->b_offset can only be non-zero for _XBF_KMEM backed buffers, so
remove all code dealing with it for page backed buffers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
[dgc: modified to fit this patchset]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
xfs_buftarg_drain() is called from xfs_log_quiesce() to ensure the
buffer cache is reclaimed during unmount. xfs_log_quiesce() is also
called from xfs_quiesce_attr(), however, which means that cache
state is completely drained for filesystem freeze and read-only
remount. While technically harmless, this is unnecessarily
heavyweight. Both freeze and read-only mounts allow reads and thus
allow population of the buffer cache. Therefore, the transitional
sequence in either case really only needs to quiesce outstanding
writes to return the filesystem in a generally read-only state.
Additionally, some users have reported that attempts to freeze a
filesystem concurrent with a read-heavy workload causes the freeze
process to stall for a significant amount of time. This occurs
because, as mentioned above, the read workload repopulates the
buffer LRU while the freeze task attempts to drain it.
To improve this situation, replace the drain in xfs_log_quiesce()
with a buffer I/O quiesce and lift the drain into the unmount path.
This removes buffer LRU reclaim from freeze and read-only [re]mount,
but ensures the LRU is still drained before the filesystem unmounts.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_wait_buftarg() is vaguely named and somewhat overloaded. Its
primary purpose is to reclaim all buffers from the provided buffer
target LRU. In preparation to refactor xfs_wait_buftarg() into
serialization and LRU draining components, rename the function and
associated helpers to something more descriptive. This patch has no
functional changes with the minor exception of renaming a
tracepoint.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Prepare for kernel xfs_buf alignment by getting rid of the
xfs_buf_t typedef from userspace.
[darrick: This patch is a port of a userspace patch removing the
xfs_buf_t typedef in preparation to make the userspace xfs_buf code
behave more like its kernel counterpart.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Instead of poking deeply into buffer cache internals when re-reading the
superblock during log recovery just generalize _xfs_buf_read and use it
there. Note that we don't have to explicitly set up the ops as they
must be set from the initial read.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
No need to keep a separate helper for this logic.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All unmarked dirty buffers should be in the AIL and have log items
attached to them. Hence when they are written, we will run a
callback to remove the item from the AIL if appropriate. Now that
we've handled inode and dquot buffers, all remaining calls are to
xfs_buf_iodone() and so we can hard code this rather than use an
indirect call.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Log recovery has it's own buffer write completion handler for
buffers that it directly recovers. Convert these to direct calls by
flagging these buffers as being log recovery buffers. The flag will
get cleared by the log recovery IO completion routine, so it will
never leak out of log recovery.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
dquot buffers always have write IO callbacks, so by marking them
directly we can avoid needing to attach ->b_iodone functions to
them. This avoids an indirect call, and makes future modifications
much simpler.
This is largely a rearrangement of the code at this point - no IO
completion functionality changes at this point, just how the
code is run is modified.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Inode buffers always have write IO callbacks, so by marking them
directly we can avoid needing to attach ->b_iodone functions to
them. This avoids an indirect call, and makes future modifications
much simpler.
While this is largely a refactor of existing functionality, we
broaden the scope of the flag to beyond where inodes are explicitly
attached because future changes need to know what type of log items
are attached to the buffer. Adding this buffer flag may invoke the
inode iodone callback in cases where it wouldn't have been
previously, but this is not a functional change because the callback
is identical to the normal buffer write iodone callback when inodes
are not attached.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS has some inconsistent log message rate limiting with respect to
buffer alerts. The metadata I/O error notification uses the generic
ratelimited alert, the buffer push code uses a custom rate limit and
the similar quiesce time failure checks are not rate limited at all
(when they should be).
The custom rate limit defined in the buf item code is specifically
crafted for buffer alerts. It is more aggressive than generic rate
limiting code because it must accommodate a high frequency of I/O
error events in a relative short timeframe.
Factor out the custom rate limit state from the buf item code into a
per-buftarg rate limit so various alerts are limited based on the
target. Define a buffer alert helper function and use it for the
buffer alerts that are already ratelimited.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We use the same buffer I/O failure code in a few different places.
It's not much code, but it's not necessarily self-explanatory.
Factor it into a helper and document it in one place.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a helper function to get rid of buffers that we have decided are
corrupt after the verifiers have run. This function is intended to
handle metadata checks that can't happen in the verifiers, such as
inter-block relationship checking. Note that we now mark the buffer
stale so that it will not end up on any LRU and will be purged on
release.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Instead of passing __func__ to the error reporting function, let's use
the return address builtins so that the messages actually tell you which
higher level function called the buffer functions. This was previously
true for the xfs_buf_read callers, but not for the xfs_trans_read_buf
callers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Convert xfs_buf_read() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_get_uncached() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_get() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_read_map() to return numeric error codes like most
everywhere else in xfs. This involves moving the open-coded logic that
reports metadata IO read / corruption errors and stales the buffer into
xfs_buf_read_map so that the logic is all in one place.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_get_map() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Needed to feed into the allocation routine to guarantee the memory
buffers we add to bios are correctly aligned to the underlying
device.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We need to derive the mount pointer from a buffer in a lot of place.
