2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 17:14:00 +08:00
Commit Graph

74936 Commits

Author SHA1 Message Date
Dāvis Mosāns
dc4a4bdb3f btrfs: add lzo workspace buffer length constants
It makes it more readable for length checking and is be used repeatedly.

Signed-off-by: Dāvis Mosāns <davispuh@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:50 +01:00
Qu Wenruo
40e7efe057 btrfs: populate extent_map::generation when reading from disk
When btrfs_get_extent() tries to get some file extent from disk, it
never populates extent_map::generation, leaving the value to be 0.

On the other hand, for extent map generated by IO, it will get its
generation properly set at finish_ordered_io()

 finish_ordered_io()
 |- unpin_extent_cache(gen = trans->transid)
    |- em->generation = gen;

[CAUSE]
Since extent_map::generation is mostly used by fsync code, and for fsync
they only care about modified extents, which all have their
em::generation > 0.

Thus it's fine to not populate em read from disk for fsync.

[CORNER CASE]
However autodefrag also relies on em::generation to determine if one
extent needs to be defragged.

This unpopulated extent_map::generation can prevent the following
autodefrag case from working:

	mkfs.btrfs -f $dev
	mount $dev $mnt -o autodefrag

	# initial write to queue the inode for autodefrag
	xfs_io -f -c "pwrite 0 4k" $mnt/file
	sync

	# Real fragmented write
	xfs_io -f -s -c "pwrite -b 4096 0 32k" $mnt/file
	sync
	echo "=== before autodefrag ==="
	xfs_io -c "fiemap -v" $mnt/file

	# Drop cache to force em to be read from disk
	echo 3 > /proc/sys/vm/drop_caches
	mount -o remount,commit=1 $mnt
	sleep 3
	sync

	echo "=== After autodefrag ==="
	xfs_io -c "fiemap -v" $mnt/file
	umount $mnt

The result looks like this:

  === before autodefrag ===
  /mnt/btrfs/file:
   EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
     0: [0..15]:         26672..26687        16   0x0
     1: [16..31]:        26656..26671        16   0x0
     2: [32..47]:        26640..26655        16   0x0
     3: [48..63]:        26624..26639        16   0x1
  === After autodefrag ===
  /mnt/btrfs/file:
   EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
     0: [0..15]:         26672..26687        16   0x0
     1: [16..31]:        26656..26671        16   0x0
     2: [32..47]:        26640..26655        16   0x0
     3: [48..63]:        26624..26639        16   0x1

This fragmented 32K will not be defragged by autodefrag.

[FIX]
To make things less weird, just populate extent_map::generation when
reading file extents from disk.

This would make above fragmented extents to be properly defragged:

  == before autodefrag ===
  /mnt/btrfs/file:
   EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
     0: [0..15]:         26672..26687        16   0x0
     1: [16..31]:        26656..26671        16   0x0
     2: [32..47]:        26640..26655        16   0x0
     3: [48..63]:        26624..26639        16   0x1
  === After autodefrag ===
  /mnt/btrfs/file:
   EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
     0: [0..63]:         26688..26751        64   0x1

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:50 +01:00
Filipe Manana
6d3b050efa btrfs: assert we have a write lock when removing and replacing extent maps
Removing or replacing an extent map requires holding a write lock on the
extent map's tree. We currently do that everywhere, except in one of the
self tests, where it's harmless since there's no concurrency.

In order to catch possible races in the future, assert that we are holding
a write lock on the extent map tree before removing or replacing an extent
map in the tree, and update the self test to obtain a write lock before
removing extent maps.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:50 +01:00
Filipe Manana
ad3fc7946b btrfs: remove no longer used counter when reading data page
After commit 92082d4097 ("btrfs: integrate page status update for
data read path into begin/end_page_read"), the 'nr' counter at
btrfs_do_readpage() is no longer used, we increment it but we never
read from it. So just remove it.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:50 +01:00
Filipe Manana
bbf0ea7ea3 btrfs: fix lost error return value when reading a data page
At btrfs_do_readpage(), if we get an error when trying to lookup for an
extent map, we end up marking the page with the error bit, clearing
the uptodate bit on it, and doing everything else that should be done.
However we return success (0) to the caller, when we should return the
error encoded in the extent map pointer. So fix that by returning the
error encoded in the pointer.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:50 +01:00
Filipe Manana
c03475506e btrfs: stop checking for NULL return from btrfs_get_extent()
At extent_io.c, in the read page and write page code paths, we are testing
if the return value from btrfs_get_extent() can be NULL. However that is
not possible, as btrfs_get_extent() always returns either an error pointer
or a (non-NULL) pointer to an extent map structure.

