Pull RCU updates from Ingo Molnar:
"The biggest RCU changes in this cycle were:
- Convert RCU's BUG_ON() and similar calls to WARN_ON() and similar.
- Replace calls of RCU-bh and RCU-sched update-side functions to
their vanilla RCU counterparts. This series is a step towards
complete removal of the RCU-bh and RCU-sched update-side functions.
( Note that some of these conversions are going upstream via their
respective maintainers. )
- Documentation updates, including a number of flavor-consolidation
updates from Joel Fernandes.
- Miscellaneous fixes.
- Automate generation of the initrd filesystem used for rcutorture
testing.
- Convert spin_is_locked() assertions to instead use lockdep.
( Note that some of these conversions are going upstream via their
respective maintainers. )
- SRCU updates, especially including a fix from Dennis Krein for a
bag-on-head-class bug.
- RCU torture-test updates"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (112 commits)
rcutorture: Don't do busted forward-progress testing
rcutorture: Use 100ms buckets for forward-progress callback histograms
rcutorture: Recover from OOM during forward-progress tests
rcutorture: Print forward-progress test age upon failure
rcutorture: Print time since GP end upon forward-progress failure
rcutorture: Print histogram of CB invocation at OOM time
rcutorture: Print GP age upon forward-progress failure
rcu: Print per-CPU callback counts for forward-progress failures
rcu: Account for nocb-CPU callback counts in RCU CPU stall warnings
rcutorture: Dump grace-period diagnostics upon forward-progress OOM
rcutorture: Prepare for asynchronous access to rcu_fwd_startat
torture: Remove unnecessary "ret" variables
rcutorture: Affinity forward-progress test to avoid housekeeping CPUs
rcutorture: Break up too-long rcu_torture_fwd_prog() function
rcutorture: Remove cbflood facility
torture: Bring any extra CPUs online during kernel startup
rcutorture: Add call_rcu() flooding forward-progress tests
rcutorture/formal: Replace synchronize_sched() with synchronize_rcu()
tools/kernel.h: Replace synchronize_sched() with synchronize_rcu()
net/decnet: Replace rcu_barrier_bh() with rcu_barrier()
...
Calling UFFDIO_UNREGISTER on virtual ranges not yet registered in uffd
could trigger an harmless false positive WARN_ON. Check the vma is
already registered before checking VM_MAYWRITE to shut off the false
positive warning.
Link: http://lkml.kernel.org/r/20181206212028.18726-2-aarcange@redhat.com
Cc: <stable@vger.kernel.org>
Fixes: 29ec90660d ("userfaultfd: shmem/hugetlbfs: only allow to register VM_MAYWRITE vmas")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: syzbot+06c7092e7d71218a2c16@syzkaller.appspotmail.com
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull RCU changes from Paul E. McKenney:
- Convert RCU's BUG_ON() and similar calls to WARN_ON() and similar.
- Replace calls of RCU-bh and RCU-sched update-side functions
to their vanilla RCU counterparts. This series is a step
towards complete removal of the RCU-bh and RCU-sched update-side
functions.
( Note that some of these conversions are going upstream via their
respective maintainers. )
- Documentation updates, including a number of flavor-consolidation
updates from Joel Fernandes.
- Miscellaneous fixes.
- Automate generation of the initrd filesystem used for
rcutorture testing.
- Convert spin_is_locked() assertions to instead use lockdep.
( Note that some of these conversions are going upstream via their
respective maintainers. )
- SRCU updates, especially including a fix from Dennis Krein
for a bag-on-head-class bug.
- RCU torture-test updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After the VMA to register the uffd onto is found, check that it has
VM_MAYWRITE set before allowing registration. This way we inherit all
common code checks before allowing to fill file holes in shmem and
hugetlbfs with UFFDIO_COPY.
The userfaultfd memory model is not applicable for readonly files unless
it's a MAP_PRIVATE.