Add a direct pointer to short cut the pointer chasing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This field is now always idential to b_length.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that the log code doesn't abuse this field any more we can
declare it as a struct xfs_buf_log_item pointer.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that the log code uses bios directly we can drop various special
cases in the buffer cache code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Assining a numerical value that is not close to the flags
defined near by is just asking for conflicts later on.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are several functions which take a flag argument that is
only ever passed as "0," so remove these arguments.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_buf_zero is the only caller of xfs_buf_iomove. Remove support
for copying from or to the buffer in xfs_buf_iomove and merge the
two functions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Create a separate magic16 check function so that we don't run afoul of
static checkers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The inode btree verifier code is shared between the inode btree and
free inode btree because the underlying metadata formats are
essentially equivalent. A side effect of this is that the verifier
cannot determine whether a particular btree block should have an
inobt or finobt magic value.
This logic allows an unfortunate xfs_repair bug to escape detection
where certain level > 0 nodes of the finobt are stamped with inobt
magic by xfs_repair finobt reconstruction. This is fortunately not a
severe problem since the inode btree magic values do not contribute
to any changes in kernel behavior, but we do need a means to detect
and prevent this problem in the future.
Add a field to xfs_buf_ops to store the v4 and v5 superblock magic
values expected by a particular verifier. Add a helper to check an
on-disk magic value against the value expected by the verifier. Call
the helper from the shared [f]inobt verifier code for magic value
verification. This ensures that the inode btree blocks each have the
appropriate magic value based on specific tree type and superblock
version.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Improve the documentation around xfs_buf_ensure_ops, which is the
function that is responsible for cleaning up the b_ops state of buffers
that go through xrep_findroot_block but don't match anything. Rename
the function to xfs_buf_reverify.
[darrick: this started off as bfoster mods of a previous patch of mine,
but the renaming part is now this separate patch.]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
If a caller supplies buffer ops when trying to read a buffer and the
buffer doesn't already have buf ops assigned, ensure that the ops are
assigned to the buffer and the verifier is run on that buffer.
Note that current XFS code is careful to assign buffer ops after a
xfs_{trans_,}buf_read call in which ops were not supplied. However, we
should apply ops defensively in case there is ever a coding mistake; and
an upcoming repair patch will need to be able to read a buffer without
assigning buf ops.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The old lock tracking infrastructure in xfs using the b_last_holder
field seems to only be useful if you can get into the system with a
debugger; it seems that the existing tracepoints would be the way to
go these days, and this old infrastructure can be removed.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The buffer I/O submission path consists of separate function calls
per type. The buffer I/O type is already controlled via buffer
state (XBF_ASYNC), however, so there is no real need for separate
submission functions.
Combine the buffer submission functions into a single function that
processes the buffer appropriately based on XBF_ASYNC. Retain an
internal helper with a conditional wait parameter to continue to
support batched !XBF_ASYNC submission/completion required by delwri
queues.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Switch to using the iomap_page structure for checking sub-page uptodate
status and track sub-page I/O completion status, and remove large
quantities of boilerplate code working around buffer heads.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
For the new growfs work, we want to ensure that we serialise
secondary superblock updates with other operations (e.g. scrub)
correctly, but we don't want to cache the buffers for long term
reuse. We need cached buffers for serialisation, however.
To solve this, introduce a "oneshot" buffer which will be marshalled
through the cache but then released once the last current reference
goes away. If the buffer is already cached, then we ignore the
"one-shot" behaviour and leave the buffer in the state it was prior
to the one-shot command being run. This means we don't perturb
either the working set or existing cached buffer state by a one-shot
operation.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move xfs_buf_incore out of line and make it the only way to look up
a buffer in the buffer cache from outside the buffer cache. Convert
the external users of _xfs_buf_find() to xfs_buf_incore() and make
_xfs_buf_find() static.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: actually rename xfs_incore -> xfs_buf_incore]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that buffer's b_fspriv has been split, just replace the current
singly linked list of xfs_log_items, by the list_head infrastructure.
Also, remove the xfs_log_item argument from xfs_buf_resubmit_failed_buffers(),
there is no need for this argument, once the log items can be walked
through the list_head in the buffer.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: minor style cleanups]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
By splitting the b_fspriv field into two different fields (b_log_item
and b_li_list). It's possible to get rid of an old ABI workaround, by
using the new b_log_item field to store xfs_buf_log_item separated from
the log items attached to the buffer, which will be linked in the new
b_li_list field.
This way, there is no more need to reorder the log items list to place
the buf_log_item at the beginning of the list, simplifying a bit the
logic to handle buffer IO.
This also opens the possibility to change buffer's log items list into a
proper list_head.
b_log_item field is still defined as a void *, because it is still used
by the log buffers to store xlog_in_core structures, and there is no
need to add an extra field on xfs_buf just for xlog_in_core.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: minor style changes]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Expose all metadata structure buffer verifier functions via buf_ops.