Everywhere else outside extent_io.c we never check for NULL, we always
treat any returned value as a non-NULL pointer if it does not encode an
error.

So check only for the IS_ERR() case at extent_io.c.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:50 +01:00
Filipe Manana
e1f53ed874 btrfs: prepare extents to be logged before locking a log tree path
When we want to log an extent, in the fast fsync path, we obtain a path
to the leaf that will hold the file extent item either through a deletion
search, via btrfs_drop_extents(), or through an insertion search using
btrfs_insert_empty_item(). After that we fill the file extent item's
fields one by one directly on the leaf.

Instead of doing that, we could prepare the file extent item before
obtaining a btree path, and then copy the prepared extent item with a
single operation once we get the path. This helps avoid some contention
on the log tree, since we are holding write locks for longer than
necessary, especially in the case where the path is obtained via
btrfs_drop_extents() through a deletion search, which always keeps a
write lock on the nodes at levels 1 and 2 (besides the leaf).

This change does that, we prepare the file extent item that is going to
be inserted before acquiring a path, and then copy it into a leaf using
a single copy operation once we get a path.

This change if part of a patchset that is comprised of the following
patches:

  1/6 btrfs: remove unnecessary leaf free space checks when pushing items
  2/6 btrfs: avoid unnecessary COW of leaves when deleting items from a leaf
  3/6 btrfs: avoid unnecessary computation when deleting items from a leaf
  4/6 btrfs: remove constraint on number of visited leaves when replacing extents
  5/6 btrfs: remove useless path release in the fast fsync path
  6/6 btrfs: prepare extents to be logged before locking a log tree path

The following test was run to measure the impact of the whole patchset:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/sdi
  MNT=/mnt/sdi
  MOUNT_OPTIONS="-o ssd"
  MKFS_OPTIONS="-R free-space-tree -O no-holes"

  NUM_JOBS=8
  FILE_SIZE=128M
  RUN_TIME=200

  cat <<EOF > /tmp/fio-job.ini
  [writers]
  rw=randwrite
  fsync=1
  fallocate=none
  group_reporting=1
  direct=0
  bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5
  ioengine=sync
  filesize=$FILE_SIZE
  runtime=$RUN_TIME
  time_based
  directory=$MNT
  numjobs=$NUM_JOBS
  thread
  EOF

  echo "performance" | \
      tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

  echo
  echo "Using config:"
  echo
  cat /tmp/fio-job.ini
  echo

  umount $MNT &> /dev/null
  mkfs.btrfs -f $MKFS_OPTIONS $DEV
  mount $MOUNT_OPTIONS $DEV $MNT

  fio /tmp/fio-job.ini

  umount $MNT

The test ran inside a VM (8 cores, 32G of RAM) with the target disk
mapping to a raw NVMe device, and using a non-debug kernel config
(Debian's default config).

Before the patchset:

WRITE: bw=116MiB/s (122MB/s), 116MiB/s-116MiB/s (122MB/s-122MB/s), io=22.7GiB (24.4GB), run=200013-200013msec

After the patchset:

WRITE: bw=125MiB/s (131MB/s), 125MiB/s-125MiB/s (131MB/s-131MB/s), io=24.3GiB (26.1GB), run=200007-200007msec

A 7.8% gain on throughput and +7.0% more IO done in the same period of
time (200 seconds).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:50 +01:00
Filipe Manana
d845753170 btrfs: remove useless path release in the fast fsync path
There's no point in calling btrfs_release_path() after finishing the loop
that logs the modified extents, since log_one_extent() returns with the
path released. In case the list of extents is empty, the path is already
released, so there's no need for that case as well.
So just remove that unnecessary btrfs_release_path() call.