Link: http://lkml.kernel.org/r/20181126173452.26955-4-aarcange@redhat.com
Fixes: ff62a34210 ("hugetlb: implement memfd sealing")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Hugh Dickins <hughd@google.com>
Reported-by: Jann Horn <jannh@google.com>
Fixes: 4c27fe4c4c ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support")
Cc: <stable@vger.kernel.org>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lockdep_assert_held() is better suited to checking locking requirements,
since it only checks if the current thread holds the lock regardless of
whether someone else does. This is also a step towards possibly removing
spin_is_locked().
Signed-off-by: Lance Roy <ldr709@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: <linux-fsdevel@vger.kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
userfaultfd contains howe-grown locking of the waitqueue lock, and does
not disable interrupts. This relies on the fact that no one else takes it
from interrupt context and violates an invariat of the normal waitqueue
locking scheme. With aio poll it is easy to trigger other locks that
disable interrupts (or are called from interrupt context).
Link: http://lkml.kernel.org/r/20181018154101.18750-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org> [4.19.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
Ref-> commit 1c8f422059 ("mm: change return type to vm_fault_t")
The aim is to change the return type of finish_fault() and
handle_mm_fault() to vm_fault_t type. As part of that clean up return
type of all other recursively called functions have been changed to
vm_fault_t type.
The places from where handle_mm_fault() is getting invoked will be
change to vm_fault_t type but in a separate patch.
vmf_error() is the newly introduce inline function in 4.17-rc6.
[akpm@linux-foundation.org: don't shadow outer local `ret' in __do_huge_pmd_anonymous_page()]
Link: http://lkml.kernel.org/r/20180604171727.GA20279@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The userfaultfd code currently uses the unlocked waitqueue helpers for
managing fault_wqh, but instead of holding the waitqueue lock for this
waitqueue around these calls, it the waitqueue lock of
fault_pending_wq, which is a different waitqueue instance. Given that
the waitqueue is not exposed to the rest of the kernel this actually
works ok at the moment, but prevents the userfaultfd locking rules from
being enforced using lockdep.
Switch to the internally locked waitqueue helpers instead. This means
that the lock inside fault_wqh now nests inside the fault_pending_wqh
lock, but that's not a problem since it was entirely unused before.
[hch@lst.de: slight changelog updates]
[rppt@linux.vnet.ibm.com: spotted changelog spellos]
Link: http://lkml.kernel.org/r/20171214152344.6880-3-hch@lst.de
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pointer uwq is being assigned but is never used hence it is redundant
and can be removed.
Cleans up clang warning:
warning: variable 'uwq' set but not used [-Wunused-but-set-variable]
Link: http://lkml.kernel.org/r/20180717090802.18357-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fix in commit 0cbb4b4f4c ("userfaultfd: clear the
vma->vm_userfaultfd_ctx if UFFD_EVENT_FORK fails") cleared the
vma->vm_userfaultfd_ctx but kept userfaultfd flags in vma->vm_flags
that were copied from the parent process VMA.
As the result, there is an inconsistency between the values of
vma->vm_userfaultfd_ctx.ctx and vma->vm_flags which triggers BUG_ON
in userfaultfd_release().
Clearing the uffd flags from vma->vm_flags in case of UFFD_EVENT_FORK
failure resolves the issue.
Link: http://lkml.kernel.org/r/1532931975-25473-1-git-send-email-rppt@linux.vnet.ibm.com
Fixes: 0cbb4b4f4c ("userfaultfd: clear the vma->vm_userfaultfd_ctx if UFFD_EVENT_FORK fails")
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reported-by: syzbot+121be635a7a35ddb7dcb@syzkaller.appspotmail.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use huge_ptep_get() to translate huge ptes to normal ptes so we can
check them with the huge_pte_* functions. Otherwise some architectures
will check the wrong values and will not wait for userspace to bring in
the memory.
Link: http://lkml.kernel.org/r/20180626132421.78084-1-frankja@linux.ibm.com
Fixes: 369cd2121b ("userfaultfd: hugetlbfs: userfaultfd_huge_must_wait for hugepmd ranges")
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a process monitored with userfaultfd changes it's memory mappings or
forks() at the same time as uffd monitor fills the process memory with
UFFDIO_COPY, the actual creation of page table entries and copying of
the data in mcopy_atomic may happen either before of after the memory
mapping modifications and there is no way for the uffd monitor to
maintain consistent view of the process memory layout.
