0         19
KSwapd number congest     waited                 0          2         23          4
KSwapd time   congest     waited               0ms      200ms      420ms      404ms
KSwapd full   congest     waited                 0          2          2          4
KSwapd number conditional waited                 0          0          0          0
KSwapd time   conditional waited               0ms        0ms        0ms        0ms
KSwapd full   conditional waited                 0          0          0          0

Not as dramatic a story here but the time spent asleep is reduced and we
can still see what wait_iff_congested is going to sleep when necessary.

MMTests Statistics: duration
User/Sys Time Running Test (seconds)      12028.09   3157.17   3357.79   3199.16
Total Elapsed Time (seconds)              10842.07   3138.72   3705.54   3229.85

The time to complete this test goes way down.  With the full series, we
are allocating over twice the number of huge pages in 30% of the time and
there is a corresponding impact on the allocation latency graph available
at.

http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps

This patch:

Add a trace event for shrink_inactive_list() and updates the sample
postprocessing script appropriately.  It can be used to determine how many
pages were reclaimed and for non-lumpy reclaim where exactly the pages
were reclaimed from.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
Shaohua Li
66d9a986cd vmscan: delete dead code
`priority' cannot be negative here.  And the comment is obsolete.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
Minchan Kim
74e3f3c339 vmscan: prevent background aging of anon page in no swap system
Ying Han reported that backing aging of anon pages in no swap system
causes unnecessary TLB flush.

When I sent a patch(69c8548175), I wanted this patch but Rik pointed out
and allowed aging of anon pages to give a chance to promote from inactive
to active LRU.

It has a two problem.

1) non-swap system

Never make sense to age anon pages.

2) swap configured but still doesn't swapon

It doesn't make sense to age anon pages until swap-on time.  But it's
arguable.  If we have aged anon pages by swapon, VM have moved anon pages
from active to inactive.  And in the time swapon by admin, the VM can't
reclaim hot pages so we can protect hot pages swapout.

But let's think about it.  When does swap-on happen?  It depends on admin.
 we can't expect it.  Nonetheless, we have done aging of anon pages to
protect hot pages swapout.  It means we lost run time overhead when below
high watermark but gain hot page swap-[in/out] overhead when VM decide
swapout.  Is it true?  Let's think more detail.  We don't promote anon
pages in case of non-swap system.  So even though VM does aging of anon
pages, the pages would be in inactive LRU for a long time.  It means many
of pages in there would mark access bit again.  So access bit hot/code
separation would be pointless.

This patch prevents unnecessary anon pages demotion in not-yet-swapon and
non-configured swap system.  Even, in non-configuared swap system
inactive_anon_is_low can be compiled out.

It could make side effect that hot anon pages could swap out when admin
does swap on.  But I think sooner or later it would be steady state.  So
it's not a big problem.

We could lose someting but gain more thing(TLB flush and unnecessary
function call to demote anon pages).

Signed-off-by: Ying Han <yinghan@google.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Thadeu Lima de Souza Cascardo
e4455abb50 mm: only build per-node scan_unevictable functions when NUMA is enabled
Non-NUMA systems do never create these files anyway, since they are only
created by driver subsystem when NUMA is configured.

[akpm@linux-foundation.org: cleanup]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@holoscopio.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
Wu Fengguang
1b430beee5 writeback: remove nonblocking/encountered_congestion references
This removes more dead code that was somehow missed by commit 0d99519efe
(writeback: remove unused nonblocking and congestion checks).  There are
no behavior change except for the removal of two entries from one of the
ext4 tracing interface.

The nonblocking checks in ->writepages are no longer used because the
flusher now prefer to block on get_request_wait() than to skip inodes on
IO congestion.  The latter will lead to more seeky IO.

The nonblocking checks in ->writepage are no longer used because it's
redundant with the WB_SYNC_NONE check.

We no long set ->nonblocking in VM page out and page migration, because
a) it's effectively redundant with WB_SYNC_NONE in current code
b) it's old semantic of "Don't get stuck on request queues" is mis-behavior:
   that would skip some dirty inodes on congestion and page out others, which
   is unfair in terms of LRU age.

Inspired by Christoph Hellwig. Thanks!

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: David Howells <dhowells@redhat.com>
Cc: Sage Weil <sage@newdream.net>
Cc: Steve French <sfrench@samba.org>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
Linus Torvalds
229aebb873 Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
  Update broken web addresses in arch directory.
  Update broken web addresses in the kernel.
  Revert "drivers/usb: Remove unnecessary return's from void functions" for musb gadget
  Revert "Fix typo: configuation => configuration" partially
  ida: document IDA_BITMAP_LONGS calculation
  ext2: fix a typo on comment in ext2/inode.c
  drivers/scsi: Remove unnecessary casts of private_data
  drivers/s390: Remove unnecessary casts of private_data
  net/sunrpc/rpc_pipe.c: Remove unnecessary casts of private_data
  drivers/infiniband: Remove unnecessary casts of private_data
  drivers/gpu/drm: Remove unnecessary casts of private_data
  kernel/pm_qos_params.c: Remove unnecessary casts of private_data
  fs/ecryptfs: Remove unnecessary casts of private_data
  fs/seq_file.c: Remove unnecessary casts of private_data
  arm: uengine.c: remove C99 comments
  arm: scoop.c: remove C99 comments
  Fix typo configue => configure in comments
  Fix typo: configuation => configuration
  Fix typo interrest[ing|ed] => interest[ing|ed]
  Fix various typos of valid in comments
  ...

Fix up trivial conflicts in:
	drivers/char/ipmi/ipmi_si_intf.c
	drivers/usb/gadget/rndis.c
	net/irda/irnet/irnet_ppp.c
2010-10-24 13:41:39 -07:00
Minchan Kim
d1908362ae vmscan: check all_unreclaimable in direct reclaim path
M.  Vefa Bicakci reported 2.6.35 kernel hang up when hibernation on his
32bit 3GB mem machine.
(https://bugzilla.kernel.org/show_bug.cgi?id=16771). Also he bisected
the regression to

  commit bb21c7ce18
  Author: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
  Date:   Fri Jun 4 14:15:05 2010 -0700

     vmscan: fix do_try_to_free_pages() return value when priority==0 reclaim failure

At first impression, this seemed very strange because the above commit
only chenged function return value and hibernate_preallocate_memory()
ignore return value of shrink_all_memory().  But it's related.

Now, page allocation from hibernation code may enter infinite loop if the
system has highmem.  The reasons are that vmscan don't care enough OOM
case when oom_killer_disabled.

The problem sequence is following as.

1. hibernation
2. oom_disable
3. alloc_pages
4. do_try_to_free_pages
       if (scanning_global_lru(sc) && !all_unreclaimable)
               return 1;

If kswapd is not freozen, it would set zone->all_unreclaimable to 1 and
then shrink_zones maybe return true(ie, all_unreclaimable is true).  So at
last, alloc_pages could go to _nopage_.  If it is, it should have no
problem.

This patch adds all_unreclaimable check to protect in direct reclaim path,
too.  It can care of hibernation OOM case and help bailout
all_unreclaimable case slightly.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reported-by: M. Vefa Bicakci <bicave@superonline.com>
Reported-by: <caiqian@redhat.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: <caiqian@redhat.com>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-22 17:22:39 -07:00
Nikanth Karthikesan
415b54e37a Fix typo s/contenious/continuous in comment
Fix typo s/contenious/continuous in comment.

Signed-off-by: Nikanth Karthikesan <knikanth@suse.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-08-18 10:22:24 +02:00
KOSAKI Motohiro
00918b6ab8 memcg: remove nid and zid argument from mem_cgroup_soft_limit_reclaim()
mem_cgroup_soft_limit_reclaim() has zone, nid and zid argument.  but nid
and zid can be calculated from zone.  So remove it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 08:59:19 -07:00
KOSAKI Motohiro
14fec79680 memcg: mem_cgroup_shrink_node_zone() doesn't need sc.nodemask
Currently mem_cgroup_shrink_node_zone() call shrink_zone() directly.  thus
it doesn't need to initialize sc.nodemask because shrink_zone() doesn't
use it at all.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 08:59:19 -07:00
KOSAKI Motohiro
da280d636b memcg: kill unnecessary initialization in mem_cgroup_shrink_node_zone()
sc.nr_reclaimed and sc.nr_scanned have already been initialized few lines
above "struct scan_control sc = {}" statement.

So, This patch remove this unnecessary code.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 08:59:19 -07:00
KOSAKI Motohiro
b8f5c5664d memcg: sc.nr_to_reclaim should be initialized
Currently, mem_cgroup_shrink_node_zone() initialize sc.nr_to_reclaim as 0.
 It mean shrink_zone() only scan 32 pages and immediately return even if
it doesn't reclaim any pages.

This patch fixes it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 08:59:19 -07:00
Wu Fengguang
e31f3698cd vmscan: raise the bar to PAGEOUT_IO_SYNC stalls
Fix "system goes unresponsive under memory pressure and lots of
dirty/writeback pages" bug.

	http://lkml.org/lkml/2010/4/4/86

In the above thread, Andreas Mohr described that

	Invoking any command locked up for minutes (note that I'm
	talking about attempted additional I/O to the _other_,
	_unaffected_ main system HDD - such as loading some shell
	binaries -, NOT the external SSD18M!!).

This happens when the two conditions are both meet:
- under memory pressure
- writing heavily to a slow device

OOM also happens in Andreas' system.  The OOM trace shows that 3 processes
are stuck in wait_on_page_writeback() in the direct reclaim path.  One in
do_fork() and the other two in unix_stream_sendmsg().  They are blocked on
this condition:

	(sc->order && priority < DEF_PRIORITY - 2)

which was introduced in commit 78dc583d (vmscan: low order lumpy reclaim
also should use PAGEOUT_IO_SYNC) one year ago.  That condition may be too
permissive.  In Andreas' case, 512MB/1024 = 512KB.  If the direct reclaim
for the order-1 fork() allocation runs into a range of 512KB
hard-to-reclaim LRU pages, it will be stalled.

It's a severe problem in three ways.

Firstly, it can easily happen in daily desktop usage.  vmscan priority can
easily go below (DEF_PRIORITY - 2) on _local_ memory pressure.  Even if
the system has 50% globally reclaimable pages, it still has good
opportunity to have 0.1% sized hard-to-reclaim ranges.  For example, a
simple dd can easily create a big range (up to 20%) of dirty pages in the
LRU lists.  And order-1 to order-3 allocations are more than common with
SLUB.  Try "grep -v '1 :' /proc/slabinfo" to get the list of high order
slab caches.  For example, the order-1 radix_tree_node slab cache may
stall applications at swap-in time; the order-3 inode cache on most
filesystems may stall applications when trying to read some file; the
order-2 proc_inode_cache may stall applications when trying to open a
/proc file.

Secondly, once triggered, it will stall unrelated processes (not doing IO
at all) in the system.  This "one slow USB device stalls the whole system"
avalanching effect is very bad.

Thirdly, once stalled, the stall time could be intolerable long for the
users.  When there are 20MB queued writeback pages and USB 1.1 is writing
them in 1MB/s, wait_on_page_writeback() will stuck for up to 20 seconds.
Not to mention it may be called multiple times.

So raise the bar to only enable PAGEOUT_IO_SYNC when priority goes below
DEF_PRIORITY/3, or 6.25% LRU size.  As the default dirty throttle ratio is
20%, it will hardly be triggered by pure dirty pages.  We'd better treat
PAGEOUT_IO_SYNC as some last resort workaround -- its stall time is so
uncomfortably long (easily goes beyond 1s).

The bar is only raised for (order < PAGE_ALLOC_COSTLY_ORDER) allocations,
which are easy to satisfy in 1TB memory boxes.  So, although 6.25% of
memory could be an awful lot of pages to scan on a system with 1TB of
memory, it won't really have to busy scan that much.

Andreas tested an older version of this patch and reported that it mostly
fixed his problem.  Mel Gorman helped improve it and KOSAKI Motohiro will
fix it further in the next patch.

Reported-by: Andreas Mohr <andi@lisas.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:03 -07:00
KOSAKI Motohiro
bdce6d9ebf memcg, vmscan: add memcg reclaim tracepoint
Memcg also need to trace reclaim progress as direct reclaim.  This patch
add it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:03 -07:00
KOSAKI Motohiro
4dc4b3d971 vmscan: shrink_slab() requires the number of lru_pages, not the page order
Presently shrink_slab() has the following scanning equation.

                            lru_scanned        max_pass
  basic_scan_objects = 4 x -------------  x -----------------------------
                            lru_pages        shrinker->seeks (default:2)

  scan_objects = min(basic_scan_objects, max_pass * 2)

If we pass very small value as lru_pages instead real number of lru pages,
shrink_slab() drop much objects rather than necessary.  And now,
__zone_reclaim() pass 'order' as lru_pages by mistake.  That produces a
bad result.

For example, if we receive very low memory pressure (scan = 32, order =
0), shrink_slab() via zone_reclaim() always drop _all_ icache/dcache
objects.  (see above equation, very small lru_pages make very big
scan_objects result).

This patch fixes it.

[akpm@linux-foundation.org: fix layout, typos]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:03 -07:00
KOSAKI Motohiro
58c37f6e0d vmscan: protect reading of reclaim_stat with lru_lock
Rik van Riel pointed out reading reclaim_stat should be protected
lru_lock, otherwise vmscan might sweep 2x much pages.

This fault was introduced by

  commit 4f98a2fee8
  Author: Rik van Riel <riel@redhat.com>
  Date:   Sat Oct 18 20:26:32 2008 -0700

    vmscan: split LRU lists into anon & file sets

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:02 -07:00
KOSAKI Motohiro
1574804899 vmscan: avoid subtraction of unsigned types
'slab_reclaimable' and 'nr_pages' are unsigned.  Subtraction is unsafe
because negative results would be misinterpreted.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:02 -07:00
Mel Gorman
1489fa14cb vmscan: update isolated page counters outside of main path in shrink_inactive_list()
When shrink_inactive_list() isolates pages, it updates a number of
counters using temporary variables to gather them.  These consume stack
and it's in the main path that calls ->writepage().  This patch moves the
accounting updates outside of the main path to reduce stack usage.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
Mel Gorman
abe4c3b50c vmscan: set up pagevec as late as possible in shrink_page_list()
shrink_page_list() sets up a pagevec to release pages as according as they
are free.  It uses significant amounts of stack on the pagevec.  This
patch adds pages to be freed via pagevec to a linked list which is then
freed en-masse at the end.  This avoids using stack in the main path that
potentially calls writepage().

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
Mel Gorman
666356297e vmscan: set up pagevec as late as possible in shrink_inactive_list()
shrink_inactive_list() sets up a pagevec to release unfreeable pages.  It
uses significant amounts of stack doing this.  This patch splits
shrink_inactive_list() to take the stack usage out of the main path so
that callers to writepage() do not contain an unused pagevec on the stack.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
Mel Gorman
d4debc66d1 vmscan: remove unnecessary temporary vars in do_try_to_free_pages
Remove temporary variable that is only used once and does not help clarify
code.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
KOSAKI Motohiro
e247dbce5c vmscan: simplify shrink_inactive_list()
Now, max_scan of shrink_inactive_list() is always passed less than
SWAP_CLUSTER_MAX.  then, we can remove scanning pages loop in it.  This
patch also help stack diet.

detail
 - remove "while (nr_scanned < max_scan)" loop
 - remove nr_freed (now, we use nr_reclaimed directly)
 - remove nr_scan (now, we use nr_scanned directly)
 - rename max_scan to nr_to_scan
 - pass nr_to_scan into isolate_pages() directly instead
   using SWAP_CLUSTER_MAX

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
KOSAKI Motohiro
25edde0332 vmscan: kill prev_priority completely
Since 2.6.28 zone->prev_priority is unused. Then it can be removed
safely. It reduce stack usage slightly.

Now I have to say that I'm sorry. 2 years ago, I thought prev_priority
can be integrate again, it's useful. but four (or more) times trying
haven't got good performance number. Thus I give up such approach.

The rest of this changelog is notes on prev_priority and why it existed in
the first place and why it might be not necessary any more. This information
is based heavily on discussions between Andrew Morton, Rik van Riel and
Kosaki Motohiro who is heavily quotes from.

Historically prev_priority was important because it determined when the VM
would start unmapping PTE pages. i.e. there are no balances of note within
the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there
is a potential risk of unnecessarily increasing minor faults as a large
amount of read activity of use-once pages could push mapped pages to the
end of the LRU and get unmapped.

There is no proof this is still a problem but currently it is not considered
to be. Active files are not deactivated if the active file list is smaller
than the inactive list reducing the liklihood that file-mapped pages are
being pushed off the LRU and referenced executable pages are kept on the
active list to avoid them getting pushed out by read activity.

Even if it is a problem, prev_priority prev_priority wouldn't works
nowadays. First of all, current vmscan still a lot of UP centric code. it
expose some weakness on some dozens CPUs machine. I think we need more and
more improvement.

The problem is, current vmscan mix up per-system-pressure, per-zone-pressure
and per-task-pressure a bit. example, prev_priority try to boost priority to
other concurrent priority. but if the another task have mempolicy restriction,
it is unnecessary, but also makes wrong big latency and exceeding reclaim.
per-task based priority + prev_priority adjustment make the emulation of
per-system pressure. but it have two issue 1) too rough and brutal emulation
2) we need per-zone pressure, not per-system.

Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about
2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer.
but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the
system have higher memory pressure than priority==0 (1/4096*10,000 > 2).
prev_priority can't solve such multithreads workload issue. In other word,
prev_priority concept assume the sysmtem don't have lots threads."

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
Mel Gorman
755f0225e8 vmscan: tracing: add trace event when a page is written
Add a trace event for when page reclaim queues a page for IO and records
whether it is synchronous or asynchronous.  Excessive synchronous IO for a
process can result in noticeable stalls during direct reclaim.  Excessive
IO from page reclaim may indicate that the system is seriously under
provisioned for the amount of dirty pages that exist.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
Mel Gorman
a8a94d1515 vmscan: tracing: add trace events for LRU page isolation
Add an event for when pages are isolated en-masse from the LRU lists.
This event augments the information available on LRU traffic and can be
used to evaluate lumpy reclaim.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:59 -07:00
Mel Gorman
33906bc5c8 vmscan: tracing: add trace events for kswapd wakeup, sleeping and direct reclaim
Add two trace events for kswapd waking up and going asleep for the
purposes of tracking kswapd activity and two trace events for direct
reclaim beginning and ending.  The information can be used to work out how
much time a process or the system is spending on the reclamation of pages
and in the case of direct reclaim, how many pages were reclaimed for that
process.  High frequency triggering of these events could point to memory
pressure problems.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:59 -07:00
KOSAKI Motohiro
c6a8a8c589 vmscan: recalculate lru_pages on each priority
shrink_zones() need relatively long time and lru_pages can change
dramatically during shrink_zones().  So lru_pages should be recalculated
for each priority.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:59 -07:00
KOSAKI Motohiro
b00d3ea7cf vmscan: zone_reclaim don't call disable_swap_token()
Swap token don't works when zone reclaim is enabled since it was born.
Because __zone_reclaim() always call disable_swap_token() unconditionally.

This kill swap token feature completely.  As far as I know, nobody want to
that.  Remove it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:59 -07:00
Nick Piggin
a6aa62a090 mm/vmscan.c: fix mapping use after free
We need lock_page_nosync() here because we have no reference to the
mapping when taking the page lock.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 16:25:40 -07:00
Dave Chinner
7f8275d0d6 mm: add context argument to shrinker callback
The current shrinker implementation requires the registered callback
to have global state to work from. This makes it difficult to shrink
caches that are not global (e.g. per-filesystem caches). Pass the shrinker
structure to the callback so that users can embed the shrinker structure
in the context the shrinker needs to operate on and get back to it in the
callback via container_of().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-07-19 14:56:17 +10:00
KOSAKI Motohiro
bb21c7ce18 vmscan: fix do_try_to_free_pages() return value when priority==0 reclaim failure
Greg Thelen reported recent Johannes's stack diet patch makes kernel hang.
 His test is following.

  mount -t cgroup none /cgroups -o memory
  mkdir /cgroups/cg1
  echo $$ > /cgroups/cg1/tasks
  dd bs=1024 count=1024 if=/dev/null of=/data/foo
  echo $$ > /cgroups/tasks
  echo 1 > /cgroups/cg1/memory.force_empty

Actually, This OOM hard to try logic have been corrupted since following
two years old patch.

	commit a41f24ea9f
	Author: Nishanth Aravamudan <nacc@us.ibm.com>
	Date:   Tue Apr 29 00:58:25 2008 -0700

	    page allocator: smarter retry of costly-order allocations

Original intention was "return success if the system have shrinkable zones
though priority==0 reclaim was failure".  But the above patch changed to
"return nr_reclaimed if .....".  Oh, That forgot nr_reclaimed may be 0 if
priority==0 reclaim failure.