This change if part of a patchset that is comprised of the following
patches:

  1/6 btrfs: remove unnecessary leaf free space checks when pushing items
  2/6 btrfs: avoid unnecessary COW of leaves when deleting items from a leaf
  3/6 btrfs: avoid unnecessary computation when deleting items from a leaf
  4/6 btrfs: remove constraint on number of visited leaves when replacing extents
  5/6 btrfs: remove useless path release in the fast fsync path
  6/6 btrfs: prepare extents to be logged before locking a log tree path

The last patch in the series has some performance test result in its
changelog.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Filipe Manana
7ecb4c31e7 btrfs: remove constraint on number of visited leaves when replacing extents
At btrfs_drop_extents(), we try to replace a range of file extent items
with a new file extent in a single btree search, to avoid the need to do
a search for deletion, followed by a path release and followed by yet
another search for insertion.

When I originally added that optimization, in commit 1acae57b16
("Btrfs: faster file extent item replace operations"), I left a constraint
to do the fast replace only if we visited a single leaf. That was because
in the most common case we find all file extent items that need to be
deleted (or trimmed) in a single leaf, however it can work for other
common cases like when we need to delete a few file extent items located
at the end of a leaf and a few more located at the beginning of the next
leaf. The key for the new file extent item is greater than the key of
any deleted or trimmed file extent item from previous leaves, so we are
fine to use the last leaf that we found as long as we are holding a
write lock on it - even if the new key ends up at slot 0, as if that's
the case, the btree search has obtained a write lock on any upper nodes
that need to have a key pointer updated.

So removed the constraint that limits the optimization to the case where
we visited only a single leaf.

This change if part of a patchset that is comprised of the following
patches:

  1/6 btrfs: remove unnecessary leaf free space checks when pushing items
  2/6 btrfs: avoid unnecessary COW of leaves when deleting items from a leaf
  3/6 btrfs: avoid unnecessary computation when deleting items from a leaf
  4/6 btrfs: remove constraint on number of visited leaves when replacing extents
  5/6 btrfs: remove useless path release in the fast fsync path
  6/6 btrfs: prepare extents to be logged before locking a log tree path

The last patch in the series has some performance test result in its
changelog.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Filipe Manana
0cae23b66a btrfs: avoid unnecessary computation when deleting items from a leaf
When deleting items from a leaf, we always compute the sum of the data
sizes of the items that are going to be deleted. However we only use
that sum when the last item to delete is behind the last item in the
leaf. This unnecessarily wastes CPU time when we are deleting either
the whole leaf or from some slot > 0 up to the last item in the leaf,
and both of these cases are common (e.g. truncation operation, either
as a result of truncate(2) or when logging inodes, deleting checksums
after removing a large enough extent, etc).

So compute only the sum of the data sizes if the last item to be
deleted does not match the last item in the leaf.

This change if part of a patchset that is comprised of the following
patches:

  1/6 btrfs: remove unnecessary leaf free space checks when pushing items
  2/6 btrfs: avoid unnecessary COW of leaves when deleting items from a leaf
  3/6 btrfs: avoid unnecessary computation when deleting items from a leaf
  4/6 btrfs: remove constraint on number of visited leaves when replacing extents
  5/6 btrfs: remove useless path release in the fast fsync path
  6/6 btrfs: prepare extents to be logged before locking a log tree path

The last patch in the series has some performance test result in its
changelog.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Filipe Manana
7c4063d19e btrfs: avoid unnecessary COW of leaves when deleting items from a leaf
When we delete items from a leaf, if we end up with more than two thirds
of unused leaf space, we try to delete the leaf by moving all its items
into its left and right neighbour leaves. Sometimes that is not possible
because there is not enough free space in the left and right leaves, and
in that case we end up not deleting our leaf.

The way we are doing this is not ideal and can be improved in the
following ways:

1) When we call push_leaf_left(), we pass a value of 1 byte to the data
   size parameter of push_leaf_left(). This is not realistic value because
   no item can have a size less than 25 bytes, which is the size of struct
   btrfs_item. This means that means that if the left leaf has not enough
   free space to push any item, we end up COWing it even if we end up not
   changing its content at all.

   COWing that leaf means allocating a new metadata extent, marking it
   dirty and doing more IO when committing a transaction or when syncing a
   log tree. For a log tree case, it's particularly more important to
   avoid the useless COW operation, as more IO can imply a higher latency
   for an fsync operation.