For instance, let's consider fork() running in parallel with
userfaultfd_copy():
process | uffd monitor
---------------------------------+------------------------------
fork() | userfaultfd_copy()
... | ...
dup_mmap() | down_read(mmap_sem)
down_write(mmap_sem) | /* create PTEs, copy data */
dup_uffd() | up_read(mmap_sem)
copy_page_range() |
up_write(mmap_sem) |
dup_uffd_complete() |
/* notify monitor */ |
If the userfaultfd_copy() takes the mmap_sem first, the new page(s) will
be present by the time copy_page_range() is called and they will appear
in the child's memory mappings. However, if the fork() is the first to
take the mmap_sem, the new pages won't be mapped in the child's address
space.
If the pages are not present and child tries to access them, the monitor
will get page fault notification and everything is fine. However, if
the pages *are present*, the child can access them without uffd
noticing. And if we copy them into child it'll see the wrong data.
Since we are talking about background copy, we'd need to decide whether
the pages should be copied or not regardless #PF notifications.
Since userfaultfd monitor has no way to determine what was the order,
let's disallow userfaultfd_copy in parallel with the non-cooperative
events. In such case we return -EAGAIN and the uffd monitor can
understand that userfaultfd_copy() clashed with a non-cooperative event
and take an appropriate action.
Link: http://lkml.kernel.org/r/1527061324-19949-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrei Vagin <avagin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nothing actually calls userfaultfd_file_create() besides the
userfaultfd() system call itself. So simplify things by folding it into
the system call and using anon_inode_getfd() instead of
anon_inode_getfile(). Do the same in resolve_userfault_fork() as well.
This removes over 50 lines with no change in functionality.
Link: http://lkml.kernel.org/r/20171229212403.22800-1-ebiggers3@gmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If THP migration is enabled, for a VMA handled by userfaultfd, consider
the following situation,
do_page_fault()
__do_huge_pmd_anonymous_page()
handle_userfault()
userfault_msg()
/* a huge page is allocated and mapped at fault address */
/* the huge page is under migration, leaves migration entry
in page table */
userfaultfd_must_wait()
/* return true because !pmd_present() */
/* may wait in loop until fatal signal */
That is, it may be possible for userfaultfd_must_wait() encounters a PMD
entry which is !pmd_none() && !pmd_present(). In the current
implementation, we will wait for such PMD entries, which may cause
unnecessary waiting, and potential soft lockup.
This is fixed via avoiding to wait when !pmd_none() && !pmd_present(),
only wait when pmd_none().
This may be not a problem in practice, because userfaultfd_must_wait()
is always called with mm->mmap_sem read-locked. mremap() will
write-lock mm->mmap_sem. And UFFDIO_COPY doesn't support to copy THP
mapping. But the change introduced still makes the code more correct,
and makes the PMD and PTE code more consistent.
Link: http://lkml.kernel.org/r/20171207011752.3292-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.UK>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull poll annotations from Al Viro:
"This introduces a __bitwise type for POLL### bitmap, and propagates
the annotations through the tree. Most of that stuff is as simple as
'make ->poll() instances return __poll_t and do the same to local
variables used to hold the future return value'.
Some of the obvious brainos found in process are fixed (e.g. POLLIN
misspelled as POLL_IN). At that point the amount of sparse warnings is
low and most of them are for genuine bugs - e.g. ->poll() instance
deciding to return -EINVAL instead of a bitmap. I hadn't touched those
in this series - it's large enough as it is.
Another problem it has caught was eventpoll() ABI mess; select.c and
eventpoll.c assumed that corresponding POLL### and EPOLL### were
equal. That's true for some, but not all of them - EPOLL### are
arch-independent, but POLL### are not.
The last commit in this series separates userland POLL### values from
the (now arch-independent) kernel-side ones, converting between them
in the few places where they are copied to/from userland. AFAICS, this
is the least disruptive fix preserving poll(2) ABI and making epoll()
work on all architectures.