And Johannes's patch 0aeb2339e5 ("vmscan: remove all_unreclaimable scan
control") made it more corrupt.  Originally, priority==0 reclaim failure
on memcg return 0, but this patch changed to return 1.  It totally
confused memcg.

This patch fixes it completely.

Reported-by: Greg Thelen <gthelen@google.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Greg Thelen <gthelen@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-06-04 15:21:45 -07:00
Johannes Weiner
8b25c6d223 vmscan: remove isolate_pages callback scan control
For now, we have global isolation vs.  memory control group isolation, do
not allow the reclaim entry function to set an arbitrary page isolation
callback, we do not need that flexibility.

And since we already pass around the group descriptor for the memory
control group isolation case, just use it to decide which one of the two
isolator functions to use.

The decisions can be merged into nearby branches, so no extra cost there.
In fact, we save the indirect calls.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:00 -07:00
Johannes Weiner
0aeb2339e5 vmscan: remove all_unreclaimable scan control
This scan control is abused to communicate a return value from
shrink_zones().  Write this idiomatically and remove the knob.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:00 -07:00
KOSAKI Motohiro
5f53e76299 vmscan: page_check_references(): check low order lumpy reclaim properly
If vmscan is under lumpy reclaim mode, it have to ignore referenced bit
for making contenious free pages.  but current page_check_references()
doesn't.

Fix it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:00 -07:00
Shaohua Li
76a33fc380 vmscan: prevent get_scan_ratio() rounding errors
get_scan_ratio() calculates percentage and if the percentage is < 1%, it
will round percentage down to 0% and cause we completely ignore scanning
anon/file pages to reclaim memory even the total anon/file pages are very
big.

To avoid underflow, we don't use percentage, instead we directly calculate
how many pages should be scaned.  In this way, we should get several
scanned pages for < 1% percent.

This has some benefits:

1. increase our calculation precision

2.  making our scan more smoothly.  Without this, if percent[x] is
   underflow, shrink_zone() doesn't scan any pages and suddenly it scans
   all pages when priority is zero.  With this, even priority isn't zero,
   shrink_zone() gets chance to scan some pages.

Note, this patch doesn't really change logics, but just increase
precision.  For system with a lot of memory, this might slightly changes
behavior.  For example, in a sequential file read workload, without the
patch, we don't swap any anon pages.  With it, if anon memory size is
bigger than 16G, we will see one anon page swapped.  The 16G is calculated
as PAGE_SIZE * priority(4096) * (fp/ap).  fp/ap is assumed to be 1024
which is common in this workload.  So the impact sounds not a big deal.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:00 -07:00
Mel Gorman
c175a0ce75 mm: move definition for LRU isolation modes to a header
Currently, vmscan.c defines the isolation modes for __isolate_lru_page().
Memory compaction needs access to these modes for isolating pages for
migration.  This patch exports them.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:59 -07:00
Miao Xie
c0ff7453bb cpuset,mm: fix no node to alloc memory when changing cpuset's mems
Before applying this patch, cpuset updates task->mems_allowed and
mempolicy by setting all new bits in the nodemask first, and clearing all
old unallowed bits later.  But in the way, the allocator may find that
there is no node to alloc memory.

The reason is that cpuset rebinds the task's mempolicy, it cleans the
nodes which the allocater can alloc pages on, for example:

(mpol: mempolicy)
	task1			task1's mpol	task2
	alloc page		1
	  alloc on node0? NO	1
				1		change mems from 1 to 0
				1		rebind task1's mpol
				0-1		  set new bits
				0	  	  clear disallowed bits
	  alloc on node1? NO	0
	  ...
	can't alloc page
	  goto oom

This patch fixes this problem by expanding the nodes range first(set newly
allowed bits) and shrink it lazily(clear newly disallowed bits).  So we
use a variable to tell the write-side task that read-side task is reading
nodemask, and the write-side task clears newly disallowed nodes after
read-side task ends the current memory allocation.

[akpm@linux-foundation.org: fix spello]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:57 -07:00
KOSAKI Motohiro
d6da1a5abc mm: revert "vmscan: get_scan_ratio() cleanup"
Shaohua Li reported his tmpfs streaming I/O test can lead to make oom.
The test uses a 6G tmpfs in a system with 3G memory.  In the tmpfs, there
are 6 copies of kernel source and the test does kbuild for each copy.  His
investigation shows the test has a lot of rotated anon pages and quite few
file pages, so get_scan_ratio calculates percent[0] (i.e.  scanning
percent for anon) to be zero.  Actually the percent[0] shoule be a big
value, but our calculation round it to zero.

Although before commit 84b18490 ("vmscan: get_scan_ratio() cleanup") , we
have the same problem too.  But the old logic can rescue percent[0]==0
case only when priority==0.  It had hided the real issue.  I didn't think
merely streaming io can makes percent[0]==0 && priority==0 situation.  but
I was wrong.

So, definitely we have to fix such tmpfs streaming io issue.  but anyway I
revert the regression commit at first.

This reverts commit 84b18490d1.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-07 08:38:03 -07:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Johannes Weiner
6457474624 vmscan: detect mapped file pages used only once
The VM currently assumes that an inactive, mapped and referenced file page
is in use and promotes it to the active list.

However, every mapped file page starts out like this and thus a problem
arises when workloads create a stream of such pages that are used only for
a short time.  By flooding the active list with those pages, the VM
quickly gets into trouble finding eligible reclaim canditates.  The result
is long allocation latencies and eviction of the wrong pages.

This patch reuses the PG_referenced page flag (used for unmapped file
pages) to implement a usage detection that scales with the speed of LRU
list cycling (i.e.  memory pressure).

If the scanner encounters those pages, the flag is set and the page cycled
again on the inactive list.  Only if it returns with another page table
reference it is activated.  Otherwise it is reclaimed as 'not recently
used cache'.

This effectively changes the minimum lifetime of a used-once mapped file
page from a full memory cycle to an inactive list cycle, which allows it
to occur in linear streams without affecting the stable working set of the
system.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: OSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:27 -08:00
Johannes Weiner
31c0569c3b vmscan: drop page_mapping_inuse()
page_mapping_inuse() is a historic predicate function for pages that are
about to be reclaimed or deactivated.

According to it, a page is in use when it is mapped into page tables OR
part of swap cache OR backing an mmapped file.

This function is used in combination with page_referenced(), which checks
for young bits in ptes and the page descriptor itself for the
PG_referenced bit.  Thus, checking for unmapped swap cache pages is
meaningless as PG_referenced is not set for anonymous pages and unmapped
pages do not have young ptes.  The test makes no difference.

Protecting file pages that are not by themselves mapped but are part of a
mapped file is also a historic leftover for short-lived things like the
exec() code in libc.  However, the VM now does reference accounting and
activation of pages at unmap time and thus the special treatment on
reclaim is obsolete.

This patch drops page_mapping_inuse() and switches the two callsites to
use page_mapped() directly.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: OSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:27 -08:00
Johannes Weiner
dfc8d636cd vmscan: factor out page reference checks
The used-once mapped file page detection patchset.

It is meant to help workloads with large amounts of shortly used file
mappings, like rtorrent hashing a file or git when dealing with loose
objects (git gc on a bigger site?).

Right now, the VM activates referenced mapped file pages on first
encounter on the inactive list and it takes a full memory cycle to
reclaim them again.  When those pages dominate memory, the system
no longer has a meaningful notion of 'working set' and is required
to give up the active list to make reclaim progress.  Obviously,
this results in rather bad scanning latencies and the wrong pages
being reclaimed.

This patch makes the VM be more careful about activating mapped file
pages in the first place.  The minimum granted lifetime without
another memory access becomes an inactive list cycle instead of the
full memory cycle, which is more natural given the mentioned loads.

This test resembles a hashing rtorrent process.  Sequentially, 32MB
chunks of a file are mapped into memory, hashed (sha1) and unmapped
again.  While this happens, every 5 seconds a process is launched and
its execution time taken:

	python2.4 -c 'import pydoc'
	old: max=2.31s mean=1.26s (0.34)
	new: max=1.25s mean=0.32s (0.32)

	find /etc -type f
	old: max=2.52s mean=1.44s (0.43)
	new: max=1.92s mean=0.12s (0.17)

	vim -c ':quit'
	old: max=6.14s mean=4.03s (0.49)
	new: max=3.48s mean=2.41s (0.25)

	mplayer --help
	old: max=8.08s mean=5.74s (1.02)
	new: max=3.79s mean=1.32s (0.81)

	overall hash time (stdev):
	old: time=1192.30 (12.85) thruput=25.78mb/s (0.27)
	new: time=1060.27 (32.58) thruput=29.02mb/s (0.88) (-11%)

I also tested kernbench with regular IO streaming in the background to
see whether the delayed activation of frequently used mapped file
pages had a negative impact on performance in the presence of pressure
on the inactive list.  The patch made no significant difference in
timing, neither for kernbench nor for the streaming IO throughput.

The first patch submission raised concerns about the cost of the extra
faults for actually activated pages on machines that have no hardware
support for young page table entries.

I created an artificial worst case scenario on an ARM machine with
around 300MHz and 64MB of memory to figure out the dimensions
involved.  The test would mmap a file of 20MB, then

  1. touch all its pages to fault them in
  2. force one full scan cycle on the inactive file LRU
  -- old: mapping pages activated
  -- new: mapping pages inactive
  3. touch the mapping pages again
  -- old and new: fault exceptions to set the young bits
  4. force another full scan cycle on the inactive file LRU
  5. touch the mapping pages one last time
  -- new: fault exceptions to set the young bits

The test showed an overall increase of 6% in time over 100 iterations
of the above (old: ~212sec, new: ~225sec).  13 secs total overhead /
(100 * 5k pages), ignoring the execution time of the test itself,
makes for about 25us overhead for every page that gets actually
activated.  Note:

  1. File mapping the size of one third of main memory, _completely_
  in active use across memory pressure - i.e., most pages referenced
  within one LRU cycle.  This should be rare to non-existant,
  especially on such embedded setups.

  2. Many huge activation batches.  Those batches only occur when the
  working set fluctuates.  If it changes completely between every full
  LRU cycle, you have problematic reclaim overhead anyway.

  3. Access of activated pages at maximum speed: sequential loads from
  every single page without doing anything in between.  In reality,
  the extra faults will get distributed between actual operations on
  the data.

So even if a workload manages to get the VM into the situation of
activating a third of memory in one go on such a setup, it will take
2.2 seconds instead 2.1 without the patch.

Comparing the numbers (and my user-experience over several months),
I think this change is an overall improvement to the VM.

Patch 1 is only refactoring to break up that ugly compound conditional
in shrink_page_list() and make it easy to document and add new checks
in a readable fashion.

Patch 2 gets rid of the obsolete page_mapping_inuse().  It's not
strictly related to #3, but it was in the original submission and is a
net simplification, so I kept it.

Patch 3 implements used-once detection of mapped file pages.

This patch:

Moving the big conditional into its own predicate function makes the code
a bit easier to read and allows for better commenting on the checks
one-by-one.

This is just cleaning up, no semantics should have been changed.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: OSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:27 -08:00
KOSAKI Motohiro
93e4a89a8c mm: restore zone->all_unreclaimable to independence word
commit e815af95 ("change all_unreclaimable zone member to flags") changed
all_unreclaimable member to bit flag.  But it had an undesireble side
effect.  free_one_page() is one of most hot path in linux kernel and
increasing atomic ops in it can reduce kernel performance a bit.

Thus, this patch revert such commit partially. at least
all_unreclaimable shouldn't share memory word with other zone flags.

[akpm@linux-foundation.org: fix patch interaction]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:25 -08:00
KOSAKI Motohiro
76ca542d88 mm, lockdep: annotate reclaim context to zone reclaim too
Commit cf40bd16fd ("lockdep: annotate reclaim context") introduced reclaim
context annotation.  But it didn't annotate zone reclaim.  This patch do
it.

The point is, commit cf40bd16fd annotate __alloc_pages_direct_reclaim but
zone-reclaim doesn't use __alloc_pages_direct_reclaim.

current call graph is

__alloc_pages_nodemask
   get_page_from_freelist
       zone_reclaim()
   __alloc_pages_slowpath
       __alloc_pages_direct_reclaim
           try_to_free_pages

Actually, if zone_reclaim_mode=1, VM never call
__alloc_pages_direct_reclaim in usual VM pressure.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:24 -08:00
KOSAKI Motohiro
84b18490d1 vmscan: get_scan_ratio() cleanup
The get_scan_ratio() should have all scan-ratio related calculations.
Thus, this patch move some calculation into get_scan_ratio.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:24 -08:00
Minchan Kim
45973d74fd vmscan: check high watermark after shrink zone
Kswapd checks that zone has sufficient pages free via zone_watermark_ok().

If any zone doesn't have enough pages, we set all_zones_ok to zero.
!all_zone_ok makes kswapd retry rather than sleeping.

I think the watermark check before shrink_zone() is pointless.  Only after
kswapd has tried to shrink the zone is the check meaningful.

Move the check to after the call to shrink_zone().

[akpm@linux-foundation.org: fix comment, layout]
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:24 -08:00
KOSAKI Motohiro
de3fab3934 vmscan: kswapd: don't retry balance_pgdat() if all zones are unreclaimable
Commit f50de2d3 (vmscan: have kswapd sleep for a short interval and double
check it should be asleep) can cause kswapd to enter an infinite loop if
running on a single-CPU system.  If all zones are unreclaimble,
sleeping_prematurely return 1 and kswapd will call balance_pgdat() again.
but it's totally meaningless, balance_pgdat() doesn't anything against
unreclaimable zone!

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reported-by: Will Newton <will.newton@gmail.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Tested-by: Will Newton <will.newton@gmail.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-16 12:15:39 -08:00
Huang Shijie
62c0c2f198 vmscan: simplify code
Simplify the code for shrink_inactive_list().

Signed-off-by: Huang Shijie <shijie8@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:21 -08:00
Rik van Riel
b39415b273 vmscan: do not evict inactive pages when skipping an active list scan
In AIM7 runs, recent kernels start swapping out anonymous pages well
before they should.  This is due to shrink_list falling through to
shrink_inactive_list if !inactive_anon_is_low(zone, sc), when all we
really wanted to do is pre-age some anonymous pages to give them extra
time to be referenced while on the inactive list.

The obvious fix is to make sure that shrink_list does not fall through to
scanning/reclaiming inactive pages when we called it to scan one of the
active lists.

This change should be safe because the loop in shrink_zone ensures that we
will still shrink the anon and file inactive lists whenever we should.

[kosaki.motohiro@jp.fujitsu.com: inactive_file_is_low() should be inactive_anon_is_low()]
Reported-by: Larry Woodman <lwoodman@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tomasz Chmielewski <mangoo@wpkg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:21 -08:00
KOSAKI Motohiro
338fde9093 vmscan: make consistent of reclaim bale out between do_try_to_free_page and shrink_zone
Fix small inconsistent of ">" and ">=".

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:18 -08:00
KOSAKI Motohiro
ece74b2e7a vmscan: kill sc.swap_cluster_max
Now, All caller of reclaim use swap_cluster_max as SWAP_CLUSTER_MAX.
Then, we can remove it perfectly.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:18 -08:00
KOSAKI Motohiro
4f0ddfdffc vmscan: zone_reclaim() don't use insane swap_cluster_max
In old days, we didn't have sc.nr_to_reclaim and it brought
sc.swap_cluster_max misuse.

huge sc.swap_cluster_max might makes unnecessary OOM risk and no
performance benefit.

Now, we can stop its insane thing.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:18 -08:00
KOSAKI Motohiro
7b51755c3b vmscan: kill hibernation specific reclaim logic and unify it
shrink_all_zone() was introduced by commit d6277db4ab (swsusp: rework
memory shrinker) for hibernate performance improvement.  and
sc.swap_cluster_max was introduced by commit a06fe4d307 (Speed freeing
memory for suspend).

commit a06fe4d307 said

   Without the patch:
   Freed  14600 pages in  1749 jiffies = 32.61 MB/s (Anomolous!)
   Freed  88563 pages in 14719 jiffies = 23.50 MB/s
   Freed 205734 pages in 32389 jiffies = 24.81 MB/s

   With the patch:
   Freed  68252 pages in   496 jiffies = 537.52 MB/s
   Freed 116464 pages in   569 jiffies = 798.54 MB/s
   Freed 209699 pages in   705 jiffies = 1161.89 MB/s

At that time, their patch was pretty worth.  However, Modern Hardware
trend and recent VM improvement broke its worth.  From several reason, I
think we should remove shrink_all_zones() at all.

detail:

1) Old days, shrink_zone()'s slowness was mainly caused by stupid io-throttle
  at no i/o congestion.
  but current shrink_zone() is sane, not slow.

2) shrink_all_zone() try to shrink all pages at a time. but it doesn't works
  fine on numa system.
  example)
    System has 4GB memory and each node have 2GB. and hibernate need 1GB.

    optimal)
       steal 500MB from each node.
    shrink_all_zones)
       steal 1GB from node-0.

  Oh, Cache balancing logic was broken. ;)
  Unfortunately, Desktop system moved ahead NUMA at nowadays.
  (Side note, if hibernate require 2GB, shrink_all_zones() never success
   on above machine)

3) if the node has several I/O flighting pages, shrink_all_zones() makes
  pretty bad result.

  schenario) hibernate need 1GB

  1) shrink_all_zones() try to reclaim 1GB from Node-0
  2) but it only reclaimed 990MB
  3) stupidly, shrink_all_zones() try to reclaim 1GB from Node-1
  4) it reclaimed 990MB

  Oh, well. it reclaimed twice much than required.
  In the other hand, current shrink_zone() has sane baling out logic.
  then, it doesn't make overkill reclaim. then, we lost shrink_zones()'s risk.

4) SplitLRU VM always keep active/inactive ratio very carefully. inactive list only
  shrinking break its assumption. it makes unnecessary OOM risk. it obviously suboptimal.

Now, shrink_all_memory() is only the wrapper function of do_try_to_free_pages().
it bring good reviewability and debuggability, and solve above problems.

side note: Reclaim logic unificication makes two good side effect.
 - Fix recursive reclaim bug on shrink_all_memory().
   it did forgot to use PF_MEMALLOC. it mean the system be able to stuck into deadlock.
 - Now, shrink_all_memory() got lockdep awareness. it bring good debuggability.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:18 -08:00
KOSAKI Motohiro
22fba33545 vmscan: separate sc.swap_cluster_max and sc.nr_max_reclaim
Currently, sc.scap_cluster_max has double meanings.

 1) reclaim batch size as isolate_lru_pages()'s argument
 2) reclaim baling out thresolds

The two meanings pretty unrelated. Thus, Let's separate it.
this patch doesn't change any behavior.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:18 -08:00
KOSAKI Motohiro
bb3ab59683 vmscan: stop kswapd waiting on congestion when the min watermark is not being met
If reclaim fails to make sufficient progress, the priority is raised.
Once the priority is higher, kswapd starts waiting on congestion.
However, if the zone is below the min watermark then kswapd needs to
continue working without delay as there is a danger of an increased rate
of GFP_ATOMIC allocation failure.

This patch changes the conditions under which kswapd waits on congestion
by only going to sleep if the min watermarks are being met.