These will be used by the online scrub mechanism to look for problems
with buffers that are already sitting around in memory.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Since all verification errors also mark the buffer as having an error,
we can combine these two calls. Later we'll add a xfs_failaddr_t
parameter to promote the idea of reporting corruption errors and the
address of the failing check to enable better debugging reports.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
XFS uses a fixed reference count for certain types of buffers in the
internal LRU cache. These reference counts dictate how aggressively
certain buffers are reclaimed vs. others. While the reference counts
implements priority across different buffer types, all buffers
(other than uncached buffers) are typically cached for at least one
reclaim cycle.
We've had at least one bug recently that has been hidden by a
released buffer sitting around in the LRU. Users hitting the problem
were able to reproduce under enough memory pressure to cause
aggressive reclaim in a particular window of time.
To support future xfstests cases, add an error injection tag to
hardcode the buffer reference count to zero. When enabled, this
bypasses caching of associated buffers and facilitates test cases
that depend on this behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The ->iomap_begin() operation is a hot path, so cache the
fs_dax_get_by_host() result at mount time to avoid the incurring the
hash lookup overhead on a per-i/o basis.
Reported-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reclaim during quotacheck can lead to deadlocks on the dquot flush
lock:
- Quotacheck populates a local delwri queue with the physical dquot
buffers.
- Quotacheck performs the xfs_qm_dqusage_adjust() bulkstat and
dirties all of the dquots.
- Reclaim kicks in and attempts to flush a dquot whose buffer is
already queud on the quotacheck queue. The flush succeeds but
queueing to the reclaim delwri queue fails as the backing buffer is
already queued. The flush unlock is now deferred to I/O completion
of the buffer from the quotacheck queue.
- The dqadjust bulkstat continues and dirties the recently flushed
dquot once again.
- Quotacheck proceeds to the xfs_qm_flush_one() walk which requires
the flush lock to update the backing buffers with the in-core
recalculated values. It deadlocks on the redirtied dquot as the
flush lock was already acquired by reclaim, but the buffer resides
on the local delwri queue which isn't submitted until the end of
quotacheck.
This is reproduced by running quotacheck on a filesystem with a
couple million inodes in low memory (512MB-1GB) situations. This is
a regression as of commit 43ff2122e6 ("xfs: on-stack delayed write
buffer lists"), which removed a trylock and buffer I/O submission
from the quotacheck dquot flush sequence.
Quotacheck first resets and collects the physical dquot buffers in a
delwri queue. Then, it traverses the filesystem inodes via bulkstat,
updates the in-core dquots, flushes the corrected dquots to the
backing buffers and finally submits the delwri queue for I/O. Since
the backing buffers are queued across the entire quotacheck
operation, dquot reclaim cannot possibly complete a dquot flush
before quotacheck completes.
Therefore, quotacheck must submit the buffer for I/O in order to
cycle the flush lock and flush the dirty in-core dquot to the
buffer. Add a delwri queue buffer push mechanism to submit an
individual buffer for I/O without losing the delwri queue status and
use it from quotacheck to avoid the deadlock. This restores
quotacheck behavior to as before the regression was introduced.
Reported-by: Martin Svec <martin.svec@zoner.cz>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We've had user reports of unmount hangs in xfs_wait_buftarg() that
analysis shows is due to btp->bt_io_count == -1. bt_io_count
represents the count of in-flight asynchronous buffers and thus
should always be >= 0. xfs_wait_buftarg() waits for this value to
stabilize to zero in order to ensure that all untracked (with
respect to the lru) buffers have completed I/O processing before
unmount proceeds to tear down in-core data structures.
The value of -1 implies an I/O accounting decrement race. Indeed,
the fact that xfs_buf_ioacct_dec() is called from xfs_buf_rele()
(where the buffer lock is no longer held) means that bp->b_flags can
be updated from an unsafe context. While a user-level reproducer is
currently not available, some intrusive hacks to run racing buffer
lookups/ioacct/releases from multiple threads was used to
successfully manufacture this problem.
Existing callers do not expect to acquire the buffer lock from
xfs_buf_rele(). Therefore, we can not safely update ->b_flags from
this context. It turns out that we already have separate buffer
state bits and associated serialization for dealing with buffer LRU
state in the form of ->b_state and ->b_lock. Therefore, replace the
_XBF_IN_FLIGHT flag with a ->b_state variant, update the I/O
accounting wrappers appropriately and make sure they are used with
the correct locking. This ensures that buffer in-flight state can be
modified at buffer release time without racing with modifications
from a buffer lock holder.
Fixes: 9c7504aa72 ("xfs: track and serialize in-flight async buffers against unmount")
Cc: <stable@vger.kernel.org> # v4.8+
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Libor Pechacek <lpechacek@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The quotacheck error handling of the delwri buffer list assumes the
resident buffers are locked and doesn't clear the _XBF_DELWRI_Q flag
on the buffers that are dequeued. This can lead to assert failures
on buffer release and possibly other locking problems.
Move this code to a delwri queue cancel helper function to
encapsulate the logic required to properly release buffers from a
delwri queue. Update the helper to clear the delwri queue flag and
call it from quotacheck.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>