   So instead of passing 1 as the minimum data size for push_leaf_left(),
   pass the size of the first item in our leaf, as we don't want to COW
   the left leaf if we can't at least push the first item of our leaf;

2) When we call push_leaf_right(), we also pass a value of 1 byte as the
   data size parameter of push_leaf_right(). Like the previous case, it
   will also result in COWing the right leaf even if we are not able to
   move any items into it, since there can't be any item with a size
   smaller than 25 bytes (the size of struct btrfs_item).

   So instead of passing 1 as the minimum data size to push_leaf_right(),
   pass a size that corresponds to the sum of the size of all the
   remaining items in our leaf. We are not interested in moving less than
   that, because if we do, we are not able to delete our leaf and we have
   COWed the right leaf for nothing. Plus, moving only some of the items
   of our leaf, it means an even less balanced tree.

   Just like the previous case, we want to avoid the useless COW of the
   right leaf, this way we don't have to spend time allocating one new
   metadata extent, and doing more IO when committing a transaction or
   syncing a log tree. For the log tree case it's specially more important
   because more IO can result in a higher latency for a fsync operation.

So adjust the minimum data size passed to push_leaf_left() and
push_leaf_right() as mentioned above.

This change if part of a patchset that is comprised of the following
patches:

  1/6 btrfs: remove unnecessary leaf free space checks when pushing items
  2/6 btrfs: avoid unnecessary COW of leaves when deleting items from a leaf
  3/6 btrfs: avoid unnecessary computation when deleting items from a leaf
  4/6 btrfs: remove constraint on number of visited leaves when replacing extents
  5/6 btrfs: remove useless path release in the fast fsync path
  6/6 btrfs: prepare extents to be logged before locking a log tree path

Not being able to delete a leaf that became less than 1/3 full after
deleting items from it is actually common. For example, for the fio test
mentioned in the changelog of patch 6/6, we are only able to delete a
leaf at btrfs_del_items() about 5.3% of the time, due to its left and
right neighbour leaves not having enough free space to push all the
remaining items into them.

The last patch in the series has some performance test result in its
changelog.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Filipe Manana
b4e098a97f btrfs: remove unnecessary leaf free space checks when pushing items
When trying to push items from a leaf into its left and right neighbours,
we lock the left or right leaf, check if it has the required minimum free
space, COW the leaf and then check again if it has the minimum required
free space. This second check is pointless:

1) Most and foremost because it's not needed. We have a write lock on the
   leaf and on its parent node, so no one can come in and change either
   the pre-COW or post-COW version of the leaf for the whole duration of
   the push_leaf_left() and push_leaf_right() calls;

2) The call to btrfs_leaf_free_space() is not trivial, it has a fair
   amount of arithmetic operations and access to fields in the leaf's
   header and items, so it's not very cheap.

So remove the duplicated free space checks.

This change if part of a patchset that is comprised of the following
patches:

  1/6 btrfs: remove unnecessary leaf free space checks when pushing items
  2/6 btrfs: avoid unnecessary COW of leaves when deleting items from a leaf
  3/6 btrfs: avoid unnecessary computation when deleting items from a leaf
  4/6 btrfs: remove constraint on number of visited leaves when replacing extents
  5/6 btrfs: remove useless path release in the fast fsync path
  6/6 btrfs: prepare extents to be logged before locking a log tree path

The last patch in the series has some performance test result in its
changelog.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Johannes Thumshirn
6b5b7a41d0 btrfs: stop checking for NULL return from btrfs_get_extent_fiemap()
In get_extent_skip_holes() we're checking the return of
btrfs_get_extent_fiemap() for an error pointer or NULL, but
btrfs_get_extent_fiemap() will never return NULL, only error pointers or
a valid extent_map.

The other caller of btrfs_get_extent_fiemap(), find_desired_extent(),
correctly only checks for error-pointers.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Pankaj Raghav
f716fa4798 btrfs: zoned: remove redundant assignment in btrfs_check_zoned_mode
Remove the redundant assignment to zone_info variable in
btrfs_check_zoned_mode function.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
David Sterba
a55e65b80e btrfs: replace BUILD_BUG_ON by static_assert
The static_assert introduced in 6bab69c650 ("build_bug.h: add wrapper
for _Static_assert") has been supported by compilers for a long time
(gcc 4.6, clang 3.0) and can be used in header files. We don't need to
put BUILD_BUG_ON to random functions but rather keep it next to the
definition.