[mel@csn.ul.ie: add stats to track how relevant the logic is]
[mel@csn.ul.ie: make kswapd only check its own zones and rename the relevant counters]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:16 -08:00
Mel Gorman
f50de2d381 vmscan: have kswapd sleep for a short interval and double check it should be asleep
After kswapd balances all zones in a pgdat, it goes to sleep.  In the
event of no IO congestion, kswapd can go to sleep very shortly after the
high watermark was reached.  If there are a constant stream of allocations
from parallel processes, it can mean that kswapd went to sleep too quickly
and the high watermark is not being maintained for sufficient length time.

This patch makes kswapd go to sleep as a two-stage process.  It first
tries to sleep for HZ/10.  If it is woken up by another process or the
high watermark is no longer met, it's considered a premature sleep and
kswapd continues work.  Otherwise it goes fully to sleep.

This adds more counters to distinguish between fast and slow breaches of
watermarks.  A "fast" premature sleep is one where the low watermark was
hit in a very short time after kswapd going to sleep.  A "slow" premature
sleep indicates that the high watermark was breached after a very short
interval.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Frans Pop <elendil@planet.nl>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:16 -08:00
Vincent Li
6aceb53be4 mm/vmscan: change comment generic_file_write to __generic_file_aio_write
Commit 543ade1fc9 ("Streamline generic_file_* interfaces and filemap
cleanups") removed generic_file_write() in filemap.  Change the comment in
vmscan pageout() to __generic_file_aio_write().

Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:16 -08:00
David Rientjes
8fe23e0571 mm: clear node in N_HIGH_MEMORY and stop kswapd when all memory is offlined
When memory is hot-removed, its node must be cleared in N_HIGH_MEMORY if
there are no present pages left.

In such a situation, kswapd must also be stopped since it has nothing left
to do.

Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:13 -08:00
Johannes Weiner
6a7b95481d vmscan: order evictable rescue in LRU putback
Isolators putting a page back to the LRU do not hold the page lock, and if
the page is mlocked, another thread might munlock it concurrently.

Expecting this, the putback code re-checks the evictability of a page when
it just moved it to the unevictable list in order to correct its decision.

The problem, however, is that ordering is not garuanteed between setting
PG_lru when moving the page to the list and checking PG_mlocked
afterwards:

	#0:				#1

	spin_lock()
					if (TestClearPageMlocked())
					  if (PageLRU())
					    move to evictable list
	SetPageLRU()
	spin_unlock()
	if (!PageMlocked())
	  move to evictable list

The PageMlocked() check may get reordered before SetPageLRU() in #0,
resulting in #0 not moving the still mlocked page, and in #1 failing to
isolate and move the page as well.  The page is now stranded on the
unevictable list.

The race condition is very unlikely.  The consequence currently is one
page falling off the reclaim grid and eventually getting freed with
PG_unevictable set, which triggers a warning in the page allocator.

TestClearPageMlocked() in #1 already provides full memory barrier
semantics.

This patch adds an explicit full barrier to force ordering between
SetPageLRU() and PageMlocked() so that either one of the competitors
rescues the page.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-10-29 07:39:30 -07:00
Wu Fengguang
41e20983fe vmscan: limit VM_EXEC protection to file pages
It is possible to have !Anon but SwapBacked pages, and some apps could
create huge number of such pages with MAP_SHARED|MAP_ANONYMOUS.  These
pages go into the ANON lru list, and hence shall not be protected: we only
care mapped executable files.  Failing to do so may trigger OOM.

Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-10-29 07:39:27 -07:00
KOSAKI Motohiro
58355c7876 congestion_wait(): don't use WRITE
commit 8aa7e847d (Fix congestion_wait() sync/async vs read/write
confusion) replace WRITE with BLK_RW_ASYNC.  Unfortunately, concurrent mm
development made the unchanged place accidentally.

This patch fixes it too.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Jens Axboe <jens.axboe@oracle.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-10-29 07:39:25 -07:00
Linus Torvalds
6d7f18f6ea Merge branch 'writeback' of git://git.kernel.dk/linux-2.6-block
* 'writeback' of git://git.kernel.dk/linux-2.6-block:
  writeback: writeback_inodes_sb() should use bdi_start_writeback()
  writeback: don't delay inodes redirtied by a fast dirtier
  writeback: make the super_block pinning more efficient
  writeback: don't resort for a single super_block in move_expired_inodes()
  writeback: move inodes from one super_block together
  writeback: get rid to incorrect references to pdflush in comments
  writeback: improve readability of the wb_writeback() continue/break logic
  writeback: cleanup writeback_single_inode()
  writeback: kupdate writeback shall not stop when more io is possible
  writeback: stop background writeback when below background threshold
  writeback: balance_dirty_pages() shall write more than dirtied pages
  fs: Fix busyloop in wb_writeback()
2009-09-25 09:27:30 -07:00
Jens Axboe
5b0830cb90 writeback: get rid to incorrect references to pdflush in comments
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-25 18:08:25 +02:00
Linus Torvalds
db16826367 Merge branch 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
  HWPOISON: Enable error_remove_page on btrfs
  HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
  HWPOISON: Add madvise() based injector for hardware poisoned pages v4
  HWPOISON: Enable error_remove_page for NFS
  HWPOISON: Enable .remove_error_page for migration aware file systems
  HWPOISON: The high level memory error handler in the VM v7
  HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
  HWPOISON: shmem: call set_page_dirty() with locked page
  HWPOISON: Define a new error_remove_page address space op for async truncation
  HWPOISON: Add invalidate_inode_page
  HWPOISON: Refactor truncate to allow direct truncating of page v2
  HWPOISON: check and isolate corrupted free pages v2
  HWPOISON: Handle hardware poisoned pages in try_to_unmap
  HWPOISON: Use bitmask/action code for try_to_unmap behaviour
  HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
  HWPOISON: Add poison check to page fault handling
  HWPOISON: Add basic support for poisoned pages in fault handler v3
  HWPOISON: Add new SIGBUS error codes for hardware poison signals
  HWPOISON: Add support for poison swap entries v2
  HWPOISON: Export some rmap vma locking to outside world
  ...
2009-09-24 07:53:22 -07:00
Alexey Dobriyan
8d65af789f sysctl: remove "struct file *" argument of ->proc_handler
It's unused.

It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.

It _was_ used in two places at arch/frv for some reason.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-24 07:21:04 -07:00
Balbir Singh
4e41695356 memory controller: soft limit reclaim on contention
Implement reclaim from groups over their soft limit

Permit reclaim from memory cgroups on contention (via the direct reclaim
path).

memory cgroup soft limit reclaim finds the group that exceeds its soft
limit by the largest number of pages and reclaims pages from it and then
reinserts the cgroup into its correct place in the rbtree.

Add additional checks to mem_cgroup_hierarchical_reclaim() to detect long
loops in case all swap is turned off.  The code has been refactored and
the loop check (loop < 2) has been enhanced for soft limits.  For soft
limits, we try to do more targetted reclaim.  Instead of bailing out after
two loops, the routine now reclaims memory proportional to the size by
which the soft limit is exceeded.  The proportion has been empirically
determined.

[akpm@linux-foundation.org: build fix]
[kamezawa.hiroyu@jp.fujitsu.com: fix softlimit css refcnt handling]
[nishimura@mxp.nes.nec.co.jp: refcount of the "victim" should be decremented before exiting the loop]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-24 07:20:59 -07:00
Vincent Li
f168e1b639 mm/vmscan: remove page_queue_congested() comment
Commit 084f71ae5c(kill page_queue_congested()) removed
page_queue_congested().  Remove the page_queue_congested() comment in
vmscan pageout() too.

Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:39 -07:00
Wu Fengguang
f862963174 mm: do batched scans for mem_cgroup
For mem_cgroup, shrink_zone() may call shrink_list() with nr_to_scan=1, in
which case shrink_list() _still_ calls isolate_pages() with the much
larger SWAP_CLUSTER_MAX.  It effectively scales up the inactive list scan
rate by up to 32 times.

For example, with 16k inactive pages and DEF_PRIORITY=12, (16k >> 12)=4.
So when shrink_zone() expects to scan 4 pages in the active/inactive list,
the active list will be scanned 4 pages, while the inactive list will be
(over) scanned SWAP_CLUSTER_MAX=32 pages in effect.  And that could break
the balance between the two lists.

It can further impact the scan of anon active list, due to the anon
active/inactive ratio rebalance logic in balance_pgdat()/shrink_zone():

inactive anon list over scanned => inactive_anon_is_low() == TRUE
                                => shrink_active_list()
                                => active anon list over scanned

So the end result may be

- anon inactive  => over scanned
- anon active    => over scanned (maybe not as much)
- file inactive  => over scanned
- file active    => under scanned (relatively)

The accesses to nr_saved_scan are not lock protected and so not 100%
accurate, however we can tolerate small errors and the resulted small
imbalanced scan rates between zones.

Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:39 -07:00
Vincent Li
0b21767637 mm/vmscan: rename zone_nr_pages() to zone_nr_lru_pages()
The name `zone_nr_pages' can be mis-read as zone's (total) number pages,
but it actually returns zone's LRU list number pages.

Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:38 -07:00
Johannes Weiner
ceddc3a52d mm: document is_page_cache_freeable()
Enlighten the reader of this code about what reference count makes a page
cache page freeable.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:38 -07:00
Johannes Weiner
edcf4748cd mm: return boolean from page_has_private()
Make page_has_private() return a true boolean value and remove the double
negations from the two callsites using it for arithmetic.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:38 -07:00
Johannes Weiner
6c0b13519d mm: return boolean from page_is_file_cache()
page_is_file_cache() has been used for both boolean checks and LRU
arithmetic, which was always a bit weird.

Now that page_lru_base_type() exists for LRU arithmetic, make
page_is_file_cache() a real predicate function and adjust the
boolean-using callsites to drop those pesky double negations.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:37 -07:00
Johannes Weiner
401a8e1c16 mm: introduce page_lru_base_type()
Instead of abusing page_is_file_cache() for LRU list index arithmetic, add
another helper with a more appropriate name and convert the non-boolean
users of page_is_file_cache() accordingly.

This new helper gives the LRU base type a page is supposed to live on,
inactive anon or inactive file.

[hugh.dickins@tiscali.co.uk: convert del_page_from_lru() also]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:35 -07:00
Johannes Weiner
b7c46d151c mm: drop unneeded double negations
Remove double negations where the operand is already boolean.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:35 -07:00
KOSAKI Motohiro
a26f5320c4 vmscan: kill unnecessary prefetch
The pages in the list passed move_active_pages_to_lru() are already
touched by shrink_active_list().  IOW the prefetch in
move_active_pages_to_lru() don't populate any cache.  it's pointless.

This patch remove it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:30 -07:00
KOSAKI Motohiro
74a1c48fb4 vmscan: kill unnecessary page flag test
The page_lru() already evaluate PageActive() and PageSwapBacked().  We
don't need to re-evaluate it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:30 -07:00
KOSAKI Motohiro
5205e56eea vmscan: move ClearPageActive from move_active_pages() to shrink_active_list()
The move_active_pages_to_lru() function is called under irq disabled and
ClearPageActive() doesn't need irq disabling.

Then, this patch move it into shrink_active_list().

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:30 -07:00
Minchan Kim
de2e7567c7 vmscan: don't attempt to reclaim anon page in lumpy reclaim when no swap space is available
The VM already avoids attempting to reclaim anon pages in various places,
But it doesn't avoid it for lumpy reclaim.

It shuffles lru list unnecessary so that it is pointless.

[akpm@linux-foundation.org: cleanup]
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:30 -07:00
Wu Fengguang
adea02a1be mm: count only reclaimable lru pages
global_lru_pages() / zone_lru_pages() can be used in two ways:
- to estimate max reclaimable pages in determine_dirtyable_memory()
- to calculate the slab scan ratio

When swap is full or not present, the anon lru lists are not reclaimable
and also won't be scanned.  So the anon pages shall not be counted in both
usage scenarios.  Also rename to _reclaimable_pages: now they are counting
the possibly reclaimable lru pages.

It can greatly (and correctly) increase the slab scan rate under high
memory pressure (when most file pages have been reclaimed and swap is
full/absent), thus reduce false OOM kills.

Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Howells <dhowells@redhat.com>
Cc: "Li, Ming Chun" <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:30 -07:00
Rik van Riel
35cd78156c vmscan: throttle direct reclaim when too many pages are isolated already
When way too many processes go into direct reclaim, it is possible for all
of the pages to be taken off the LRU.  One result of this is that the next
process in the page reclaim code thinks there are no reclaimable pages
left and triggers an out of memory kill.

One solution to this problem is to never let so many processes into the
page reclaim path that the entire LRU is emptied.  Limiting the system to
only having half of each inactive list isolated for reclaim should be
safe.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:29 -07:00
KOSAKI Motohiro
a731286de6 mm: vmstat: add isolate pages
If the system is running a heavy load of processes then concurrent reclaim
can isolate a large number of pages from the LRU. /proc/vmstat and the
output generated for an OOM do not show how many pages were isolated.

This has been observed during process fork bomb testing (mstctl11 in LTP).

This patch shows the information about isolated pages.

Reproduced via:

-----------------------
% ./hackbench 140 process 1000
   => OOM occur

active_anon:146 inactive_anon:0 isolated_anon:49245
 active_file:79 inactive_file:18 isolated_file:113
 unevictable:0 dirty:0 writeback:0 unstable:0 buffer:39
 free:370 slab_reclaimable:309 slab_unreclaimable:5492
 mapped:53 shmem:15 pagetables:28140 bounce:0

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:29 -07:00
KOSAKI Motohiro
b35ea17b7b mm: shrink_inactive_list() nr_scan accounting fix fix
If sc->isolate_pages() return 0, we don't need to call shrink_page_list().
In past days, shrink_inactive_list() handled it properly.

But commit fb8d14e1 (three years ago commit!) breaked it.  current
shrink_inactive_list() always call shrink_page_list() although
isolate_pages() return 0.

This patch restore proper return value check.

Requirements:
  o "nr_taken == 0" condition should stay before calling shrink_page_list().
  o "nr_taken == 0" condition should stay after nr_scan related statistics
     modification.

Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:28 -07:00
KOSAKI Motohiro
44c241f166 mm: rename pgmoved variable in shrink_active_list()
Currently the pgmoved variable has two meanings.  It causes harder
reviewing.  This patch separates it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:27 -07:00
Andi Kleen
14fa31b89c HWPOISON: Use bitmask/action code for try_to_unmap behaviour
try_to_unmap currently has multiple modi (migration, munlock, normal unmap)
which are selected by magic flag variables. The logic is not very straight
forward, because each of these flag change multiple behaviours (e.g.
migration turns off aging, not only sets up migration ptes etc.)
Also the different flags interact in magic ways.

A later patch in this series adds another mode to try_to_unmap, so
this becomes quickly unmanageable.

Replace the different flags with a action code (migration, munlock, munmap)
and some additional flags as modifiers (ignore mlock, ignore aging).
This makes the logic more straight forward and allows easier extension
to new behaviours. Change all the caller to declare what they want to
do.

This patch is supposed to be a nop in behaviour. If anyone can prove
it is not that would be a bug.

Cc: Lee.Schermerhorn@hp.com
Cc: npiggin@suse.de

Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-09-16 11:50:10 +02:00
Jens Axboe
03ba3782e8 writeback: switch to per-bdi threads for flushing data
This gets rid of pdflush for bdi writeout and kupdated style cleaning.
pdflush writeout suffers from lack of locality and also requires more
threads to handle the same workload, since it has to work in a
non-blocking fashion against each queue. This also introduces lumpy
behaviour and potential request starvation, since pdflush can be starved
for queue access if others are accessing it. A sample ffsb workload that
does random writes to files is about 8% faster here on a simple SATA drive
during the benchmark phase. File layout also seems a LOT more smooth in
vmstat:

 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy id wa
 0  1      0 608848   2652 375372    0    0     0 71024  604    24  1 10 48 42
 0  1      0 549644   2712 433736    0    0     0 60692  505    27  1  8 48 44
 1  0      0 476928   2784 505192    0    0     4 29540  553    24  0  9 53 37
 0  1      0 457972   2808 524008    0    0     0 54876  331    16  0  4 38 58
 0  1      0 366128   2928 614284    0    0     4 92168  710    58  0 13 53 34
 0  1      0 295092   3000 684140    0    0     0 62924  572    23  0  9 53 37
 0  1      0 236592   3064 741704    0    0     4 58256  523    17  0  8 48 44
 0  1      0 165608   3132 811464    0    0     0 57460  560    21  0  8 54 38
 0  1      0 102952   3200 873164    0    0     4 74748  540    29  1 10 48 41
 0  1      0  48604   3252 926472    0    0     0 53248  469    29  0  7 47 45

where vanilla tends to fluctuate a lot in the creation phase:

 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy id wa
 1  1      0 678716   5792 303380    0    0     0 74064  565    50  1 11 52 36
 1  0      0 662488   5864 319396    0    0     4   352  302   329  0  2 47 51
 0  1      0 599312   5924 381468    0    0     0 78164  516    55  0  9 51 40
 0  1      0 519952   6008 459516    0    0     4 78156  622    56  1 11 52 37
 1  1      0 436640   6092 541632    0    0     0 82244  622    54  0 11 48 41
 0  1      0 436640   6092 541660    0    0     0     8  152    39  0  0 51 49
 0  1      0 332224   6200 644252    0    0     4 102800  728    46  1 13 49 36
 1  0      0 274492   6260 701056    0    0     4 12328  459    49  0  7 50 43
 0  1      0 211220   6324 763356    0    0     0 106940  515    37  1 10 51 39
 1  0      0 160412   6376 813468    0    0     0  8224  415    43  0  6 49 45
 1  1      0  85980   6452 886556    0    0     4 113516  575    39  1 11 54 34
 0  2      0  85968   6452 886620    0    0     0  1640  158   211  0  0 46 54

A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A
SSD based writeback test on XFS performs over 20% better as well, with
the throughput being very stable around 1GB/sec, where pdflush only
manages 750MB/sec and fluctuates wildly while doing so. Random buffered
writes to many files behave a lot better as well, as does random mmap'ed
writes.

A separate thread is added to sync the super blocks. In the long term,
adding sync_supers_bdi() functionality could get rid of this thread again.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-11 09:20:25 +02:00
Minchan Kim
03ef83af52 mm: fix for infinite churning of mlocked pages
An mlocked page might lose the isolatation race.  This causes the page to
clear PG_mlocked while it remains in a VM_LOCKED vma.  This means it can
be put onto the [in]active list.  We can rescue it by using try_to_unmap()
in shrink_page_list().

But now, As Wu Fengguang pointed out, vmscan has a bug.  If the page has
PG_referenced, it can't reach try_to_unmap() in shrink_page_list() but is
put into the active list.  If the page is referenced repeatedly, it can
remain on the [in]active list without being moving to the unevictable
list.

This patch fixes it.

Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <<kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-26 20:06:52 -07:00
Jens Axboe
8aa7e847d8 Fix congestion_wait() sync/async vs read/write confusion
Commit 1faa16d228 accidentally broke
the bdi congestion wait queue logic, causing us to wait on congestion
for WRITE (== 1) when we really wanted BLK_RW_ASYNC (== 0) instead.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-10 20:31:53 +02:00
KAMEZAWA Hiroyuki
cb4cbcf6b3 mm: fix incorrect page removal from LRU
The isolated page is "cursor_page" not "page".

This could cause LRU list corruption under memory pressure, caught by
CONFIG_DEBUG_LIST.

Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-23 10:17:28 -07:00
KAMEZAWA Hiroyuki
2ffebca6aa memcg: fix lru rotation in isolate_pages
Try to fix memcg's lru rotation sanity: make memcg use the same logic as
the global LRU does.