As it is, it's simply broken on sparc - try to give it EPOLLWRNORM and
it will trigger only on what would've triggered EPOLLWRBAND on other
architectures. EPOLLWRBAND and EPOLLRDHUP, OTOH, are never triggered
at all on sparc. With this patch they should work consistently on all
architectures"
* 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
make kernel-side POLL... arch-independent
eventpoll: no need to mask the result of epi_item_poll() again
eventpoll: constify struct epoll_event pointers
debugging printk in sg_poll() uses %x to print POLL... bitmap
annotate poll(2) guts
9p: untangle ->poll() mess
->si_band gets POLL... bitmap stored into a user-visible long field
ring_buffer_poll_wait() return value used as return value of ->poll()
the rest of drivers/*: annotate ->poll() instances
media: annotate ->poll() instances
fs: annotate ->poll() instances
ipc, kernel, mm: annotate ->poll() instances
net: annotate ->poll() instances
apparmor: annotate ->poll() instances
tomoyo: annotate ->poll() instances
sound: annotate ->poll() instances
acpi: annotate ->poll() instances
crypto: annotate ->poll() instances
block: annotate ->poll() instances
x86: annotate ->poll() instances
...
The previous fix in commit 384632e67e ("userfaultfd: non-cooperative:
fix fork use after free") corrected the refcounting in case of
UFFD_EVENT_FORK failure for the fork userfault paths.
That still didn't clear the vma->vm_userfaultfd_ctx of the vmas that
were set to point to the aborted new uffd ctx earlier in
dup_userfaultfd.
Link: http://lkml.kernel.org/r/20171223002505.593-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1508132478-7738-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When reading the event from the uffd, we put it on a temporary
fork_event list to detect if we can still access it after releasing and
retaking the event_wqh.lock.
If fork aborts and removes the event from the fork_event all is fine as
long as we're still in the userfault read context and fork_event head is
still alive.
We've to put the event allocated in the fork kernel stack, back from
fork_event list-head to the event_wqh head, before returning from
userfaultfd_ctx_read, because the fork_event head lifetime is limited to
the userfaultfd_ctx_read stack lifetime.
Forgetting to move the event back to its event_wqh place then results in
__remove_wait_queue(&ctx->event_wqh, &ewq->wq); in
userfaultfd_event_wait_completion to remove it from a head that has been
already freed from the reader stack.
This could only happen if resolve_userfault_fork failed (for example if
there are no file descriptors available to allocate the fork uffd). If
it succeeded it was put back correctly.
Furthermore, after find_userfault_evt receives a fork event, the forked
userfault context in fork_nctx and uwq->msg.arg.reserved.reserved1 can
be released by the fork thread as soon as the event_wqh.lock is
released. Taking a reference on the fork_nctx before dropping the lock
prevents an use after free in resolve_userfault_fork().
If the fork side aborted and it already released everything, we still
try to succeed resolve_userfault_fork(), if possible.
Fixes: 893e26e61d ("userfaultfd: non-cooperative: Add fork() event")
Link: http://lkml.kernel.org/r/20170920180413.26713-1-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an enhancement to avoid a non cooperative userfaultfd manager
having to unregister all regions before it can close the uffd after all
userfaultfd activity completed.
The UFFDIO_UNREGISTER would serialize against the handle_userfault by
taking the mmap_sem for writing, but we can simply repeat the page fault
if we detect the uffd was closed and so the regular page fault paths
should takeover.
Link: http://lkml.kernel.org/r/20170823181227.19926-1-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No ABI change, but this will make it more explicit to software that ptid
is only available if requested by passing UFFD_FEATURE_THREAD_ID to
UFFDIO_API. The fact it's a union will also self document it shouldn't
be taken for granted there's a tpid there.
Link: http://lkml.kernel.org/r/20170802165145.22628-7-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Alexey Perevalov <a.perevalov@samsung.com>
Cc: Maxime Coquelin <maxime.coquelin@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It could be useful for calculating downtime during postcopy live
migration per vCPU. Side observer or application itself will be
informed about proper task's sleep during userfaultfd processing.
Process's thread id is being provided when user requeste it by setting
UFFD_FEATURE_THREAD_ID bit into uffdio_api.features.