The exception here is the UAPI header btrfs_tree.h that could be
potentially included by userspace code and the static assert is not
defined (nor used in any other header).

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Johannes Thumshirn
265f7237dd btrfs: zoned: allow DUP on meta-data block groups
Allow creating or reading block-groups on a zoned device with DUP as a
meta-data profile.

This works because we're using the zoned_meta_io_lock and REQ_OP_WRITE
operations for meta-data on zoned btrfs, so all writes to meta-data zones
are aligned to the zone's write-pointer.

Upon loading of the block-group, it is ensured both zones do have the same
zone capacity and write-pointer offsets, so no extra machinery is needed
to keep the write-pointers in sync for the meta-data zones. If this
prerequisite is not met, loading of the block-group is refused.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Johannes Thumshirn
dbfcc18f27 btrfs: zoned: prepare for allowing DUP on zoned
Allow for a block-group to be placed on more than one physical zone.

This is a preparation for allowing DUP profiles for meta-data on a zoned
file-system.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Johannes Thumshirn
4dcbb8ab31 btrfs: zoned: make zone finishing multi stripe capable
Currently finishing of a zone only works if the block group isn't
spanning more than one zone.

This limitation is purely artificial and can be easily expanded to block
groups being places across multiple zones.

This is a preparation for allowing DUP and later more complex block-group
profiles on zoned btrfs.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Johannes Thumshirn
f9a912a3c4 btrfs: zoned: make zone activation multi stripe capable
Currently activation of a zone only works if the block group isn't
spanning more than one zone.

This limitation is purely artificial and can be easily expanded to block
groups being places across multiple zones.

This is a preparation for allowing DUP and later more complex block-group
profiles on zoned btrfs.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Josef Bacik
f7238e5094 btrfs: add support for multiple global roots
With extent tree v2 you will be able to create multiple csum, extent,
and free space trees.  They will be used based on the block group, which
will now use the block_group_item->chunk_objectid to point to the set of
global roots that it will use.  When allocating new block groups we'll
simply mod the gigabyte offset of the block group against the number of
global roots we have and that will be the block groups global id.

>From there we can take the bytenr that we're modifying in the respective
tree, look up the block group and get that block groups corresponding
global root id.  From there we can get to the appropriate global root
for that bytenr.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:49 +01:00
Josef Bacik
9c54e80ddc btrfs: add code to support the block group root
This code adds the on disk structures for the block group root, which
will hold the block group items for extent tree v2.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
bd676446c1 btrfs: abstract out loading the tree root
We're going to be adding more roots that need to be loaded from the
super block, so abstract out the code to read the tree_root from the
super block, and use this helper for the chunk root as well.  This will
make it simpler to load the new trees in the future.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
c2fa821cc9 btrfs: tree-checker: don't fail on empty extent roots for extent tree v2
For extent tree v2 we can definitely have empty extent roots, so skip
this particular check if we have that set.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
63cd070dec btrfs: disable space cache related mount options for extent tree v2
We cannot fall back on the slow caching for extent tree v2, which means
we can't just arbitrarily clear the free space trees at mount time.
Furthermore we can't do v1 space cache with extent tree v2.  Simply
ignore these mount options for extent tree v2 as they aren't relevant.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
813febdbe6 btrfs: disable snapshot creation/deletion for extent tree v2
When we stop tracking metadata blocks all of snapshotting will break, so
disable it until I add the snapshot root and drop tree support.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
da32c6d570 btrfs: disable scrub for extent-tree-v2
Scrub depends on extent references for every block, and with extent tree
v2 we won't have that, so disable scrub until we can add back the proper
code to handle extent-tree-v2.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
ef3eccc19a btrfs: disable qgroups in extent tree v2
Backref lookups are going to be drastically different with extent tree
v2, disable qgroups until we do the work to add this support for extent
tree v2.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
914a519b19 btrfs: disable device manipulation ioctl's EXTENT_TREE_V2
Device add, remove, and replace all require balance, which doesn't work
right now on extent tree v2, so disable these for now.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
4b34925399 btrfs: disable balance for extent tree v2 for now
With global root id's it makes it problematic to do backref lookups for
balance.  This isn't hard to deal with, but future changes are going to
make it impossible to lookup backrefs on any COWonly roots, so go ahead
and disable balance for now on extent tree v2 until we can add balance
support back in future patches.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Josef Bacik
2c7d2a2302 btrfs: add definition for EXTENT_TREE_V2
This adds the initial definition of the EXTENT_TREE_V2 incompat feature
flag.  This also hides the support behind CONFIG_BTRFS_DEBUG.