Now, at __isolate_lru_page() retruns -EBUSY, the page is rotated to the
tail of LRU in global LRU's isolate LRU pages.  But in memcg, it's not
handled.  This makes memcg do the same behavior as global LRU and rotate
LRU in the page is busy.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-18 13:03:48 -07:00
KAMEZAWA Hiroyuki
ee993b135e mm: fix lumpy reclaim lru handling at isolate_lru_pages
At lumpy reclaim, a page failed to be taken by __isolate_lru_page() can be
pushed back to "src" list by list_move().  But the page may not be from
"src" list.  This pushes the page back to wrong LRU.  And list_move()
itself is unnecessary because the page is not on top of LRU.  Then, leave
it as it is if __isolate_lru_page() fails.

Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:46 -07:00
Mel Gorman
24cf72518c vmscan: count the number of times zone_reclaim() scans and fails
On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim.  On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met.

There is a heuristic that determines if the scan is worthwhile but it is
possible that the heuristic will fail and the CPU gets tied up scanning
uselessly.  Detecting the situation requires some guesswork and
experimentation so this patch adds a counter "zreclaim_failed" to
/proc/vmstat.  If during high CPU utilisation this counter is increasing
rapidly, then the resolution to the problem may be to set
/proc/sys/vm/zone_reclaim_mode to 0.

[akpm@linux-foundation.org: name things consistently]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:46 -07:00
Mel Gorman
fa5e084e43 vmscan: do not unconditionally treat zones that fail zone_reclaim() as full
On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim.  On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met.  The problem is that zone_reclaim() failing at all means the
zone gets marked full.

This can cause situations where a zone is usable, but is being skipped
because it has been considered full.  Take a situation where a large tmpfs
mount is occuping a large percentage of memory overall.  The pages do not
get cleaned or reclaimed by zone_reclaim(), but the zone gets marked full
and the zonelist cache considers them not worth trying in the future.

This patch makes zone_reclaim() return more fine-grained information about
what occured when zone_reclaim() failued.  The zone only gets marked full
if it really is unreclaimable.  If it's a case that the scan did not occur
or if enough pages were not reclaimed with the limited reclaim_mode, then
the zone is simply skipped.

There is a side-effect to this patch.  Currently, if zone_reclaim()
successfully reclaimed SWAP_CLUSTER_MAX, an allocation attempt would go
ahead.  With this patch applied, zone watermarks are rechecked after
zone_reclaim() does some work.

This bug was introduced by commit 9276b1bc96
("memory page_alloc zonelist caching speedup") way back in 2.6.19 when the
zonelist_cache was introduced.  It was not intended that zone_reclaim()
aggressively consider the zone to be full when it failed as full direct
reclaim can still be an option.  Due to the age of the bug, it should be
considered a -stable candidate.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:45 -07:00
Mel Gorman
90afa5de6f vmscan: properly account for the number of page cache pages zone_reclaim() can reclaim
A bug was brought to my attention against a distro kernel but it affects
mainline and I believe problems like this have been reported in various
guises on the mailing lists although I don't have specific examples at the
moment.

The reported problem was that malloc() stalled for a long time (minutes in
some cases) if a large tmpfs mount was occupying a large percentage of
memory overall.  The pages did not get cleaned or reclaimed by
zone_reclaim() because the zone_reclaim_mode was unsuitable, but the lists
are uselessly scanned frequencly making the CPU spin at near 100%.

This patchset intends to address that bug and bring the behaviour of
zone_reclaim() more in line with expectations which were noticed during
investigation.  It is based on top of mmotm and takes advantage of
Kosaki's work with respect to zone_reclaim().

Patch 1 fixes the heuristics that zone_reclaim() uses to determine if the
	scan should go ahead. The broken heuristic is what was causing the
	malloc() stall as it uselessly scanned the LRU constantly. Currently,
	zone_reclaim is assuming zone_reclaim_mode is 1 and historically it
	could not deal with tmpfs pages at all. This fixes up the heuristic so
	that an unnecessary scan is more likely to be correctly avoided.

Patch 2 notes that zone_reclaim() returning a failure automatically means
	the zone is marked full. This is not always true. It could have
	failed because the GFP mask or zone_reclaim_mode were unsuitable.

Patch 3 introduces a counter zreclaim_failed that will increment each
	time the zone_reclaim scan-avoidance heuristics fail. If that
	counter is rapidly increasing, then zone_reclaim_mode should be
	set to 0 as a temporarily resolution and a bug reported because
	the scan-avoidance heuristic is still broken.

This patch:

On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim.  On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met.

There is a heuristic that determines if the scan is worthwhile but the
problem is that the heuristic is not being properly applied and is
basically assuming zone_reclaim_mode is 1 if it is enabled.  The lack of
proper detection can manfiest as high CPU usage as the LRU list is scanned
uselessly.

Historically, once enabled it was depending on NR_FILE_PAGES which may
include swapcache pages that the reclaim_mode cannot deal with.  Patch
vmscan-change-the-number-of-the-unmapped-files-in-zone-reclaim.patch by
Kosaki Motohiro noted that zone_page_state(zone, NR_FILE_PAGES) included
pages that were not file-backed such as swapcache and made a calculation
based on the inactive, active and mapped files.  This is far superior when
zone_reclaim==1 but if RECLAIM_SWAP is set, then NR_FILE_PAGES is a
reasonable starting figure.

This patch alters how zone_reclaim() works out how many pages it might be
able to reclaim given the current reclaim_mode.  If RECLAIM_SWAP is set in
the reclaim_mode it will either consider NR_FILE_PAGES as potential
candidates or else use NR_{IN}ACTIVE}_PAGES-NR_FILE_MAPPED to discount
swapcache and other non-file-backed pages.  If RECLAIM_WRITE is not set,
then NR_FILE_DIRTY number of pages are not candidates.  If RECLAIM_SWAP is
not set, then NR_FILE_MAPPED are not.

[kosaki.motohiro@jp.fujitsu.com: Estimate unmapped pages minus tmpfs pages]
[fengguang.wu@intel.com: Fix underflow problem in Kosaki's estimate]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:45 -07:00
Daisuke Nishimura
9198e96c06 vmscan: handle may_swap more strictly
Commit 2e2e425989 ("vmscan,memcg:
reintroduce sc->may_swap) add may_swap flag and handle it at
get_scan_ratio().

But the result of get_scan_ratio() is ignored when priority == 0, so anon
lru is scanned even if may_swap == 0 or nr_swap_pages == 0.  IMHO, this is
not an expected behavior.

As for memcg especially, because of this behavior many and many pages are
swapped-out just in vain when oom is invoked by mem+swap limit.

This patch is for handling may_swap flag more strictly.

Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:45 -07:00
Wu Fengguang
3eb4140f03 vmscan: merge duplicate code in shrink_active_list()
The "move pages to active list" and "move pages to inactive list" code
blocks are mostly identical and can be served by a function.

Thanks to Andrew Morton for pointing this out.

Note that buffer_heads_over_limit check will also be carried out for
re-activated pages, which is slightly different from pre-2.6.28 kernels.
Also, Rik's "vmscan: evict use-once pages first" patch could totally stop
scans of active file list when memory pressure is low.  So the net effect
could be, the number of buffer heads is now more likely to grow large.

However that's fine according to Johannes' comments:

  I don't think that this could be harmful.  We just preserve the buffer
  mappings of what we consider the working set and with low memory
  pressure, as you say, this set is not big.

  As to stripping of reactivated pages: the only pages we re-activate
  for now are those VM_EXEC mapped ones.  Since we don't expect IO from
  or to these pages, removing the buffer mappings in case they grow too
  large should be okay, I guess.

Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:45 -07:00
Wu Fengguang
8cab4754d2 vmscan: make mapped executable pages the first class citizen
Protect referenced PROT_EXEC mapped pages from being deactivated.

PROT_EXEC(or its internal presentation VM_EXEC) pages normally belong to some
currently running executables and their linked libraries, they shall really be
cached aggressively to provide good user experiences.

Thanks to Johannes Weiner for the advice to reuse the VMA walk in
page_referenced() to get the PROT_EXEC bit.

[more details]

( The consequences of this patch will have to be discussed together with
  Rik van Riel's recent patch "vmscan: evict use-once pages first". )

( Some of the good points and insights are taken into this changelog.
  Thanks to all the involved people for the great LKML discussions. )

the problem
===========

For a typical desktop, the most precious working set is composed of
*actively accessed*
	(1) memory mapped executables
	(2) and their anonymous pages
	(3) and other files
	(4) and the dcache/icache/.. slabs
while the least important data are
	(5) infrequently used or use-once files

For a typical desktop, one major problem is busty and large amount of (5)
use-once files flushing out the working set.

Inside the working set, (4) dcache/icache have already been too sticky ;-)
So we only have to care (2) anonymous and (1)(3) file pages.

anonymous pages
===============

Anonymous pages are effectively immune to the streaming IO attack, because we
now have separate file/anon LRU lists. When the use-once files crowd into the
file LRU, the list's "quality" is significantly lowered. Therefore the scan
balance policy in get_scan_ratio() will choose to scan the (low quality) file
LRU much more frequently than the anon LRU.

file pages
==========

Rik proposed to *not* scan the active file LRU when the inactive list grows
larger than active list. This guarantees that when there are use-once streaming
IO, and the working set is not too large(so that active_size < inactive_size),
the active file LRU will *not* be scanned at all. So the not-too-large working
set can be well protected.

But there are also situations where the file working set is a bit large so that
(active_size >= inactive_size), or the streaming IOs are not purely use-once.
In these cases, the active list will be scanned slowly. Because the current
shrink_active_list() policy is to deactivate active pages regardless of their
referenced bits. The deactivated pages become susceptible to the streaming IO
attack: the inactive list could be scanned fast (500MB / 50MBps = 10s) so that
the deactivated pages don't have enough time to get re-referenced. Because a
user tend to switch between windows in intervals from seconds to minutes.

This patch holds mapped executable pages in the active list as long as they
are referenced during each full scan of the active list.  Because the active
list is normally scanned much slower, they get longer grace time (eg. 100s)
for further references, which better matches the pace of user operations.

Therefore this patch greatly prolongs the in-cache time of executable code,
when there are moderate memory pressures.

	before patch: guaranteed to be cached if reference intervals < I
	after  patch: guaranteed to be cached if reference intervals < I+A
		      (except when randomly reclaimed by the lumpy reclaim)
where
	A = time to fully scan the   active file LRU
	I = time to fully scan the inactive file LRU

Note that normally A >> I.

side effects
============

This patch is safe in general, it restores the pre-2.6.28 mmap() behavior
but in a much smaller and well targeted scope.

One may worry about some one to abuse the PROT_EXEC heuristic.  But as
Andrew Morton stated, there are other tricks to getting that sort of boost.

Another concern is the PROT_EXEC mapped pages growing large in rare cases,
and therefore hurting reclaim efficiency. But a sane application targeted for
large audience will never use PROT_EXEC for data mappings. If some home made
application tries to abuse that bit, it shall be aware of the consequences.
If it is abused to scale of 2/3 total memory, it gains nothing but overheads.

benchmarks
==========

1) memory tight desktop

1.1) brief summary

- clock time and major faults are reduced by 50%;
- pswpin numbers are reduced to ~1/3.

That means X desktop responsiveness is doubled under high memory/swap pressure.

1.2) test scenario

- nfsroot gnome desktop with 512M physical memory
- run some programs, and switch between the existing windows
  after starting each new program.

1.3) progress timing (seconds)

  before       after    programs
    0.02        0.02    N xeyes
    0.75        0.76    N firefox
    2.02        1.88    N nautilus
    3.36        3.17    N nautilus --browser
    5.26        4.89    N gthumb
    7.12        6.47    N gedit
    9.22        8.16    N xpdf /usr/share/doc/shared-mime-info/shared-mime-info-spec.pdf
   13.58       12.55    N xterm
   15.87       14.57    N mlterm
   18.63       17.06    N gnome-terminal
   21.16       18.90    N urxvt
   26.24       23.48    N gnome-system-monitor
   28.72       26.52    N gnome-help
   32.15       29.65    N gnome-dictionary
   39.66       36.12    N /usr/games/sol
   43.16       39.27    N /usr/games/gnometris
   48.65       42.56    N /usr/games/gnect
   53.31       47.03    N /usr/games/gtali
   58.60       52.05    N /usr/games/iagno
   65.77       55.42    N /usr/games/gnotravex
   70.76       61.47    N /usr/games/mahjongg
   76.15       67.11    N /usr/games/gnome-sudoku
   86.32       75.15    N /usr/games/glines
   92.21       79.70    N /usr/games/glchess
  103.79       88.48    N /usr/games/gnomine
  113.84       96.51    N /usr/games/gnotski
  124.40      102.19    N /usr/games/gnibbles
  137.41      114.93    N /usr/games/gnobots2
  155.53      125.02    N /usr/games/blackjack
  179.85      135.11    N /usr/games/same-gnome
  224.49      154.50    N /usr/bin/gnome-window-properties
  248.44      162.09    N /usr/bin/gnome-default-applications-properties
  282.62      173.29    N /usr/bin/gnome-at-properties
  323.72      188.21    N /usr/bin/gnome-typing-monitor
  363.99      199.93    N /usr/bin/gnome-at-visual
  394.21      206.95    N /usr/bin/gnome-sound-properties
  435.14      224.49    N /usr/bin/gnome-at-mobility
  463.05      234.11    N /usr/bin/gnome-keybinding-properties
  503.75      248.59    N /usr/bin/gnome-about-me
  554.00      276.27    N /usr/bin/gnome-display-properties
  615.48      304.39    N /usr/bin/gnome-network-preferences
  693.03      342.01    N /usr/bin/gnome-mouse-properties
  759.90      388.58    N /usr/bin/gnome-appearance-properties
  937.90      508.47    N /usr/bin/gnome-control-center
 1109.75      587.57    N /usr/bin/gnome-keyboard-properties
 1399.05      758.16    N : oocalc
 1524.64      830.03    N : oodraw
 1684.31      900.03    N : ooimpress
 1874.04      993.91    N : oomath
 2115.12     1081.89    N : ooweb
 2369.02     1161.99    N : oowriter

Note that the last ": oo*" commands are actually commented out.

1.4) vmstat numbers (some relevant ones are marked with *)

                            before    after
 nr_free_pages              1293      3898
 nr_inactive_anon           59956     53460
 nr_active_anon             26815     30026
 nr_inactive_file           2657      3218
 nr_active_file             2019      2806
 nr_unevictable             4         4
 nr_mlock                   4         4
 nr_anon_pages              26706     27859
*nr_mapped                  3542      4469
 nr_file_pages              72232     67681
 nr_dirty                   1         0
 nr_writeback               123       19
 nr_slab_reclaimable        3375      3534
 nr_slab_unreclaimable      11405     10665
 nr_page_table_pages        8106      7864
 nr_unstable                0         0
 nr_bounce                  0         0
*nr_vmscan_write            394776    230839
 nr_writeback_temp          0         0
 numa_hit                   6843353   3318676
 numa_miss                  0         0
 numa_foreign               0         0
 numa_interleave            1719      1719
 numa_local                 6843353   3318676
 numa_other                 0         0
*pgpgin                     5954683   2057175
*pgpgout                    1578276   922744
*pswpin                     1486615   512238
*pswpout                    394568    230685
 pgalloc_dma                277432    56602
 pgalloc_dma32              6769477   3310348
 pgalloc_normal             0         0
 pgalloc_movable            0         0
 pgfree                     7048396   3371118
 pgactivate                 2036343   1471492
 pgdeactivate               2189691   1612829
 pgfault                    3702176   3100702
*pgmajfault                 452116    201343
 pgrefill_dma               12185     7127
 pgrefill_dma32             334384    653703
 pgrefill_normal            0         0
 pgrefill_movable           0         0
 pgsteal_dma                74214     22179
 pgsteal_dma32              3334164   1638029
 pgsteal_normal             0         0
 pgsteal_movable            0         0
 pgscan_kswapd_dma          1081421   1216199
 pgscan_kswapd_dma32        58979118  46002810
 pgscan_kswapd_normal       0         0
 pgscan_kswapd_movable      0         0
 pgscan_direct_dma          2015438   1086109
 pgscan_direct_dma32        55787823  36101597
 pgscan_direct_normal       0         0
 pgscan_direct_movable      0         0
 pginodesteal               3461      7281
 slabs_scanned              564864    527616
 kswapd_steal               2889797   1448082
 kswapd_inodesteal          14827     14835
 pageoutrun                 43459     21562
 allocstall                 9653      4032
 pgrotated                  384216    228631

1.5) free numbers at the end of the tests

before patch:
                             total       used       free     shared    buffers     cached
                Mem:           474        467          7          0          0        236
                -/+ buffers/cache:        230        243
                Swap:         1023        418        605

after patch:
                             total       used       free     shared    buffers     cached
                Mem:           474        457         16          0          0        236
                -/+ buffers/cache:        221        253
                Swap:         1023        404        619

2) memory flushing in a file server

2.1) brief summary

The number of major faults from 50 to 3 during 10% cache hot reads.

That means this patch successfully stops major faults when the active file
list is slowly scanned when there are partially cache hot streaming IO.

2.2) test scenario

Do 100000 pread(size=110 pages, offset=(i*100) pages), where 10% of the
pages will be activated:

        for i in `seq 0 100 10000000`; do echo $i 110;  done > pattern-hot-10
        iotrace.rb --load pattern-hot-10 --play /b/sparse
	vmmon  nr_mapped nr_active_file nr_inactive_file   pgmajfault pgdeactivate pgfree

and monitor /proc/vmstat during the time. The test box has 2G memory.

I carried out tests on fresh booted console as well as X desktop, and
fetched the vmstat numbers on

(1) begin:     shortly after the big read IO starts;
(2) end:       just before the big read IO stops;
(3) restore:   the big read IO stops and the zsh working set restored
(4) restore X: after IO, switch back and forth between the urxvt and firefox
               windows to restore their working set.

2.3) console mode results

        nr_mapped   nr_active_file nr_inactive_file       pgmajfault     pgdeactivate           pgfree

2.6.29 VM_EXEC protection ON:
begin:       2481             2237             8694              630                0           574299
end:          275           231976           233914              633           776271         20933042
restore:      370           232154           234524              691           777183         20958453

2.6.29 VM_EXEC protection ON (second run):
begin:       2434             2237             8493              629                0           574195
end:          284           231970           233536              632           771918         20896129
restore:      399           232218           234789              690           774526         20957909

2.6.30-rc4-mm VM_EXEC protection OFF:
begin:       2479             2344             9659              210                0           579643
end:          284           232010           234142              260           772776         20917184
restore:      379           232159           234371              301           774888         20967849

The above console numbers show that

- The startup pgmajfault of 2.6.30-rc4-mm is merely 1/3 that of 2.6.29.
  I'd attribute that improvement to the mmap readahead improvements :-)

- The pgmajfault increment during the file copy is 633-630=3 vs 260-210=50.
  That's a huge improvement - which means with the VM_EXEC protection logic,
  active mmap pages is pretty safe even under partially cache hot streaming IO.

- when active:inactive file lru size reaches 1:1, their scan rates is 1:20.8
  under 10% cache hot IO. (computed with formula Dpgdeactivate:Dpgfree)
  That roughly means the active mmap pages get 20.8 more chances to get
  re-referenced to stay in memory.

- The absolute nr_mapped drops considerably to 1/9 during the big IO, and the
  dropped pages are mostly inactive ones. The patch has almost no impact in
  this aspect, that means it won't unnecessarily increase memory pressure.
  (In contrast, your 20% mmap protection ratio will keep them all, and
  therefore eliminate the extra 41 major faults to restore working set
  of zsh etc.)

The iotrace.rb read throughput is
	151.194384MB/s 284.198252s 100001x 450560b --load pattern-hot-10 --play /b/sparse
which means the inactive list is rotated at the speed of 250MB/s,
so a full scan of which takes about 3.5 seconds, while a full scan
of active file list takes about 77 seconds.