Link: http://lkml.kernel.org/r/20170802165145.22628-6-aarcange@redhat.com
Signed-off-by: Alexey Perevalov <a.perevalov@samsung.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Maxime Coquelin <maxime.coquelin@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some cases, userfaultfd mechanism should just deliver a SIGBUS signal
to the faulting process, instead of the page-fault event. Dealing with
page-fault event using a monitor thread can be an overhead in these
cases. For example applications like the database could use the
signaling mechanism for robustness purpose.
Database uses hugetlbfs for performance reason. Files on hugetlbfs
filesystem are created and huge pages allocated using fallocate() API.
Pages are deallocated/freed using fallocate() hole punching support.
These files are mmapped and accessed by many processes as shared memory.
The database keeps track of which offsets in the hugetlbfs file have
pages allocated.
Any access to mapped address over holes in the file, which can occur due
to bugs in the application, is considered invalid and expect the process
to simply receive a SIGBUS. However, currently when a hole in the file
is accessed via the mapped address, kernel/mm attempts to automatically
allocate a page at page fault time, resulting in implicitly filling the
hole in the file. This may not be the desired behavior for applications
like the database that want to explicitly manage page allocations of
hugetlbfs files.
Using userfaultfd mechanism with this support to get a signal, database
application can prevent pages from being allocated implicitly when
processes access mapped address over holes in the file.
This patch adds UFFD_FEATURE_SIGBUS feature to userfaultfd mechnism to
request for a SIGBUS signal.
See following for previous discussion about the database requirement
leading to this proposal as suggested by Andrea.
http://www.spinics.net/lists/linux-mm/msg129224.html
Link: http://lkml.kernel.org/r/1501552446-748335-2-git-send-email-prakash.sangappa@oracle.com
Signed-off-by: Prakash Sangappa <prakash.sangappa@oracle.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now when shmem VMAs can be filled with zero page via userfaultfd we can
report that UFFDIO_ZEROPAGE is available for those VMAs
Link: http://lkml.kernel.org/r/1497939652-16528-7-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Conflicts:
include/linux/mm_types.h
mm/huge_memory.c
I removed the smp_mb__before_spinlock() like the following commit does:
8b1b436dd1 ("mm, locking: Rework {set,clear,mm}_tlb_flush_pending()")
and fixed up the affected commits.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the process exit races with outstanding mcopy_atomic, it would be
better to return ESRCH error. When such race occurs the process and
it's mm are going away and returning "no such process" to the uffd
monitor seems better fit than ENOSPC.
Link: http://lkml.kernel.org/r/1502111545-32305-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that there are no users of smp_mb__before_spinlock() left, remove
it entirely.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There may still be threads waiting on event_wqh at the time the
userfault file descriptor is closed. Flush the events wait-queue to
prevent waiting threads from hanging.
Link: http://lkml.kernel.org/r/1501398127-30419-1-git-send-email-rppt@linux.vnet.ibm.com
Fixes: 9cd75c3cd4 ("userfaultfd: non-cooperative: add ability to report
non-PF events from uffd descriptor")
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the non-cooperative userfaultfd case, the process exit may race with
outstanding mcopy_atomic called by the uffd monitor. Returning -ENOSPC
instead of -EINVAL when mm is already gone will allow uffd monitor to
distinguish this case from other error conditions.
Unfortunately I overlooked userfaultfd_zeropage when updating
userfaultd_copy().
Link: http://lkml.kernel.org/r/1501136819-21857-1-git-send-email-rppt@linux.vnet.ibm.com
Fixes: 96333187ab ("userfaultfd_copy: return -ENOSPC in case mm has gone")
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A poisoned or migrated hugepage is stored as a swap entry in the page
tables. On architectures that support hugepages consisting of
contiguous page table entries (such as on arm64) this leads to ambiguity
in determining the page table entry to return in huge_pte_offset() when
a poisoned entry is encountered.
Let's remove the ambiguity by adding a size parameter to convey
additional information about the requested address. Also fixup the
definition/usage of huge_pte_offset() throughout the tree.
Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE)
Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS)
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calculation of start end end in __wake_userfault function are not used
and can be removed.