2.4) X mode results

We can reach roughly the same conclusions for X desktop:

        nr_mapped   nr_active_file nr_inactive_file       pgmajfault     pgdeactivate           pgfree

2.6.30-rc4-mm VM_EXEC protection ON:
begin:       9740             8920            64075              561                0           678360
end:          768           218254           220029              565           798953         21057006
restore:      857           218543           220987              606           799462         21075710
restore X:   2414           218560           225344              797           799462         21080795

2.6.30-rc4-mm VM_EXEC protection OFF:
begin:       9368             5035            26389              554                0           633391
end:          770           218449           221230              661           646472         17832500
restore:     1113           218466           220978              710           649881         17905235
restore X:   2687           218650           225484              947           802700         21083584

- the absolute nr_mapped drops considerably (to 1/13 of the original size)
  during the streaming IO.
- the delta of pgmajfault is 3 vs 107 during IO, or 236 vs 393
  during the whole process.

Cc: Elladan <elladan@eskimo.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:44 -07:00
Wu Fengguang
6fe6b7e357 vmscan: report vm_flags in page_referenced()
Collect vma->vm_flags of the VMAs that actually referenced the page.

This is preparing for more informed reclaim heuristics, eg.  to protect
executable file pages more aggressively.  For now only the VM_EXEC bit
will be used by the caller.

Thanks to Johannes, Peter and Minchan for all the good tips.

Acked-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:44 -07:00
KAMEZAWA Hiroyuki
cb4b86ba47 mm: add swap cache interface for swap reference
In a following patch, the usage of swap cache is recorded into swap_map.
This patch is for necessary interface changes to do that.

2 interfaces:

  - swapcache_prepare()
  - swapcache_free()

are added for allocating/freeing refcnt from swap-cache to existing swap
entries.  But implementation itself is not changed under this patch.  At
adding swapcache_free(), memcg's hook code is moved under
swapcache_free().  This is better than using scattered hooks.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:42 -07:00
KOSAKI Motohiro
6837765963 mm: remove CONFIG_UNEVICTABLE_LRU config option
Currently, nobody wants to turn UNEVICTABLE_LRU off.  Thus this
configurability is unnecessary.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andi Kleen <andi@firstfloor.org>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:42 -07:00
MinChan Kim
69c8548175 vmscan: prevent shrinking of active anon lru list in case of no swap space V3
shrink_zone() can deactivate active anon pages even if we don't have a
swap device.  Many embedded products don't have a swap device.  So the
deactivation of anon pages is unnecessary.

This patch prevents unnecessary deactivation of anon lru pages.  But, it
don't prevent aging of anon pages to swap out.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:41 -07:00
Wu Fengguang
af166777cf vmscan: ZVC updates in shrink_active_list() can be done once
This effectively lifts the unit of updates to nr_inactive_* and
pgdeactivate from PAGEVEC_SIZE=14 to SWAP_CLUSTER_MAX=32, or
MAX_ORDER_NR_PAGES=1024 for reclaim_zone().

Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:39 -07:00
Wu Fengguang
6e08a369ee vmscan: cleanup the scan batching code
The vmscan batching logic is twisting.  Move it into a standalone function
nr_scan_try_batch() and document it.  No behavior change.

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:39 -07:00
Rik van Riel
56e49d2188 vmscan: evict use-once pages first
When the file LRU lists are dominated by streaming IO pages, evict those
pages first, before considering evicting other pages.

This should be safe from deadlocks or performance problems
because only three things can happen to an inactive file page:

1) referenced twice and promoted to the active list
2) evicted by the pageout code
3) under IO, after which it will get evicted or promoted

The pages freed in this way can either be reused for streaming IO, or
allocated for something else.  If the pages are used for streaming IO,
this pageout pattern continues.  Otherwise, we will fall back to the
normal pageout pattern.

Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Elladan <elladan@eskimo.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:38 -07:00
Mel Gorman
418589663d page allocator: use allocation flags as an index to the zone watermark
ALLOC_WMARK_MIN, ALLOC_WMARK_LOW and ALLOC_WMARK_HIGH determin whether
pages_min, pages_low or pages_high is used as the zone watermark when
allocating the pages.  Two branches in the allocator hotpath determine
which watermark to use.

This patch uses the flags as an array index into a watermark array that is
indexed with WMARK_* defines accessed via helpers.  All call sites that
use zone->pages_* are updated to use the helpers for accessing the values
and the array offsets for setting.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:35 -07:00
KOSAKI Motohiro
78dc583d3a vmscan: low order lumpy reclaim also should use PAGEOUT_IO_SYNC
Commit 33c120ed28 ("more aggressively use
lumpy reclaim") increased how aggressive lumpy reclaim was by isolating
both active and inactive pages for asynchronous lumpy reclaim on
costly-high-order pages and for cheap-high-order when memory pressure is
high.  However, if the system is under heavy pressure and there are dirty
pages, asynchronous IO may not be sufficient to reclaim a suitable page in
time.

This patch causes the caller to enter synchronous lumpy reclaim for
costly-high-order pages and for cheap-high-order pages when under memory
pressure.

Minchan.kim@gmail.com said:

Andy added synchronous lumpy reclaim with
c661b078fd.  At that time, lumpy reclaim is
not agressive.  His intension is just for high-order users.(above
PAGE_ALLOC_COSTLY_ORDER).

After some time, Rik added aggressive lumpy reclaim with
33c120ed28.  His intention was to do lumpy
reclaim when high-order users and trouble getting a small set of
contiguous pages.

So we also have to add synchronous pageout for small set of contiguous
pages.

Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <Minchan.kim@gmail.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:31 -07:00
Rafael J. Wysocki
c6f37f1219 PM/Suspend: Do not shrink memory before suspend
Remove the shrinking of memory from the suspend-to-RAM code, where
it is not really necessary.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@tuxonice.net>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
2009-06-12 21:32:32 +02:00
Daisuke Nishimura
e767e0561d memcg: fix deadlock between lock_page_cgroup and mapping tree_lock
mapping->tree_lock can be acquired from interrupt context.  Then,
following dead lock can occur.

Assume "A" as a page.

 CPU0:
       lock_page_cgroup(A)
		interrupted
			-> take mapping->tree_lock.
 CPU1:
       take mapping->tree_lock
		-> lock_page_cgroup(A)

This patch tries to fix above deadlock by moving memcg's hook to out of
mapping->tree_lock.  charge/uncharge of pagecache/swapcache is protected
by page lock, not tree_lock.

After this patch, lock_page_cgroup() is not called under mapping->tree_lock.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-29 08:40:02 -07:00
Andrew Morton
8713e01295 vmscan: avoid multiplication overflow in shrink_zone()
Local variable `scan' can overflow on zones which are larger than

	(2G * 4k) / 100 = 80GB.

Making it 64-bit on 64-bit will fix that up.

Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-02 15:36:10 -07:00
KOSAKI Motohiro
2e2e425989 vmscan,memcg: reintroduce sc->may_swap
Commit a6dc60f897 ("vmscan: rename
sc.may_swap to may_unmap") removed the may_swap flag, but memcg had used
it as a flag for "we need to use swap?", as the name indicate.

And in the current implementation, memcg cannot reclaim mapped file
caches when mem+swap hits the limit.

re-introduce may_swap flag and handle it at get_scan_ratio().  This
patch doesn't influence any scan_control users other than memcg.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-21 13:41:51 -07:00
Rafael J. Wysocki
a21e255361 PM/Hibernate: Fix memory shrinking
Commit d979677c4c ("mm: shrink_all_memory(): use sc.nr_reclaimed")
broke the memory shrinking used by hibernation, becuse it did not update
shrink_all_zones() in accordance with the other changes it made.

Fix this by making shrink_all_zones() update sc->nr_reclaimed instead of
overwriting its value.

This fixes http://bugzilla.kernel.org/show_bug.cgi?id=13058

Reported-and-tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-18 11:36:58 -07:00
Linus Torvalds
90975ef712 Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask: (36 commits)
  cpumask: remove cpumask allocation from idle_balance, fix
  numa, cpumask: move numa_node_id default implementation to topology.h, fix
  cpumask: remove cpumask allocation from idle_balance
  x86: cpumask: x86 mmio-mod.c use cpumask_var_t for downed_cpus
  x86: cpumask: update 32-bit APM not to mug current->cpus_allowed
  x86: microcode: cleanup
  x86: cpumask: use work_on_cpu in arch/x86/kernel/microcode_core.c
  cpumask: fix CONFIG_CPUMASK_OFFSTACK=y cpu hotunplug crash
  numa, cpumask: move numa_node_id default implementation to topology.h
  cpumask: convert node_to_cpumask_map[] to cpumask_var_t
  cpumask: remove x86 cpumask_t uses.
  cpumask: use cpumask_var_t in uv_flush_tlb_others.
  cpumask: remove cpumask_t assignment from vector_allocation_domain()
  cpumask: make Xen use the new operators.
  cpumask: clean up summit's send_IPI functions
  cpumask: use new cpumask functions throughout x86
  x86: unify cpu_callin_mask/cpu_callout_mask/cpu_initialized_mask/cpu_sibling_setup_mask
  cpumask: convert struct cpuinfo_x86's llc_shared_map to cpumask_var_t
  cpumask: convert node_to_cpumask_map[] to cpumask_var_t
  x86: unify 32 and 64-bit node_to_cpumask_map
  ...
2009-04-05 10:33:07 -07:00
David Howells
266cf658ef FS-Cache: Recruit a page flags for cache management
Recruit a page flag to aid in cache management.  The following extra flag is
defined:

 (1) PG_fscache (PG_private_2)

     The marked page is backed by a local cache and is pinning resources in the
     cache driver.

If PG_fscache is set, then things that checked for PG_private will now also
check for that.  This includes things like truncation and page invalidation.
The function page_has_private() had been added to make the checks for both
PG_private and PG_private_2 at the same time.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:36 +01:00
KAMEZAWA Hiroyuki
327c0e9686 vmscan: fix it to take care of nodemask
try_to_free_pages() is used for the direct reclaim of up to
SWAP_CLUSTER_MAX pages when watermarks are low.  The caller to
alloc_pages_nodemask() can specify a nodemask of nodes that are allowed to
be used but this is not passed to try_to_free_pages().  This can lead to
unnecessary reclaim of pages that are unusable by the caller and int the
worst case lead to allocation failure as progress was not been make where
it is needed.

This patch passes the nodemask used for alloc_pages_nodemask() to
try_to_free_pages().

Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:15 -07:00
David Rientjes
88c3bd707c vmscan: print shrink_slab symbol name on negative shrinker objects
When a shrinker has a negative number of objects to delete, the symbol
name of the shrinker should be printed, not shrink_slab.  This also makes
the error message slightly more informative.

Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:15 -07:00
Johannes Weiner
ad1c3544d0 mm: don't free swap slots on page deactivation
The pagevec_swap_free() at the end of shrink_active_list() was introduced
in 68a22394 "vmscan: free swap space on swap-in/activation" when
shrink_active_list() was still rotating referenced active pages.

In 7e9cd48 "vmscan: fix pagecache reclaim referenced bit check" this was
changed, the rotating removed but the pagevec_swap_free() after the
rotation loop was forgotten, applying now to the pagevec of the
deactivation loop instead.

Now swap space is freed for deactivated pages.  And only for those that
happen to be on the pagevec after the deactivation loop.

Complete 7e9cd48 and remove the rest of the swap freeing.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:13 -07:00
Johannes Weiner
2443462b0a mm: move pagevec stripping to save unlock-relock
In shrink_active_list() after the deactivation loop, we strip buffer heads
from the potentially remaining pages in the pagevec.

Currently, this drops the zone's lru lock for stripping, only to reacquire
it again afterwards to update statistics.

It is not necessary to strip the pages before updating the stats, so move
the whole thing out of the protected region and save the extra locking.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:13 -07:00
Johannes Weiner
bd2f6199cf vmscan: respect higher order in zone_reclaim()
During page allocation, there are two stages of direct reclaim that are
applied to each zone in the preferred list.  The first stage using
zone_reclaim() reclaims unmapped file backed pages and slab pages if over
defined limits as these are cheaper to reclaim.  The caller specifies the
order of the target allocation but the scan control is not being correctly
initialised.

The impact is that the correct number of pages are being reclaimed but
that lumpy reclaim is not being applied.  This increases the chances of a
full direct reclaim via try_to_free_pages() is required.

This patch initialises the order field of the scan control as requested by
the caller.

[mel@csn.ul.ie: rewrote changelog]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:12 -07:00
Johannes Weiner
9786bf841d vmscan: clip swap_cluster_max in shrink_all_memory()
shrink_inactive_list() scans in sc->swap_cluster_max chunks until it hits
the scan limit it was passed.

shrink_inactive_list()
{
	do {
		isolate_pages(swap_cluster_max)
		shrink_page_list()
	} while (nr_scanned < max_scan);
}

This assumes that swap_cluster_max is not bigger than the scan limit
because the latter is checked only after at least one iteration.

In shrink_all_memory() sc->swap_cluster_max is initialized to the overall
reclaim goal in the beginning but not decreased while reclaim is making
progress which leads to subsequent calls to shrink_inactive_list()
reclaiming way too much in the one iteration that is done unconditionally.

Set sc->swap_cluster_max always to the proper goal before doing
  shrink_all_zones()
    shrink_list()
      shrink_inactive_list().

While the current shrink_all_memory() happily reclaims more than actually
requested, this patch fixes it to never exceed the goal:

unpatched
   wanted=10000 reclaimed=13356
   wanted=10000 reclaimed=19711
   wanted=10000 reclaimed=10289
   wanted=10000 reclaimed=17306
   wanted=10000 reclaimed=10700
   wanted=10000 reclaimed=10004
   wanted=10000 reclaimed=13301
   wanted=10000 reclaimed=10976
   wanted=10000 reclaimed=10605
   wanted=10000 reclaimed=10088
   wanted=10000 reclaimed=15000

patched
   wanted=10000 reclaimed=10000
   wanted=10000 reclaimed=9599
   wanted=10000 reclaimed=8476
   wanted=10000 reclaimed=8326
   wanted=10000 reclaimed=10000
   wanted=10000 reclaimed=10000
   wanted=10000 reclaimed=9919
   wanted=10000 reclaimed=10000
   wanted=10000 reclaimed=10000
   wanted=10000 reclaimed=10000
   wanted=10000 reclaimed=10000
   wanted=10000 reclaimed=9624
   wanted=10000 reclaimed=10000
   wanted=10000 reclaimed=10000
   wanted=8500 reclaimed=8092
   wanted=316 reclaimed=316

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: MinChan Kim <minchan.kim@gmail.com>
Acked-by: Nigel Cunningham <ncunningham@crca.org.au>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:12 -07:00
MinChan Kim
d979677c4c mm: shrink_all_memory(): use sc.nr_reclaimed
Commit a79311c14e "vmscan: bail out of
direct reclaim after swap_cluster_max pages" moved the nr_reclaimed
counter into the scan control to accumulate the number of all reclaimed
pages in a reclaim invocation.

shrink_all_memory() can use the same mechanism. it increase code
consistency and redability.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:12 -07:00
KOSAKI Motohiro
ee99c71c59 mm: introduce for_each_populated_zone() macro
Impact: cleanup

In almost cases, for_each_zone() is used with populated_zone().  It's
because almost function doesn't need memoryless node information.
Therefore, for_each_populated_zone() can help to make code simplify.

This patch has no functional change.

[akpm@linux-foundation.org: small cleanup]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:11 -07:00
Johannes Weiner
a6dc60f897 vmscan: rename sc.may_swap to may_unmap
sc.may_swap does not only influence reclaiming of anon pages but pages
mapped into pagetables in general, which also includes mapped file pages.

In shrink_page_list():

		if (!sc->may_swap && page_mapped(page))
			goto keep_locked;

For anon pages, this makes sense as they are always mapped and reclaiming
them always requires swapping.

But mapped file pages are skipped here as well and it has nothing to do
with swapping.

The real effect of the knob is whether mapped pages are unmapped and
reclaimed or not.  Rename it to `may_unmap' to have its name match its
actual meaning more precisely.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: MinChan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:11 -07:00
Rusty Russell
558f6ab910 Merge branch 'cpumask-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
Conflicts:

	arch/x86/include/asm/topology.h
	drivers/oprofile/buffer_sync.c
(Both cases: changed in Linus' tree, removed in Ingo's).
2009-03-31 13:33:50 +10:30
Linus Torvalds
c4e1aa67ed Merge branch 'locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (33 commits)
  lockdep: fix deadlock in lockdep_trace_alloc
  lockdep: annotate reclaim context (__GFP_NOFS), fix SLOB
  lockdep: annotate reclaim context (__GFP_NOFS), fix
  lockdep: build fix for !PROVE_LOCKING
  lockstat: warn about disabled lock debugging
  lockdep: use stringify.h
  lockdep: simplify check_prev_add_irq()
  lockdep: get_user_chars() redo
  lockdep: simplify get_user_chars()
  lockdep: add comments to mark_lock_irq()
  lockdep: remove macro usage from mark_held_locks()
  lockdep: fully reduce mark_lock_irq()
  lockdep: merge the !_READ mark_lock_irq() helpers
  lockdep: merge the _READ mark_lock_irq() helpers
  lockdep: simplify mark_lock_irq() helpers #3
  lockdep: further simplify mark_lock_irq() helpers
  lockdep: simplify the mark_lock_irq() helpers
  lockdep: split up mark_lock_irq()
  lockdep: generate usage strings
  lockdep: generate the state bit definitions
  ...
2009-03-30 17:17:35 -07:00
Ingo Molnar
65fb0d23fc Merge branch 'linus' into cpumask-for-linus
Conflicts:
	arch/x86/kernel/cpu/common.c
2009-03-30 23:53:32 +02:00
Daisuke Nishimura
1d885526f2 vmscan: pgmoved should be cleared after updating recent_rotated
pgmoved should be cleared after updating recent_rotated.

Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-03-14 11:57:22 -07:00
Ingo Molnar
238a5b4bff Merge branch 'cpus4096' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-x86 into cpus4096 2009-03-13 05:54:55 +01:00
Rusty Russell
a70f730282 cpumask: replace node_to_cpumask with cpumask_of_node.
Impact: cleanup

node_to_cpumask (and the blecherous node_to_cpumask_ptr which
contained a declaration) are replaced now everyone implements
cpumask_of_node.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2009-03-13 14:49:46 +10:30
KOSAKI Motohiro
f272b7bc44 memcg: use correct scan number at reclaim
Even when page reclaim is under mem_cgroup, # of scan page is determined by
status of global LRU. Fix that.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-03-12 16:20:24 -07:00
Johannes Weiner
0cb57258fe swsusp: clean up shrink_all_zones()
Move local variables to innermost possible scopes and use local
variables to cache calculations/reads done more than once.

No change in functionality (intended).

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg KH <gregkh@suse.de>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-21 14:17:17 -08:00
Johannes Weiner
3049103ddf swsusp: dont fiddle with swappiness
sc.swappiness is not used in the swsusp memory shrinking path, do not
set it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg KH <gregkh@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-21 14:17:17 -08:00
Ingo Molnar
6700ec65c2 lockdep: annotate reclaim context (__GFP_NOFS), fix
Impact: fix build warning

Fix:

  mm/vmscan.c: In function ‘kswapd’:
  mm/vmscan.c:1969: warning: ISO C90 forbids mixed declarations and code

node_to_cpumask_ptr(cpumask, pgdat->node_id), has a side-effect: it
defines the 'cpumask' local variable as well, so it has to go into
the variable definition section.

Sidenote: it might make sense to make this purpose of these macros
more apparent, by naming them the standard way, such as:

  DEFINE_node_to_cpumask_ptr(cpumask, pgdat->node_id);

(But that is outside the scope of this patch.)

Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-15 21:22:48 +01:00
Nick Piggin
cf40bd16fd lockdep: annotate reclaim context (__GFP_NOFS)
Here is another version, with the incremental patch rolled up, and
added reclaim context annotation to kswapd, and allocation tracing
to slab allocators (which may only ever reach the page allocator
in rare cases, so it is good to put annotations here too).

Haven't tested this version as such, but it should be getting closer
to merge worthy ;)

--
After noticing some code in mm/filemap.c accidentally perform a __GFP_FS
allocation when it should not have been, I thought it might be a good idea to
try to catch this kind of thing with lockdep.

I coded up a little idea that seems to work. Unfortunately the system has to
actually be in __GFP_FS page reclaim, then take the lock, before it will mark
it. But at least that might still be some orders of magnitude more common
(and more debuggable) than an actual deadlock condition, so we have some
improvement I hope (the concept is no less complete than discovery of a lock's
interrupt contexts).

I guess we could even do the same thing with __GFP_IO (normal reclaim), and
even GFP_NOIO locks too... but filesystems will have the most locks and fiddly
code paths, so let's start there and see how it goes.

It *seems* to work. I did a quick test.

=================================
[ INFO: inconsistent lock state ]
2.6.28-rc6-00007-ged31348-dirty #26
---------------------------------
inconsistent {in-reclaim-W} -> {ov-reclaim-W} usage.
modprobe/8526 [HC0[0]:SC0[0]:HE1:SE1] takes:
 (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]
{in-reclaim-W} state was registered at:
  [<ffffffff80267bdb>] __lock_acquire+0x75b/0x1a60
  [<ffffffff80268f71>] lock_acquire+0x91/0xc0
  [<ffffffff8070f0e1>] mutex_lock_nested+0xb1/0x310
  [<ffffffffa002002b>] brd_init+0x2b/0x216 [brd]
  [<ffffffff8020903b>] _stext+0x3b/0x170
  [<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
  [<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b
  [<ffffffffffffffff>] 0xffffffffffffffff
irq event stamp: 3929
hardirqs last  enabled at (3929): [<ffffffff8070f2b5>] mutex_lock_nested+0x285/0x310
hardirqs last disabled at (3928): [<ffffffff8070f089>] mutex_lock_nested+0x59/0x310
softirqs last  enabled at (3732): [<ffffffff8061f623>] sk_filter+0x83/0xe0
softirqs last disabled at (3730): [<ffffffff8061f5b6>] sk_filter+0x16/0xe0

other info that might help us debug this:
1 lock held by modprobe/8526:
 #0:  (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]

stack backtrace:
Pid: 8526, comm: modprobe Not tainted 2.6.28-rc6-00007-ged31348-dirty #26
Call Trace:
 [<ffffffff80265483>] print_usage_bug+0x193/0x1d0
 [<ffffffff80266530>] mark_lock+0xaf0/0xca0
 [<ffffffff80266735>] mark_held_locks+0x55/0xc0
 [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
 [<ffffffff802667ca>] trace_reclaim_fs+0x2a/0x60
 [<ffffffff80285005>] __alloc_pages_internal+0x475/0x580
 [<ffffffff8070f29e>] ? mutex_lock_nested+0x26e/0x310
 [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
 [<ffffffffa002006a>] brd_init+0x6a/0x216 [brd]
 [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
 [<ffffffff8020903b>] _stext+0x3b/0x170
 [<ffffffff8070f8b9>] ? mutex_unlock+0x9/0x10
 [<ffffffff8070f83d>] ? __mutex_unlock_slowpath+0x10d/0x180
 [<ffffffff802669ec>] ? trace_hardirqs_on_caller+0x12c/0x190
 [<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
 [<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-14 23:27:49 +01:00
KOSAKI Motohiro
c772be939e memcg: fix calculation of active_ratio
Currently, inactive_ratio of memcg is calculated at setting limit.
because page_alloc.c does so and current implementation is straightforward
porting.

However, memcg introduced hierarchy feature recently.  In hierarchy
restriction, memory limit is not only decided memory.limit_in_bytes of
current cgroup, but also parent limit and sibling memory usage.

Then, The optimal inactive_ratio is changed frequently.  So, everytime
calculation is better.

Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:09 -08:00
KOSAKI Motohiro
a7885eb8ad memcg: swappiness
Currently, /proc/sys/vm/swappiness can change swappiness ratio for global
reclaim.  However, memcg reclaim doesn't have tuning parameter for itself.

In general, the optimal swappiness depend on workload.  (e.g.  hpc
workload need to low swappiness than the others.)

Then, per cgroup swappiness improve administrator tunability.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:08 -08:00
KAMEZAWA Hiroyuki
e72e2bd674 memcg: rename scan global lru
Rename scan_global_lru() to scanning_global_lru().

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:08 -08:00
KOSAKI Motohiro
9439c1c95b memcg: remove mem_cgroup_cal_reclaim()
Now, get_scan_ratio() return correct value although memcg reclaim.  Then,
mem_cgroup_calc_reclaim() can be removed.

So, memcg reclaim get the same capability of anon/file reclaim balancing
as global reclaim now.

Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:08 -08:00
KOSAKI Motohiro
3e2f41f1f6 memcg: add zone_reclaim_stat
Introduce mem_cgroup_per_zone::reclaim_stat member and its statics
collecting function.

Now, get_scan_ratio() can calculate correct value on memcg reclaim.

[hugh@veritas.com: avoid reclaim_stat oops when disabled]
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:08 -08:00
KOSAKI Motohiro
a3d8e0549d memcg: add mem_cgroup_zone_nr_pages()
Introduce mem_cgroup_zone_nr_pages().  It is called by zone_nr_pages()
helper function.

This patch doesn't have any behavior change.

Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:08 -08:00
KOSAKI Motohiro
14797e2363 memcg: add inactive_anon_is_low()
The inactive_anon_is_low() is key component of active/inactive anon
balancing on reclaim.  However current inactive_anon_is_low() function
only consider global reclaim.

Therefore, we need following ugly scan_global_lru() condition.

	if (lru == LRU_ACTIVE_ANON &&
	    (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
		shrink_active_list(nr_to_scan, zone, sc, priority, file);
		return 0;

it cause that memcg reclaim always deactivate pages when shrink_list() is
called.  To make mem_cgroup_inactive_anon_is_low() improve active/inactive
anon balancing of memcgroup.

Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: "Pekka Enberg" <penberg@cs.helsinki.fi>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:08 -08:00
KOSAKI Motohiro
eeee9a8cd1 mm: make get_scan_ratio() safe for memcg
Currently, get_scan_ratio() always calculate the balancing value for
global reclaim and memcg reclaim doesn't use it.  Therefore it doesn't
have scan_global_lru() condition.

However, we plan to expand get_scan_ratio() to be usable for memcg too,
latter.  Then, The dependency code of global reclaim in the
get_scan_ratio() insert into scan_global_lru() condision explictly.

This patch doesn't have any functional change.

Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:07 -08:00
KOSAKI Motohiro
c9f299d986 mm: add zone nr_pages helper function
Add zone_nr_pages() helper function.

It is used by a later patch.  This patch doesn't have any functional
change.

Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:07 -08:00
KOSAKI Motohiro
6e9015716a mm: introduce zone_reclaim struct
Add zone_reclam_stat struct for later enhancement.

A later patch uses this.  This patch doesn't any behavior change (yet).

Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:07 -08:00
KOSAKI Motohiro
f89eb90e33 inactive_anon_is_low: move to vmscan
The inactive_anon_is_low() is called only vmscan.  Then it can move to
vmscan.c

This patch doesn't have any functional change.

Reviewd-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:07 -08:00
KAMEZAWA Hiroyuki
08e552c69c memcg: synchronized LRU
A big patch for changing memcg's LRU semantics.

Now,
  - page_cgroup is linked to mem_cgroup's its own LRU (per zone).

  - LRU of page_cgroup is not synchronous with global LRU.

  - page and page_cgroup is one-to-one and statically allocated.

  - To find page_cgroup is on what LRU, you have to check pc->mem_cgroup as
    - lru = page_cgroup_zoneinfo(pc, nid_of_pc, zid_of_pc);

  - SwapCache is handled.

And, when we handle LRU list of page_cgroup, we do following.

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc); .....................(1)
	mz = page_cgroup_zoneinfo(pc);
	spin_lock(&mz->lru_lock);
	.....add to LRU
	spin_unlock(&mz->lru_lock);
	unlock_page_cgroup(pc);

But (1) is spin_lock and we have to be afraid of dead-lock with zone->lru_lock.
So, trylock() is used at (1), now. Without (1), we can't trust "mz" is correct.

This is a trial to remove this dirty nesting of locks.
This patch changes mz->lru_lock to be zone->lru_lock.
Then, above sequence will be written as

        spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
	mem_cgroup_add/remove/etc_lru() {
		pc = lookup_page_cgroup(page);
		mz = page_cgroup_zoneinfo(pc);
		if (PageCgroupUsed(pc)) {
			....add to LRU
		}
        spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU

This is much simpler.
(*) We're safe even if we don't take lock_page_cgroup(pc). Because..
    1. When pc->mem_cgroup can be modified.
       - at charge.
       - at account_move().
    2. at charge
       the PCG_USED bit is not set before pc->mem_cgroup is fixed.
    3. at account_move()
       the page is isolated and not on LRU.

Pros.
  - easy for maintenance.
  - memcg can make use of laziness of pagevec.
  - we don't have to duplicated LRU/Active/Unevictable bit in page_cgroup.
  - LRU status of memcg will be synchronized with global LRU's one.
  - # of locks are reduced.
  - account_move() is simplified very much.
Cons.
  - may increase cost of LRU rotation.
    (no impact if memcg is not configured.)

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:05 -08:00
KAMEZAWA Hiroyuki
8c7c6e34a1 memcg: mem+swap controller core
This patch implements per cgroup limit for usage of memory+swap.  However
there are SwapCache, double counting of swap-cache and swap-entry is
avoided.

Mem+Swap controller works as following.
  - memory usage is limited by memory.limit_in_bytes.
  - memory + swap usage is limited by memory.memsw_limit_in_bytes.

This has following benefits.
  - A user can limit total resource usage of mem+swap.

    Without this, because memory resource controller doesn't take care of
    usage of swap, a process can exhaust all the swap (by memory leak.)
    We can avoid this case.

    And Swap is shared resource but it cannot be reclaimed (goes back to memory)
    until it's used. This characteristic can be trouble when the memory
    is divided into some parts by cpuset or memcg.
    Assume group A and group B.
    After some application executes, the system can be..

    Group A -- very large free memory space but occupy 99% of swap.
    Group B -- under memory shortage but cannot use swap...it's nearly full.

    Ability to set appropriate swap limit for each group is required.

Maybe someone wonder "why not swap but mem+swap ?"

  - The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
    to move account from memory to swap...there is no change in usage of
    mem+swap.

    In other words, when we want to limit the usage of swap without affecting
    global LRU, mem+swap limit is better than just limiting swap.

Accounting target information is stored in swap_cgroup which is
per swap entry record.

Charge is done as following.
  map
    - charge  page and memsw.

  unmap
    - uncharge page/memsw if not SwapCache.

  swap-out (__delete_from_swap_cache)
    - uncharge page
    - record mem_cgroup information to swap_cgroup.

  swap-in (do_swap_page)
    - charged as page and memsw.
      record in swap_cgroup is cleared.
      memsw accounting is decremented.

  swap-free (swap_free())
    - if swap entry is freed, memsw is uncharged by PAGE_SIZE.

There are people work under never-swap environments and consider swap as
something bad. For such people, this mem+swap controller extension is just an
overhead.  This overhead is avoided by config or boot option.
(see Kconfig. detail is not in this patch.)

TODO:
 - maybe more optimization can be don in swap-in path. (but not very safe.)
   But we just do simple accounting at this stage.

[nishimura@mxp.nes.nec.co.jp: make resize limit hold mutex]
[hugh@veritas.com: memswap controller core swapcache fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:05 -08:00
KOSAKI Motohiro
73ce02e96f mm: stop kswapd's infinite loop at high order allocation
Wassim Dagash reported following kswapd infinite loop problem.

  kswapd runs in some infinite loop trying to swap until order 10 of zone
  highmem is OK.... kswapd will continue to try to balance order 10 of zone
  highmem forever (or until someone release a very large chunk of highmem).

For non order-0 allocations, the system may never be balanced due to
fragmentation but kswapd should not infinitely loop as a result.

Instead, recheck all watermarks at order-0 as they are the most important.
If watermarks are ok, kswapd will go back to sleep.

[akpm@linux-foundation.org: fix comment]
Reported-by: wassim dagash <wassim.dagash@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:10 -08:00
Andrew Morton
b555749aac vmscan: shrink_active_list(): reduce lru_lock hold time
These three statements manipulate local variables and do not need the lock
coverage.

Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:08 -08:00
KOSAKI Motohiro
09f445e7f5 mm: kill zone_is_near_oom()
zone_is_near_oom() is unused.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:06 -08:00
KOSAKI Motohiro
01dbe5c9b1 vmscan: improve reclaim throughput to bail out patch
The vmscan bail out patch move nr_reclaimed variable to struct
scan_control.  Unfortunately, indirect access can easily happen cache
miss.

if heavy memory pressure happend, that's ok.
cache miss already plenty. it is not observable.

but, if memory pressure is lite, performance degression is obserbable.

I compared following three pattern (it was mesured 10 times each)

hackbench 125 process 3000
hackbench 130 process 3000
hackbench 135 process 3000

            2.6.28-rc6                       bail-out

	125	130	135		125	130	135
      ==============================================================
	71.866	75.86	81.274		93.414	73.254	193.382
	74.145	78.295	77.27		74.897	75.021	80.17
	70.305	77.643	75.855		70.134	77.571	79.896
	74.288	73.986	75.955		77.222	78.48	80.619
	72.029	79.947	78.312		75.128	82.172	79.708
	71.499	77.615	77.042		74.177	76.532	77.306
	76.188	74.471	83.562		73.839	72.43	79.833
	73.236	75.606	78.743		76.001	76.557	82.726
	69.427	77.271	76.691		76.236	79.371	103.189
	72.473	76.978	80.643		69.128	78.932	75.736

avg	72.545	76.767	78.534		76.017	77.03	93.256
std	1.89	1.71	2.41		6.29	2.79	34.16
min	69.427	73.986	75.855		69.128	72.43	75.736
max	76.188	79.947	83.562		93.414	82.172	193.382

about 4-5% degression.

Then, this patch introduces a temporary local variable.

result:

            2.6.28-rc6                       this patch

num	125	130	135		125	130	135
      ==============================================================
	71.866	75.86	81.274		67.302	68.269	77.161
	74.145	78.295	77.27   	72.616	72.712	79.06
	70.305	77.643	75.855  	72.475	75.712	77.735
	74.288	73.986	75.955  	69.229	73.062	78.814
	72.029	79.947	78.312  	71.551	74.392	78.564
	71.499	77.615	77.042  	69.227	74.31	78.837
	76.188	74.471	83.562  	70.759	75.256	76.6
	73.236	75.606	78.743  	69.966	76.001	78.464
	69.427	77.271	76.691  	69.068	75.218	80.321
	72.473	76.978	80.643  	72.057	77.151	79.068

avg	72.545	76.767	78.534 		70.425	74.2083	78.462
std 	1.89	1.71	2.41    	1.66	2.34	1.00
min 	69.427	73.986	75.855  	67.302	68.269	76.6
max 	76.188	79.947	83.562  	72.616	77.151	80.321

OK. the degression is disappeared.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:06 -08:00
Rik van Riel
a79311c14e vmscan: bail out of direct reclaim after swap_cluster_max pages
When the VM is under pressure, it can happen that several direct reclaim
processes are in the pageout code simultaneously.  It also happens that
the reclaiming processes run into mostly referenced, mapped and dirty
pages in the first round.

This results in multiple direct reclaim processes having a lower
pageout priority, which corresponds to a higher target of pages to
scan.

This in turn can result in each direct reclaim process freeing
many pages.  Together, they can end up freeing way too many pages.

This kicks useful data out of memory (in some cases more than half
of all memory is swapped out).  It also impacts performance by
keeping tasks stuck in the pageout code for too long.

A 30% improvement in hackbench has been observed with this patch.

The fix is relatively simple: in shrink_zone() we can check how many
pages we have already freed, direct reclaim tasks break out of the
scanning loop if they have already freed enough pages and have reached
a lower priority level.

We do not break out of shrink_zone() when priority == DEF_PRIORITY,
to ensure that equal pressure is applied to every zone in the common
case.

However, in order to do this we do need to know how many pages we already
freed, so move nr_reclaimed into scan_control.

akpm: a historical interlude...

We tried this in 2004:

:commit e468e46a9bea3297011d5918663ce6d19094cf87
:Author: akpm <akpm>
:Date:   Thu Jun 24 15:53:52 2004 +0000
:
:[PATCH] vmscan.c: dont reclaim too many pages
:
:    The shrink_zone() logic can, under some circumstances, cause far too many
:    pages to be reclaimed.  Say, we're scanning at high priority and suddenly hit
:    a large number of reclaimable pages on the LRU.
:    Change things so we bale out when SWAP_CLUSTER_MAX pages have been reclaimed.

And we reverted it in 2006:

:commit 210fe53030
:Author: Andrew Morton <akpm@osdl.org>
:Date:   Fri Jan 6 00:11:14 2006 -0800
:
:    [PATCH] vmscan: balancing fix
:
:    Revert a patch which went into 2.6.8-rc1.  The changelog for that patch was:
:
:      The shrink_zone() logic can, under some circumstances, cause far too many
:      pages to be reclaimed.  Say, we're scanning at high priority and suddenly
:      hit a large number of reclaimable pages on the LRU.
:
:      Change things so we bale out when SWAP_CLUSTER_MAX pages have been
:      reclaimed.
:
:    Problem is, this change caused significant imbalance in inter-zone scan
:    balancing by truncating scans of larger zones.
:
:    Suppose, for example, ZONE_HIGHMEM is 10x the size of ZONE_NORMAL.  The zone
:    balancing algorithm would require that if we're scanning 100 pages of
:    ZONE_HIGHMEM, we should scan 10 pages of ZONE_NORMAL.  But this logic will
:    cause the scanning of ZONE_HIGHMEM to bale out after only 32 pages are
:    reclaimed.  Thus effectively causing smaller zones to be scanned relatively
:    harder than large ones.
:
:    Now I need to remember what the workload was which caused me to write this
:    patch originally, then fix it up in a different way...

And we haven't demonstrated that whatever problem caused that reversion is
not being reintroduced by this change in 2008.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:06 -08:00
KOSAKI Motohiro
14b90b22ec mm: make scan_zone_unevictable_pages() static
sparse output following warning

	mm/vmscan.c:2507:6: warning: symbol 'scan_zone_unevictable_pages' was not declared. Should it be static?

cleanup here.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:04 -08:00
KOSAKI Motohiro
ff30153bf9 mm: make scan_all_zones_unevictable_pages() static
sparse output following warning.

	mm/vmscan.c:2549:6: warning: symbol 'scan_all_zones_unevictable_pages' was not declared. Should it be static?

cleanup here.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:04 -08:00
KOSAKI Motohiro
077cbc5864 memcg: reclaim shouldn't change zone->recent_rotated statistics
memcg reclaim shouldn't change zone->recent_rotated statistics.  If
memcgroup reclaim changes zone statistics, global reclaim can get a bit
confused.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:04 -08:00
Hugh Dickins
b962716b45 mm: optimize get_scan_ratio for no swap
Rik suggests a simplified get_scan_ratio() for !CONFIG_SWAP.  Yes, the gcc
optimizer gives us that, when nr_swap_pages is #defined as 0L.  Move usual
declaration to swapfile.c: it never belonged in page_alloc.c.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:04 -08:00
Hugh Dickins
60371d971a mm: add add_to_swap stub
If we add a failing stub for add_to_swap(), then we can remove the #ifdef
CONFIG_SWAP from mm/vmscan.c.

This was intended as a source cleanup, but looking more closely, it turns
out that the !CONFIG_SWAP case was going to keep_locked for an anonymous
page, whereas now it goes to the more suitable activate_locked, like the
CONFIG_SWAP nr_swap_pages 0 case.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:04 -08:00
Hugh Dickins
ac47b003d0 mm: remove gfp_mask from add_to_swap
Remove gfp_mask argument from add_to_swap(): it's misleading because its
only caller, shrink_page_list(), is not atomic at that point; and in due
course (implementing discard) we'll sometimes want to allocate some memory
with GFP_NOIO (as is used in swap_writepage) when allocating swap.