Link: http://lkml.kernel.org/r/1494930917-3134-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
So I've noticed a number of instances where it was not obvious from the
code whether ->task_list was for a wait-queue head or a wait-queue entry.
Furthermore, there's a number of wait-queue users where the lists are
not for 'tasks' but other entities (poll tables, etc.), in which case
the 'task_list' name is actively confusing.
To clear this all up, name the wait-queue head and entry list structure
fields unambiguously:
struct wait_queue_head::task_list => ::head
struct wait_queue_entry::task_list => ::entry
For example, this code:
rqw->wait.task_list.next != &wait->task_list
... is was pretty unclear (to me) what it's doing, while now it's written this way:
rqw->wait.head.next != &wait->entry
... which makes it pretty clear that we are iterating a list until we see the head.
Other examples are:
list_for_each_entry_safe(pos, next, &x->task_list, task_list) {
list_for_each_entry(wq, &fence->wait.task_list, task_list) {
... where it's unclear (to me) what we are iterating, and during review it's
hard to tell whether it's trying to walk a wait-queue entry (which would be
a bug), while now it's written as:
list_for_each_entry_safe(pos, next, &x->head, entry) {
list_for_each_entry(wq, &fence->wait.head, entry) {
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename:
wait_queue_t => wait_queue_entry_t
'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.
Start sorting this out by renaming it to 'wait_queue_entry_t'.
This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Anon and hugetlbfs handle FOLL_DUMP set by get_dump_page() internally to
__get_user_pages().
shmem as opposed has no special FOLL_DUMP handling there so
handle_mm_fault() is invoked without mmap_sem and ends up calling
handle_userfault() that isn't expecting to be invoked without mmap_sem
held.
This makes handle_userfault() fail immediately if invoked through
shmem_vm_ops->fault during coredumping and solves the problem.
The side effect is a BUG_ON with no lock held triggered by the
coredumping process which exits. Only 4.11 is affected, pre-4.11 anon
memory holes are skipped in __get_user_pages by checking FOLL_DUMP
explicitly against empty pagetables (mm/gup.c:no_page_table()).
It's zero cost as we already had a check for current->flags to prevent
futex to trigger userfaults during exit (PF_EXITING).
Link: http://lkml.kernel.org/r/20170615214838.27429-1-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: <stable@vger.kernel.org> [4.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fdinfo for userfault file descriptor reports UFFD_API_FEATURES. Up
until recently, the UFFD_API_FEATURES was defined as 0, therefore
corresponding field in fdinfo always contained zero. Now, with
introduction of several additional features, UFFD_API_FEATURES is not
longer 0 and it seems better to report actual features requested for the
userfaultfd object described by the fdinfo.
First, the applications that were using userfault will still see zero at
the features field in fdinfo. Next, reporting actual features rather
than available features, gives clear indication of what userfault
features are used by an application.
Link: http://lkml.kernel.org/r/1491140181-22121-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge 5-level page table prep from Kirill Shutemov:
"Here's relatively low-risk part of 5-level paging patchset. Merging it
now will make x86 5-level paging enabling in v4.12 easier.
The first patch is actually x86-specific: detect 5-level paging
support. It boils down to single define.
The rest of patchset converts Linux MMU abstraction from 4- to 5-level
paging.
Enabling of new abstraction in most cases requires adding single line
of code in arch-specific code. The rest is taken care by asm-generic/.
Changes to mm/ code are mostly mechanical: add support for new page
table level -- p4d_t -- where we deal with pud_t now.
v2:
- fix build on microblaze (Michal);
- comment for __ARCH_HAS_5LEVEL_HACK in kasan_populate_zero_shadow();
- acks from Michal"
* emailed patches from Kirill A Shutemov <kirill.shutemov@linux.intel.com>:
mm: introduce __p4d_alloc()
mm: convert generic code to 5-level paging
asm-generic: introduce <asm-generic/pgtable-nop4d.h>
arch, mm: convert all architectures to use 5level-fixup.h
asm-generic: introduce __ARCH_USE_5LEVEL_HACK
asm-generic: introduce 5level-fixup.h
x86/cpufeature: Add 5-level paging detection
It's a void function, so there is no return value;
Link: http://lkml.kernel.org/r/20170309150817.7510-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd_remove() has to be execute before zapping the pagetables or
UFFDIO_COPY could keep filling pages after zap_page_range returned,
which would result in non zero data after a MADV_DONTNEED.
However userfaultfd_remove() may have to release the mmap_sem. This was
handled correctly in MADV_REMOVE, but MADV_DONTNEED accessed a
potentially stale vma (the very vma passed to zap_page_range(vma, ...)).
The fix consists in revalidating the vma in case userfaultfd_remove()
had to release the mmap_sem.
This also optimizes away an unnecessary down_read/up_read in the
MADV_REMOVE case if UFFD_EVENT_FORK had to be delivered.
It all remains zero runtime cost in case CONFIG_USERFAULTFD=n as
userfaultfd_remove() will be defined as "true" at build time.
Link: http://lkml.kernel.org/r/20170302173738.18994-3-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have a memleak in the ->new ctx if the uffd of the parent is closed
before the fork event is read, nothing frees the new context.
Link: http://lkml.kernel.org/r/20170302173738.18994-2-aarcange@redhat.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't stop running dup_fctx() even if userfaultfd_event_wait_completion
fails as it has to run userfaultfd_ctx_put on all ctx to pair against
the userfaultfd_ctx_get that was run on all fctx->orig in
dup_userfaultfd.
Link: http://lkml.kernel.org/r/20170224181957.19736-4-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to the handle_userfault() case, also make sure to never attempt
to send any event past the PF_EXITING point of no return.
This is purely a robustness check.
Link: http://lkml.kernel.org/r/20170224181957.19736-3-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "userfaultfd non-cooperative further update for 4.11 merge
window".
Unfortunately I noticed one relevant bug in userfaultfd_exit while doing
more testing. I've been doing testing before and this was also tested
by kbuild bot and exercised by the selftest, but this bug never
reproduced before.
I dropped userfaultfd_exit as result. I dropped it because of
implementation difficulty in receiving signals in __mmput and because I
think -ENOSPC as result from the background UFFDIO_COPY should be enough
already.
Before I decided to remove userfaultfd_exit, I noticed userfaultfd_exit
wasn't exercised by the selftest and when I tried to exercise it, after
moving it to a more correct place in __mmput where it would make more
sense and where the vma list is stable, it resulted in the
event_wait_completion in D state. So then I added the second patch to
be sure even if we call userfaultfd_event_wait_completion too late
during task exit(), we won't risk to generate tasks in D state. The
same check exists in handle_userfault() for the same reason, except it
makes a difference there, while here is just a robustness check and it's
run under WARN_ON_ONCE.
While looking at the userfaultfd_event_wait_completion() function I
looked back at its callers too while at it and I think it's not ok to
stop executing dup_fctx on the fcs list because we relay on
userfaultfd_event_wait_completion to execute
userfaultfd_ctx_put(fctx->orig) which is paired against
userfaultfd_ctx_get(fctx->orig) in dup_userfault just before
list_add(fcs). This change only takes care of fctx->orig but this area
also needs further review looking for similar problems in fctx->new.
The only patch that is urgent is the first because it's an use after
free during a SMP race condition that affects all processes if
CONFIG_USERFAULTFD=y. Very hard to reproduce though and probably
impossible without SLUB poisoning enabled.
This patch (of 3):
I once reproduced this oops with the userfaultfd selftest, it's not
easily reproducible and it requires SLUB poisoning to reproduce.