No change to the gfp_mask passed down to add_to_swap_cache(): still use
__GFP_HIGH without __GFP_WAIT (with nomemalloc and nowarn as before):
though it's not obvious if that's the best combination to ask for here.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:04 -08:00
Hugh Dickins
63d6c5ad7f mm: remove try_to_munlock from vmscan
An unfortunate feature of the Unevictable LRU work was that reclaiming an
anonymous page involved an extra scan through the anon_vma: to check that
the page is evictable before allocating swap, because the swap could not
be freed reliably soon afterwards.

Now try_to_free_swap() has replaced remove_exclusive_swap_page(), that's
not an issue any more: remove try_to_munlock() call from
shrink_page_list(), leaving it to try_to_munmap() to discover if the page
is one to be culled to the unevictable list - in which case then
try_to_free_swap().

Update unevictable-lru.txt to remove comments on the try_to_munlock() in
shrink_page_list(), and shorten some lines over 80 columns.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:03 -08:00
Hugh Dickins
a2c43eed83 mm: try_to_free_swap replaces remove_exclusive_swap_page
remove_exclusive_swap_page(): its problem is in living up to its name.

It doesn't matter if someone else has a reference to the page (raised
page_count); it doesn't matter if the page is mapped into userspace
(raised page_mapcount - though that hints it may be worth keeping the
swap): all that matters is that there be no more references to the swap
(and no writeback in progress).

swapoff (try_to_unuse) has been removing pages from swapcache for years,
with no concern for page count or page mapcount, and we used to have a
comment in lookup_swap_cache() recognizing that: if you go for a page of
swapcache, you'll get the right page, but it could have been removed from
swapcache by the time you get page lock.

So, give up asking for exclusivity: get rid of
remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and
remove_exclusive_swap_page_count() which were spawned for the recent LRU
work: replace them by the simpler try_to_free_swap() which just checks
page_swapcount().

Similarly, remove the page_count limitation from free_swap_and_count(),
but assume that it's worth holding on to the swap if page is mapped and
swap nowhere near full.  Add a vm_swap_full() test in free_swap_cache()?
It would be consistent, but I think we probably have enough for now.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:03 -08:00
Rusty Russell
174596a0b9 cpumask: convert mm/
Impact: Use new API

Convert kernel mm functions to use struct cpumask.

We skip include/linux/percpu.h and mm/allocpercpu.c, which are in flux.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
2009-01-01 10:12:29 +10:30
Rusty Russell
3e59794538 cpumask: remove any_online_cpu() users: mm/
Impact: Remove obsolete API usage

any_online_cpu() is a good name, but it takes a cpumask_t, not a
pointer.

There are several places where any_online_cpu() doesn't really want a
mask arg at all.  Replace all callers with cpumask_any() and
cpumask_any_and().

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
2009-01-01 10:12:24 +10:30
Johannes Weiner
2a1dc50974 vmscan: protect zone rotation stats by lru lock
The zone's rotation statistics must not be accessed without the
corresponding LRU lock held.  Fix an unprotected write in
shrink_active_list().

Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-12-01 07:58:06 -08:00
Rik van Riel
00d8089c54 vmscan: fix get_scan_ratio() comment
Fix the old comment on the scan ratio calculations.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-19 18:49:59 -08:00
Hugh Dickins
63eb6b93ce vmscan: let GFP_NOFS go to swap again
In the past, GFP_NOFS (but of course not GFP_NOIO) was allowed to reclaim
by writing to swap.  That got partially broken in 2.6.23, when may_enter_fs
initialization was moved up before the allocation of swap, so its
PageSwapCache test was failing the first time around,

Fix it by setting may_enter_fs when add_to_swap() succeeds with
__GFP_IO.  In fact, check __GFP_IO before calling add_to_swap():
allocating swap we're not ready to use just increases disk seeking.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-19 18:49:59 -08:00
KOSAKI Motohiro
748f1a2ed7 mm: remove unevictable's show_page_path
Hugh Dickins reported show_page_path() is buggy and unsafe because

 - lack dput() against d_find_alias()
 - don't concern vma->vm_mm->owner == NULL
 - lack lock_page()

it was only for debugging, so rather than trying to fix it, just remove
it now.

Reported-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
CC: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
CC: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-15 11:36:07 -08:00
Nick Piggin
a978d6f521 mm: unlockless reclaim
unlock_page is fairly expensive.  It can be avoided in page reclaim
success path.  By definition if we have any other references to the page
it would be a bug anyway.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:32 -07:00
Johannes Weiner
e0f79b8f1f vmscan: don't accumulate scan pressure on unrelated lists
During each reclaim scan we accumulate scan pressure on unrelated lists
which will result in bogus scans and unwanted reclaims eventually.

Scanning lists with few reclaim candidates results in a lot of rotation
and therefor also disturbs the list balancing, putting even more
pressure on the wrong lists.

In a test-case with much streaming IO, and therefor a crowded inactive
file page list, swapping started because

  a) anon pages were reclaimed after swap_cluster_max reclaim
  invocations -- nr_scan of this list has just accumulated

  b) active file pages were scanned because *their* nr_scan has also
  accumulated through the same logic.  And this in return created a
  lot of rotation for file pages and resulted in a decrease of file
  list priority, again increasing the pressure on anon pages.

The result was an evicted working set of anon pages while there were
tons of inactive file pages that should have been taken instead.

Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Lee Schermerhorn
af936a1606 vmscan: unevictable LRU scan sysctl
This patch adds a function to scan individual or all zones' unevictable
lists and move any pages that have become evictable onto the respective
zone's inactive list, where shrink_inactive_list() will deal with them.

Adds sysctl to scan all nodes, and per node attributes to individual
nodes' zones.

Kosaki: If evictable page found in unevictable lru when write
/proc/sys/vm/scan_unevictable_pages, print filename and file offset of
these pages.

[akpm@linux-foundation.org: fix one CONFIG_MMU=n build error]
[kosaki.motohiro@jp.fujitsu.com: adapt vmscan-unevictable-lru-scan-sysctl.patch to new sysfs API]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Nick Piggin
b291f00039 mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.

This is achieved through various strategies:

1) add yet another page flag--PG_mlocked--to indicate that
   the page is locked for efficient testing in vmscan and,
   optionally, fault path.  This allows early culling of
   unevictable pages, preventing them from getting to
   page_referenced()/try_to_unmap().  Also allows separate
   accounting of mlock'd pages, as Nick's original patch
   did.

   Note:  Nick's original mlock patch used a PG_mlocked
   flag.  I had removed this in favor of the PG_unevictable
   flag + an mlock_count [new page struct member].  I
   restored the PG_mlocked flag to eliminate the new
   count field.

2) add the mlock/unevictable infrastructure to mm/mlock.c,
   with internal APIs in mm/internal.h.  This is a rework
   of Nick's original patch to these files, taking into
   account that mlocked pages are now kept on unevictable
   LRU list.

3) update vmscan.c:page_evictable() to check PageMlocked()
   and, if vma passed in, the vm_flags.  Note that the vma
   will only be passed in for new pages in the fault path;
   and then only if the "cull unevictable pages in fault
   path" patch is included.

4) add try_to_unlock() to rmap.c to walk a page's rmap and
   ClearPageMlocked() if no other vmas have it mlocked.
   Reuses as much of try_to_unmap() as possible.  This
   effectively replaces the use of one of the lru list links
   as an mlock count.  If this mechanism let's pages in mlocked
   vmas leak through w/o PG_mlocked set [I don't know that it
   does], we should catch them later in try_to_unmap().  One
   hopes this will be rare, as it will be relatively expensive.

Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>

splitlru: introduce __get_user_pages():

  New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
  because current get_user_pages() can't grab PROT_NONE pages theresore it
  cause PROT_NONE pages can't munlock.

[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:30 -07:00
Lee Schermerhorn
89e004ea55 SHM_LOCKED pages are unevictable
Shmem segments locked into memory via shmctl(SHM_LOCKED) should not be
kept on the normal LRU, since scanning them is a waste of time and might
throw off kswapd's balancing algorithms.  Place them on the unevictable
LRU list instead.

Use the AS_UNEVICTABLE flag to mark address_space of SHM_LOCKed shared
memory regions as unevictable.  Then these pages will be culled off the
normal LRU lists during vmscan.

Add new wrapper function to clear the mapping's unevictable state when/if
shared memory segment is munlocked.

Add 'scan_mapping_unevictable_page()' to mm/vmscan.c to scan all pages in
the shmem segment's mapping [struct address_space] for evictability now
that they're no longer locked.  If so, move them to the appropriate zone
lru list.

Changes depend on [CONFIG_]UNEVICTABLE_LRU.

[kosaki.motohiro@jp.fujitsu.com: revert shm change]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00
Lee Schermerhorn
ba9ddf4939 Ramfs and Ram Disk pages are unevictable
Christoph Lameter pointed out that ram disk pages also clutter the LRU
lists.  When vmscan finds them dirty and tries to clean them, the ram disk
writeback function just redirties the page so that it goes back onto the
active list.  Round and round she goes...

With the ram disk driver [rd.c] replaced by the newer 'brd.c', this is no
longer the case, as ram disk pages are no longer maintained on the lru.
[This makes them unmigratable for defrag or memory hot remove, but that
can be addressed by a separate patch series.] However, the ramfs pages
behave like ram disk pages used to, so:

Define new address_space flag [shares address_space flags member with
mapping's gfp mask] to indicate that the address space contains all
unevictable pages.  This will provide for efficient testing of ramfs pages
in page_evictable().

Also provide wrapper functions to set/test the unevictable state to
minimize #ifdefs in ramfs driver and any other users of this facility.

Set the unevictable state on address_space structures for new ramfs
inodes.  Test the unevictable state in page_evictable() to cull
unevictable pages.

These changes depend on [CONFIG_]UNEVICTABLE_LRU.

[riel@redhat.com: undo the brd.c part]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Debugged-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00
Lee Schermerhorn
bbfd28eee9 unevictable lru: add event counting with statistics
Fix to unevictable-lru-page-statistics.patch

Add unevictable lru infrastructure vm events to the statistics patch.
Rename the "NORECL_" and "noreclaim_" symbols and text strings to
"UNEVICTABLE_" and "unevictable_", respectively.

Currently, both the infrastructure and the mlocked pages event are
added by a single patch later in the series.  This makes it difficult
to add or rework the incremental patches.  The events actually "belong"
with the stats, so pull them up to here.

Also, restore the event counting to putback_lru_page().  This was removed
from previous patch in series where it was "misplaced".  The actual events
weren't defined that early.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00
Lee Schermerhorn
894bc31041 Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages.  Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.

Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan.  Based on a patch by Larry Woodman of Red Hat.  Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.

Kosaki Motohiro added the support for the memory controller unevictable
lru list.

Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.

The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.

A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable.  Subsequent patches will add the various
!evictable tests.  We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.

To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference.  If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list.  This way, we avoid "stranding" evictable pages on the
unevictable list.

[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00
Rik van Riel
33c120ed28 more aggressively use lumpy reclaim
During an AIM7 run on a 16GB system, fork started failing around 32000
threads, despite the system having plenty of free swap and 15GB of
pageable memory.  This was on x86-64, so 8k stacks.

If a higher order allocation fails, we can either:
- keep evicting pages off the end of the LRUs and hope that
  we eventually create a contiguous region; this is somewhat
  unlikely if the system is under enough stress by new
  allocations
- after trying normal eviction for a bit, use lumpy reclaim

This patch switches the system to lumpy reclaim if the VM is having
trouble freeing enough pages, using the same threshold for detection as
used by pageout congestion wait.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00
Rik van Riel
7e9cd48420 vmscan: fix pagecache reclaim referenced bit check
Moving referenced pages back to the head of the active list creates a huge
scalability problem, because by the time a large memory system finally
runs out of free memory, every single page in the system will have been
referenced.

Not only do we not have the time to scan every single page on the active
list, but since they have will all have the referenced bit set, that bit
conveys no useful information.

A more scalable solution is to just move every page that hits the end of
the active list to the inactive list.

We clear the referenced bit off of mapped pages, which need just one
reference to be moved back onto the active list.

Unmapped pages will be moved back to the active list after two references
(see mark_page_accessed).  We preserve the PG_referenced flag on unmapped
pages to preserve accesses that were made while the page was on the active
list.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Rik van Riel
556adecba1 vmscan: second chance replacement for anonymous pages
We avoid evicting and scanning anonymous pages for the most part, but
under some workloads we can end up with most of memory filled with
anonymous pages.  At that point, we suddenly need to clear the referenced
bits on all of memory, which can take ages on very large memory systems.

We can reduce the maximum number of pages that need to be scanned by not
taking the referenced state into account when deactivating an anonymous
page.  After all, every anonymous page starts out referenced, so why
check?

If an anonymous page gets referenced again before it reaches the end of
the inactive list, we move it back to the active list.

To keep the maximum amount of necessary work reasonable, we scale the
active to inactive ratio with the size of memory, using the formula
active:inactive ratio = sqrt(memory in GB * 10).

Kswapd CPU use now seems to scale by the amount of pageout bandwidth,
instead of by the amount of memory present in the system.

[kamezawa.hiroyu@jp.fujitsu.com: fix OOM with memcg]
[kamezawa.hiroyu@jp.fujitsu.com: memcg: lru scan fix]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Rik van Riel
4f98a2fee8 vmscan: split LRU lists into anon & file sets
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon").  The latter includes tmpfs.

The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.

This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists.  The big
policy changes are in separate patches.

[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Rik van Riel
68a22394c2 vmscan: free swap space on swap-in/activation
If vm_swap_full() (swap space more than 50% full), the system will free
swap space at swapin time.  With this patch, the system will also free the
swap space in the pageout code, when we decide that the page is not a
candidate for swapout (and just wasting swap space).

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Christoph Lameter
b69408e88b vmscan: Use an indexed array for LRU variables
Currently we are defining explicit variables for the inactive and active
list.  An indexed array can be more generic and avoid repeating similar
code in several places in the reclaim code.

We are saving a few bytes in terms of code size:

Before:

   text    data     bss     dec     hex filename
4097753  573120 4092484 8763357  85b7dd vmlinux

After:

   text    data     bss     dec     hex filename
4097729  573120 4092484 8763333  85b7c5 vmlinux

Having an easy way to add new lru lists may ease future work on the
reclaim code.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Nick Piggin
62695a84eb vmscan: move isolate_lru_page() to vmscan.c
On large memory systems, the VM can spend way too much time scanning
through pages that it cannot (or should not) evict from memory.  Not only
does it use up CPU time, but it also provokes lock contention and can
leave large systems under memory presure in a catatonic state.

This patch series improves VM scalability by:

1) putting filesystem backed, swap backed and unevictable pages
   onto their own LRUs, so the system only scans the pages that it
   can/should evict from memory

2) switching to two handed clock replacement for the anonymous LRUs,
   so the number of pages that need to be scanned when the system
   starts swapping is bound to a reasonable number

3) keeping unevictable pages off the LRU completely, so the
   VM does not waste CPU time scanning them. ramfs, ramdisk,
   SHM_LOCKED shared memory segments and mlock()ed VMA pages
   are keept on the unevictable list.

This patch:

isolate_lru_page logically belongs to be in vmscan.c than migrate.c.

It is tough, because we don't need that function without memory migration
so there is a valid argument to have it in migrate.c.  However a
subsequent patch needs to make use of it in the core mm, so we can happily
move it to vmscan.c.

Also, make the function a little more generic by not requiring that it
adds an isolated page to a given list.  Callers can do that.

	Note that we now have '__isolate_lru_page()', that does
	something quite different, visible outside of vmscan.c
	for use with memory controller.  Methinks we need to
	rationalize these names/purposes.	--lts

[akpm@linux-foundation.org: fix mm/memory_hotplug.c build]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Nick Piggin
529ae9aaa0 mm: rename page trylock
Converting page lock to new locking bitops requires a change of page flag
operation naming, so we might as well convert it to something nicer
(!TestSetPageLocked_Lock => trylock_page, SetPageLocked => set_page_locked).

This also facilitates lockdeping of page lock.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-04 21:31:34 -07:00
Fernando Luis Vazquez Cao
87547ee95d do_try_to_free_page: update comments related to vmscan functions
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-30 09:41:46 -07:00
Fernando Luis Vazquez Cao
7d03431cf9 swapfile/vmscan: update comments related to vmscan functions
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-30 09:41:46 -07:00
Nick Piggin
19fd623127 mm: spinlock tree_lock
mapping->tree_lock has no read lockers.  convert the lock from an rwlock
to a spinlock.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:06 -07:00
Nick Piggin
e286781d5f mm: speculative page references
If we can be sure that elevating the page_count on a pagecache page will
pin it, we can speculatively run this operation, and subsequently check to
see if we hit the right page rather than relying on holding a lock or
otherwise pinning a reference to the page.

This can be done if get_page/put_page behaves consistently throughout the
whole tree (ie.  if we "get" the page after it has been used for something
else, we must be able to free it with a put_page).

Actually, there is a period where the count behaves differently: when the
page is free or if it is a constituent page of a compound page.  We need
an atomic_inc_not_zero operation to ensure we don't try to grab the page
in either case.

This patch introduces the core locking protocol to the pagecache (ie.
adds page_cache_get_speculative, and tweaks some update-side code to make
it work).

Thanks to Hugh for pointing out an improvement to the algorithm setting
page_count to zero when we have control of all references, in order to
hold off speculative getters.

[kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()]
[hugh@veritas.com: fix add_to_page_cache]
[akpm@linux-foundation.org: repair a comment]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:06 -07:00
Keika Kobayashi
873b477177 per-task-delay-accounting: add memory reclaim delay
Sometimes, application responses become bad under heavy memory load.
Applications take a bit time to reclaim memory.  The statistics, how long
memory reclaim takes, will be useful to measure memory usage.

This patch adds accounting memory reclaim to per-task-delay-accounting for
accounting the time of do_try_to_free_pages().

<i.e>

- When System is under low memory load,
  memory reclaim may not occur.

$ free
             total       used       free     shared    buffers     cached
Mem:       8197800    1577300    6620500          0       4808    1516724
-/+ buffers/cache:      55768    8142032
Swap:     16386292          0   16386292

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
 0  0      0 5069748  10612 3014060    0    0     0     0    3   26  0  0 100  0
 0  0      0 5069748  10612 3014060    0    0     0     0    4   22  0  0 100  0
 0  0      0 5069748  10612 3014060    0    0     0     0    3   18  0  0 100  0

Measure the time of tar command.

$ ls -s test.dat
1501472 test.dat

$ time tar cvf test.tar test.dat
real    0m13.388s
user    0m0.116s
sys     0m5.304s

$ ./delayget -d -p <pid>
CPU             count     real total  virtual total    delay total
                  428     5528345500     5477116080       62749891
IO              count    delay total
                  338     8078977189
SWAP            count    delay total
                    0              0
RECLAIM         count    delay total
                    0              0

- When system is under heavy memory load
  memory reclaim may occur.

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
 0  0 7159032  49724   1812   3012    0    0     0     0    3   24  0  0 100  0
 0  0 7159032  49724   1812   3012    0    0     0     0    4   24  0  0 100  0
 0  0 7159032  49848   1812   3012    0    0     0     0    3   22  0  0 100  0

In this case, one process uses more 8G memory
by execution of malloc() and memset().

$ time tar cvf test.tar test.dat
real    1m38.563s        <-  increased by 85 sec
user    0m0.140s
sys     0m7.060s

$ ./delayget -d -p <pid>
CPU             count     real total  virtual total    delay total
                 9021     7140446250     7315277975      923201824
IO              count    delay total
                 8965    90466349669
SWAP            count    delay total
                    3       21036367
RECLAIM         count    delay total
                  740    61011951153

In the later case, the value of RECLAIM is increasing.
So, taskstats can show how much memory reclaim influences TAT.

Signed-off-by: Keika Kobayashi <kobayashi.kk@ncos.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujistu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 10:53:47 -07:00
kosaki.motohiro@jp.fujitsu.com
c700be3d13 mm: fix incorrect variable type in do_try_to_free_pages()
"Smarter retry of costly-order allocations" patch series change behaver of
do_try_to_free_pages().  But unfortunately ret variable type was
unchanged.