general protection fault: 0000 [#1] SMP
Modules linked in:
CPU: 2 PID: 18421 Comm: userfaultfd Tainted: G ------------ T 3.10.0+ #15
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.1-0-g8891697-prebuilt.qemu-project.org 04/01/2014
task: ffff8801f83b9440 ti: ffff8801f833c000 task.ti: ffff8801f833c000
RIP: 0010:[<ffffffff81451299>] [<ffffffff81451299>] userfaultfd_exit+0x29/0xa0
RSP: 0018:ffff8801f833fe80 EFLAGS: 00010202
RAX: ffff8801f833ffd8 RBX: 6b6b6b6b6b6b6b6b RCX: ffff8801f83b9440
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8800baf18600
RBP: ffff8801f833fee8 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000000 R11: ffffffff8127ceb3 R12: 0000000000000000
R13: ffff8800baf186b0 R14: ffff8801f83b99f8 R15: 00007faed746c700
FS: 0000000000000000(0000) GS:ffff88023fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00007faf0966f028 CR3: 0000000001bc6000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Call Trace:
do_exit+0x297/0xd10
SyS_exit+0x17/0x20
tracesys+0xdd/0xe2
Code: 00 00 66 66 66 66 90 55 48 89 e5 41 54 53 48 83 ec 58 48 8b 1f 48 85 db 75 11 eb 73 66 0f 1f 44 00 00 48 8b 5b 10 48 85 db 74 64 <4c> 8b a3 b8 00 00 00 4d 85 e4 74 eb 41 f6 84 24 2c 01 00 00 80
RIP [<ffffffff81451299>] userfaultfd_exit+0x29/0xa0
RSP <ffff8801f833fe80>
---[ end trace 9fecd6dcb442846a ]---
In the debugger I located the "mm" pointer in the stack and walking
mm->mmap->vm_next through the end shows the vma->vm_next list is fully
consistent and it is null terminated list as expected. So this has to
be an SMP race condition where userfaultfd_exit was running while the
vma list was being modified by another CPU.
When userfaultfd_exit() run one of the ->vm_next pointers pointed to
SLAB_POISON (RBX is the vma pointer and is 0x6b6b..).
The reason is that it's not running in __mmput but while there are still
other threads running and it's not holding the mmap_sem (it can't as it
has to wait the even to be received by the manager). So this is an use
after free that was happening for all processes.
One more implementation problem aside from the race condition:
userfaultfd_exit has really to check a flag in mm->flags before walking
the vma or it's going to slowdown the exit() path for regular tasks.
One more implementation problem: at that point signals can't be
delivered so it would also create a task in D state if the manager
doesn't read the event.
The major design issue: it overall looks superfluous as the manager can
check for -ENOSPC in the background transfer:
if (mmget_not_zero(ctx->mm)) {
[..]
} else {
return -ENOSPC;
}
It's safer to roll it back and re-introduce it later if at all.
[rppt@linux.vnet.ibm.com: documentation fixup after removal of UFFD_EVENT_EXIT]
Link: http://lkml.kernel.org/r/1488345437-4364-1-git-send-email-rppt@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/20170224181957.19736-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__do_fault assumes vmf->page has been initialized and is valid if
VM_FAULT_NOPAGE is not returned by vma->vm_ops->fault(vma, vmf).
handle_userfault() in turn should return VM_FAULT_NOPAGE if it doesn't
return VM_FAULT_SIGBUS or VM_FAULT_RETRY (the other two possibilities).
This VM_FAULT_NOPAGE case is only invoked when signal are pending and it
didn't matter for anonymous memory before. It only started to matter
since shmem was introduced. hugetlbfs also takes a different path and
doesn't exercise __do_fault.
Link: http://lkml.kernel.org/r/20170228154201.GH5816@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert all non-architecture-specific code to 5-level paging.
It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
The APIs that are going to be moved first are:
mm_alloc()
__mmdrop()
mmdrop()
mmdrop_async_fn()
mmdrop_async()
mmget_not_zero()
mmput()
mmput_async()
get_task_mm()
mm_access()
mm_release()
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_count);/mmgrab\(\1\);/'
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_count);/mmgrab\(\&\1\);/'
This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.
(Michal Hocko provided most of the kerneldoc comment.)
Link: http://lkml.kernel.org/r/20161218123229.22952-1-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix typos and add the following to the scripts/spelling.txt:
an user||a user
an userspace||a userspace
I also added "userspace" to the list since it is a common word in Linux.
I found some instances for "an userfaultfd", but I did not add it to the
list. I felt it is endless to find words that start with "user" such as
"userland" etc., so must draw a line somewhere.
Link: http://lkml.kernel.org/r/1481573103-11329-4-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>