Thus an overflow is possible.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-12 18:05:39 -07:00
Harvey Harrison
d40cee245f mm: remove remaining __FUNCTION__ occurrences
__FUNCTION__ is gcc-specific, use __func__

Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 08:29:53 -07:00
Nishanth Aravamudan
a41f24ea9f page allocator: smarter retry of costly-order allocations
Because of page order checks in __alloc_pages(), hugepage (and similarly
large order) allocations will not retry unless explicitly marked
__GFP_REPEAT. However, the current retry logic is nearly an infinite
loop (or until reclaim does no progress whatsoever). For these costly
allocations, that seems like overkill and could potentially never
terminate. Mel observed that allowing current __GFP_REPEAT semantics for
hugepage allocations essentially killed the system. I believe this is
because we may continue to reclaim small orders of pages all over, but
never have enough to satisfy the hugepage allocation request. This is
clearly only a problem for large order allocations, of which hugepages
are the most obvious (to me).

Modify try_to_free_pages() to indicate how many pages were reclaimed.
Use that information in __alloc_pages() to eventually fail a large
__GFP_REPEAT allocation when we've reclaimed an order of pages equal to
or greater than the allocation's order. This relies on lumpy reclaim
functioning as advertised. Due to fragmentation, lumpy reclaim may not
be able to free up the order needed in one invocation, so multiple
iterations may be requred. In other words, the more fragmented memory
is, the more retry attempts __GFP_REPEAT will make (particularly for
higher order allocations).

This changes the semantics of __GFP_REPEAT subtly, but *only* for
allocations > PAGE_ALLOC_COSTLY_ORDER. With this patch, for those size
allocations, we will try up to some point (at least 1<<order reclaimed
pages), rather than forever (which is the case for allocations <=
PAGE_ALLOC_COSTLY_ORDER).

This change improves the /proc/sys/vm/nr_hugepages interface with a
follow-on patch that makes pool allocations use __GFP_REPEAT. Rather
than administrators repeatedly echo'ing a particular value into the
sysctl, and forcing reclaim into action manually, this change allows for
the sysctl to attempt a reasonable effort itself. Similarly, dynamic
pool growth should be more successful under load, as lumpy reclaim can
try to free up pages, rather than failing right away.

Choosing to reclaim only up to the order of the requested allocation
strikes a balance between not failing hugepage allocations and returning
to the caller when it's unlikely to every succeed. Because of lumpy
reclaim, if we have freed the order requested, hopefully it has been in
big chunks and those chunks will allow our allocation to succeed. If
that isn't the case after freeing up the current order, I don't think it
is likely to succeed in the future, although it is possible given a
particular fragmentation pattern.

Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Tested-by: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:05:58 -07:00
Mel Gorman
dd1a239f6f mm: have zonelist contains structs with both a zone pointer and zone_idx
Filtering zonelists requires very frequent use of zone_idx().  This is costly
as it involves a lookup of another structure and a substraction operation.  As
the zone_idx is often required, it should be quickly accessible.  The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.

This patch introduces a struct zoneref to store a zone pointer and a zone
index.  The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary.  Helpers are given for accessing the zone index as
well as the node index.

[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mel Gorman
54a6eb5c47 mm: use two zonelist that are filtered by GFP mask
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations.  Based on the zones
allowed by a gfp mask, one of these zonelists is selected.  All of these
zonelists consume memory and occupy cache lines.

This patch replaces the multiple zonelists per-node with two zonelists.  The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages.  The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.

An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mel Gorman
dac1d27bc8 mm: use zonelists instead of zones when direct reclaiming pages
The following patches replace multiple zonelists per node with two zonelists
that are filtered based on the GFP flags.  The patches as a set fix a bug with
regard to the use of MPOL_BIND and ZONE_MOVABLE.  With this patchset, the
MPOL_BIND will apply to the two highest zones when the highest zone is
ZONE_MOVABLE.  This should be considered as an alternative fix for the
MPOL_BIND+ZONE_MOVABLE in 2.6.23 to the previously discussed hack that filters
only custom zonelists.

The first patch cleans up an inconsistency where direct reclaim uses
zonelist->zones where other places use zonelist.

The second patch introduces a helper function node_zonelist() for looking up
the appropriate zonelist for a GFP mask which simplifies patches later in the
set.

The third patch defines/remembers the "preferred zone" for numa statistics, as
it is no longer always the first zone in a zonelist.

The forth patch replaces multiple zonelists with two zonelists that are
filtered.  The two zonelists are due to the fact that the memoryless patchset
introduces a second set of zonelists for __GFP_THISNODE.

The fifth patch introduces helper macros for retrieving the zone and node
indices of entries in a zonelist.

The final patch introduces filtering of the zonelists based on a nodemask.
Two zonelists exist per node, one for normal allocations and one for
__GFP_THISNODE.

Performance results varied depending on the machine configuration.  In real
workloads the gain/loss will depend on how much the userspace portion of the
benchmark benefits from having more cache available due to reduced referencing
of zonelists.

These are the range of performance losses/gains when running against
2.6.24-rc4-mm1.  The set and these machines are a mix of i386, x86_64 and
ppc64 both NUMA and non-NUMA.
			     loss   to  gain
Total CPU time on Kernbench: -0.86% to  1.13%
Elapsed   time on Kernbench: -0.79% to  0.76%
page_test from aim9:         -4.37% to  0.79%
brk_test  from aim9:         -0.71% to  4.07%
fork_test from aim9:         -1.84% to  4.60%
exec_test from aim9:         -0.71% to  1.08%

This patch:

The allocator deals with zonelists which indicate the order in which zones
should be targeted for an allocation.  Similarly, direct reclaim of pages
iterates over an array of zones.  For consistency, this patch converts direct
reclaim to use a zonelist.  No functionality is changed by this patch.  This
simplifies zonelist iterators in the next patch.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mike Travis
c5f59f0833 nodemask: use new node_to_cpumask_ptr function
* Use new node_to_cpumask_ptr.  This creates a pointer to the
    cpumask for a given node.  This definition is in mm patch:

	asm-generic-add-node_to_cpumask_ptr-macro.patch

  * Use new set_cpus_allowed_ptr function.

Depends on:
	[mm-patch]: asm-generic-add-node_to_cpumask_ptr-macro.patch
	[sched-devel]: sched: add new set_cpus_allowed_ptr function
	[x86/latest]: x86: add cpus_scnprintf function

Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Greg Banks <gnb@melbourne.sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:59 +02:00
Andrew Morton
4dd4b92021 revert "kswapd should only wait on IO if there is IO"
Revert commit f1a9ee758d:

  Author: Rik van Riel <riel@redhat.com>
  Date:   Thu Feb 7 00:14:08 2008 -0800

    kswapd should only wait on IO if there is IO

    The current kswapd (and try_to_free_pages) code has an oddity where the
    code will wait on IO, even if there is no IO in flight.  This problem is
    notable especially when the system scans through many unfreeable pages,
    causing unnecessary stalls in the VM.

    Additionally, tasks without __GFP_FS or __GFP_IO in the direct reclaim path
    will sleep if a significant number of pages are encountered that should be
    written out.  This gives kswapd a chance to write out those pages, while
    the direct reclaim task sleeps.

    Signed-off-by: Rik van Riel <riel@redhat.com>
    Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
    Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Because of large latencies and interactivity problems reported by Carlos,
here: http://lkml.org/lkml/2008/3/22/211

Cc: Rik van Riel <riel@redhat.com>
Cc: "Carlos R.  Mafra" <crmafra2@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-24 19:22:19 -07:00
Hugh Dickins
427d5416f3 memcg: move_lists on page not page_cgroup
Each caller of mem_cgroup_move_lists is having to use page_get_page_cgroup:
it's more convenient if it acts upon the page itself not the page_cgroup; and
in a later patch this becomes important to handle within memcontrol.c.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:14 -08:00
Balbir Singh
00f0b8259e Memory controller: rename to Memory Resource Controller
Rename Memory Controller to Memory Resource Controller.  Reflect the same
changes in the CONFIG definition for the Memory Resource Controller.  Group
together the config options for Resource Counters and Memory Resource
Controller.

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:12 -08:00
KAMEZAWA Hiroyuki
1cfb419b39 per-zone and reclaim enhancements for memory controller: modifies vmscan.c for isolate globa/cgroup lru activity
When using memory controller, there are 2 levels of memory reclaim.
 1. zone memory reclaim because of system/zone memory shortage.
 2. memory cgroup memory reclaim because of hitting limit.

These two can be distinguished by sc->mem_cgroup parameter.
(scan_global_lru() macro)

This patch tries to make memory cgroup reclaim routine avoid affecting
system/zone memory reclaim. This patch inserts if (scan_global_lru()) and
hook to memory_cgroup reclaim support functions.

This patch can be a help for isolating system lru activity and group lru
activity and shows what additional functions are necessary.

 * mem_cgroup_calc_mapped_ratio() ... calculate mapped ratio for cgroup.
 * mem_cgroup_reclaim_imbalance() ... calculate active/inactive balance in
                                        cgroup.
 * mem_cgroup_calc_reclaim_active() ... calculate the number of active pages to
                                be scanned in this priority in mem_cgroup.

 * mem_cgroup_calc_reclaim_inactive() ... calculate the number of inactive pages
                                to be scanned in this priority in mem_cgroup.

 * mem_cgroup_all_unreclaimable() .. checks cgroup's page is all unreclaimable
                                     or not.
 * mem_cgroup_get_reclaim_priority() ...
 * mem_cgroup_note_reclaim_priority() ... record reclaim priority (temporal)
 * mem_cgroup_remember_reclaim_priority()
                             .... record reclaim priority as
                                  zone->prev_priority.
                                  This value is used for calc reclaim_mapped.

[akpm@linux-foundation.org: fix unused var warning]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Paul Menage <menage@google.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:22 -08:00
KAMEZAWA Hiroyuki
91a45470f7 per-zone and reclaim enhancements for memory controller: add scan_global_lru macro
This is used to detect which scan_control scans global lru or mem_cgroup lru.
And compiled to be static value (1) when memory controller is not configured.
This may make the meaning obvious.

Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Paul Menage <menage@google.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:21 -08:00
KAMEZAWA Hiroyuki
417eead304 memory cgroup enhancements: fix zone handling in try_to_free_mem_cgroup_page
Because NODE_DATA(node)->node_zonelists[] is guaranteed to contain all
necessary zones, it is not necessary to use for_each_online_node.

And this for_each_online_node() makes reclaim routine start always
from node 0. This is not good. This patch makes reclaim start from
caller's node and just use usual (default) zonelist order.

[akpm@linux-foundation.org: fix warning]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:20 -08:00
Rik van Riel
f1a9ee758d kswapd should only wait on IO if there is IO
The current kswapd (and try_to_free_pages) code has an oddity where the
code will wait on IO, even if there is no IO in flight.  This problem is
notable especially when the system scans through many unfreeable pages,
causing unnecessary stalls in the VM.

Additionally, tasks without __GFP_FS or __GFP_IO in the direct reclaim path
will sleep if a significant number of pages are encountered that should be
written out.  This gives kswapd a chance to write out those pages, while
the direct reclaim task sleeps.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:19 -08:00
Balbir Singh
e1a1cd590e Memory controller: make charging gfp mask aware
Nick Piggin pointed out that swap cache and page cache addition routines
could be called from non GFP_KERNEL contexts.  This patch makes the
charging routine aware of the gfp context.  Charging might fail if the
cgroup is over it's limit, in which case a suitable error is returned.

This patch was tested on a Powerpc box.  I am still looking at being able
to test the path, through which allocations happen in non GFP_KERNEL
contexts.

[kamezawa.hiroyu@jp.fujitsu.com: problem with ZONE_MOVABLE]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:19 -08:00
Balbir Singh
bed7161a51 Memory controller: make page_referenced() cgroup aware
Make page_referenced() cgroup aware.  Without this patch, page_referenced()
can cause a page to be skipped while reclaiming pages.  This patch ensures
that other cgroups do not hold pages in a particular cgroup hostage.  It
is required to ensure that shared pages are freed from a cgroup when they
are not actively referenced from the cgroup that brought them in

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:19 -08:00
Balbir Singh
66e1707bc3 Memory controller: add per cgroup LRU and reclaim
Add the page_cgroup to the per cgroup LRU.  The reclaim algorithm has
been modified to make the isolate_lru_pages() as a pluggable component.  The
scan_control data structure now accepts the cgroup on behalf of which
reclaims are carried out.  try_to_free_pages() has been extended to become
cgroup aware.

[akpm@linux-foundation.org: fix warning]
[Lee.Schermerhorn@hp.com: initialize all scan_control's isolate_pages member]
[bunk@kernel.org: make do_try_to_free_pages() static]
[hugh@veritas.com: memcgroup: fix try_to_free order]
[kamezawa.hiroyu@jp.fujitsu.com: this unlock_page_cgroup() is unnecessary]
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:18 -08:00
Simon Arlott
183ff22bb6 spelling fixes: mm/
Spelling fixes in mm/.

Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
2007-10-20 01:27:18 +02:00
Stephen Hemminger
c80544dc0b sparse pointer use of zero as null
Get rid of sparse related warnings from places that use integer as NULL
pointer.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Ian Kent <raven@themaw.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 14:37:31 -07:00
David Rientjes
d773ed6b85 mm: test and set zone reclaim lock before starting reclaim
Introduces new zone flag interface for testing and setting flags:

	int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)

Instead of setting and clearing ZONE_RECLAIM_LOCKED each time shrink_zone() is
called, this flag is test and set before starting zone reclaim.  Zone reclaim
starts in __alloc_pages() when a zone's watermark fails and the system is in
zone_reclaim_mode.  If it's already in reclaim, there's no need to start again
so it is simply considered full for that allocation attempt.

There is a change of behavior with regard to concurrent zone shrinking.  It is
now possible for try_to_free_pages() or kswapd to already be shrinking a
particular zone when __alloc_pages() starts zone reclaim.  In this case, it is
possible for two concurrent threads to invoke shrink_zone() for a single zone.

This change forbids a zone to be in zone reclaim twice, which was always the
behavior, but allows for concurrent try_to_free_pages() or kswapd shrinking
when starting zone reclaim.

Cc: Andrea Arcangeli <andrea@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:46 -07:00
David Rientjes
e815af95f9 oom: change all_unreclaimable zone member to flags
Convert the int all_unreclaimable member of struct zone to unsigned long
flags.  This can now be used to specify several different zone flags such as
all_unreclaimable and reclaim_in_progress, which can now be removed and
converted to a per-zone flag.

Flags are set and cleared as follows:

	zone_set_flag(struct zone *zone, zone_flags_t flag)
	zone_clear_flag(struct zone *zone, zone_flags_t flag)

Defines the first zone flags, ZONE_ALL_UNRECLAIMABLE and ZONE_RECLAIM_LOCKED,
which have the same semantics as the old zone->all_unreclaimable and
zone->reclaim_in_progress, respectively.  Also converts all current users that
set or clear either flag to use the new interface.

Helper functions are defined to test the flags:

	int zone_is_all_unreclaimable(const struct zone *zone)
	int zone_is_reclaim_locked(const struct zone *zone)

All flag operators are of the atomic variety because there are currently
readers that are implemented that do not take zone->lock.

[akpm@linux-foundation.org: add needed include]
Cc: Andrea Arcangeli <andrea@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:45 -07:00
Andrea Arcangeli
4106f83a9f make swappiness safer to use
Swappiness isn't a safe sysctl.  Setting it to 0 for example can hang a
system.  That's a corner case but even setting it to 10 or lower can waste
enormous amounts of cpu without making much progress.  We've customers who
wants to use swappiness but they can't because of the current
implementation (if you change it so the system stops swapping it really
stops swapping and nothing works sane anymore if you really had to swap
something to make progress).

This patch from Kurt Garloff makes swappiness safer to use (no more huge
cpu usage or hangs with low swappiness values).

I think the prev_priority can also be nuked since it wastes 4 bytes per
zone (that would be an incremental patch but I wait the nr_scan_[in]active
to be nuked first for similar reasons).  Clearly somebody at some point
noticed how broken that thing was and they had to add min(priority,
prev_priority) to give it some reliability, but they didn't go the last
mile to nuke prev_priority too.  Calculating distress only in function of
not-racy priority is correct and sure more than enough without having to
add randomness into the equation.

Patch is tested on older kernels but it compiles and it's quite simple
so...

Overall I'm not very satisified by the swappiness tweak, since it doesn't
rally do anything with the dirty pagecache that may be inactive.  We need
another kind of tweak that controls the inactive scan and tunes the
can_writepage feature (not yet in mainline despite having submitted it a
few times), not only the active one.  That new tweak will tell the kernel
how hard to scan the inactive list for pure clean pagecache (something the
mainline kernel isn't capable of yet).  We already have that feature
working in all our enterprise kernels with the default reasonable tune, or
they can't even run a readonly backup with tar without triggering huge
write I/O.  I think it should be available also in mainline later.

Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Kurt Garloff <garloff@suse.de>
Signed-off-by: Andrea Arcangeli <andrea@suse.de>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Yasunori Goto
58c0a4a786 Fix panic of cpu online with memory less node
When a cpu is onlined on memory-less-node box, kernel panics due to touch
NULL pointer of pgdat->kswapd.  Current kswapd runs only nodes which have
memory.  So, calling of set_cpus_allowed() is not necessary for memory-less
node.

This is fix for it.

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Christoph Lameter
37c0708dbe Memoryless nodes: Add N_CPU node state
We need the check for a node with cpu in zone reclaim.  Zone reclaim will not
allow remote zone reclaim if a node has a cpu.

[Lee.Schermerhorn@hp.com: Move setup of N_CPU node state mask]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by:  Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:58 -07:00
Christoph Lameter
9422ffba4a Memoryless nodes: No need for kswapd
A node without memory does not need a kswapd.  So use the memory map instead
of the online map when starting kswapd.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:58 -07:00
Rik van Riel
32a4330d41 mm: prevent kswapd from freeing excessive amounts of lowmem
The current VM can get itself into trouble fairly easily on systems with a
small ZONE_HIGHMEM, which is common on i686 computers with 1GB of memory.

On one side, page_alloc() will allocate down to zone->pages_low, while on
the other side, kswapd() and balance_pgdat() will try to free memory from
every zone, until every zone has more free pages than zone->pages_high.

Highmem can be filled up to zone->pages_low with page tables, ramfs,
vmalloc allocations and other unswappable things quite easily and without
many bad side effects, since we still have a huge ZONE_NORMAL to do future
allocations from.

However, as long as the number of free pages in the highmem zone is below
zone->pages_high, kswapd will continue swapping things out from
ZONE_NORMAL, too!

Sami Farin managed to get his system into a stage where kswapd had freed
about 700MB of low memory and was still "going strong".

The attached patch will make kswapd stop paging out data from zones when
there is more than enough memory free.  We do go above zone->pages_high in
order to keep pressure between zones equal in normal circumstances, but the
patch should prevent the kind of excesses that made Sami's computer totally
unusable.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:54 -07:00
Andy Whitcroft
c661b078fd synchronous lumpy reclaim: wait for page writeback when directly reclaiming contiguous areas
Lumpy reclaim works by selecting a lead page from the LRU list and then
selecting pages for reclaim from the order-aligned area of pages.  In the
situation were all pages in that region are inactive and not referenced by any
process over time, it works well.

In the situation where there is even light load on the system, the pages may
not free quickly.  Out of a area of 1024 pages, maybe only 950 of them are
freed when the allocation attempt occurs because lumpy reclaim returned early.
 This patch alters the behaviour of direct reclaim for large contiguous
blocks.

The first attempt to call shrink_page_list() is asynchronous but if it fails,
the pages are submitted a second time and the calling process waits for the IO
to complete.  This may stall allocators waiting for contiguous memory but that
should be expected behaviour for high-order users.  It is preferable behaviour
to potentially queueing unnecessary areas for IO.  Note that kswapd will not
stall in this fashion.

[apw@shadowen.org: update to version 2]
[apw@shadowen.org: update to version 3]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22 19:52:45 -07:00