THIS IS A IN DEVELOPMENT FORMAT CHANGE, DO NOT USE UNLESS YOU ARE A
DEVELOPER OR A TESTER.

The format is in flux and will be added in stages, any fs will need to
be re-made between updates to the format.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Filipe Manana
65faced5b9 btrfs: use single variable to track return value at btrfs_log_inode()
At btrfs_log_inode(), we have two variables to track errors and the
return value of the function, named 'ret' and 'err'. In some places we
use 'ret' and if gets a non-zero value we assign its value to 'err'
and then jump to the 'out' label, while in other places we use 'err'
directly without 'ret' as an intermediary. This is inconsistent, error
prone and not necessary. So change that to use only the 'ret' variable,
making this consistent with most functions in btrfs.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Filipe Manana
0f8ce49821 btrfs: avoid inode logging during rename and link when possible
During a rename or link operation, we need to determine if an inode was
previously logged or not, and if it was, do some update to the logged
inode. We used to rely exclusively on the logged_trans field of struct
btrfs_inode to determine that, but that was not reliable because the
value of that field is not persisted in the inode item, so it's lost
when an inode is evicted and loaded back again. That led to several
issues in the past, such as not persisting deletions (such as the case
fixed by commit 803f0f64d1 ("Btrfs: fix fsync not persisting dentry
deletions due to inode evictions")), or resulting in losing a file
after an inode eviction followed by a rename (commit ecc64fab7d
("btrfs: fix lost inode on log replay after mix of fsync, rename and
inode eviction")), besides other issues.

So the inode_logged() helper was introduced and used to determine if an
inode was possibly logged before in the current transaction, with the
caveat that it could return false positives, in the sense that even if an
inode was not logged before in the current transaction, it could still
return true, but never to return false in case the inode was logged.
>From a functional point of view that is fine, but from a performance
perspective it can introduce significant latencies to rename and link
operations, as they will end up doing inode logging even when it is not
necessary.

Recently on a 5.15 kernel, an openSUSE Tumbleweed user reported package
installations and upgrades, with the zypper tool, were often taking a
long time to complete. With strace it could be observed that zypper was
spending about 99% of its time on rename operations, and then with
further analysis we checked that directory logging was happening too
frequently. Taking into account that installation/upgrade of some of the
packages needed a few thousand file renames, the slowdown was very
noticeable for the user.

The issue was caused indirectly due to an excessive number of inode
evictions on a 5.15 kernel, about 100x more compared to a 5.13, 5.14 or
a 5.16-rc8 kernel. While triggering the inode evictions if something
outside btrfs' control, btrfs could still behave better by eliminating
the false positives from the inode_logged() helper.

So change inode_logged() to actually eliminate such false positives caused
by inode eviction and when an inode was never logged since the filesystem
was mounted, as both cases relate to when the logged_trans field of struct
btrfs_inode has a value of zero. When it can not determine if the inode
was logged based only on the logged_trans value, lookup for the existence
of the inode item in the log tree - if it's there then we known the inode
was logged, if it's not there then it can not have been logged in the
current transaction. Once we determine if the inode was logged, update
the logged_trans value to avoid future calls to have to search in the log
tree again.

Alternatively, we could start storing logged_trans in the on disk inode
item structure (struct btrfs_inode_item) in the unused space it still has,
but that would be a bit odd because:

1) We only care about logged_trans since the filesystem was mounted, we
   don't care about its value from a previous mount. Having it persisted
   in the inode item structure would not make the best use of the precious
   unused space;

2) In order to get logged_trans persisted before inode eviction, we would
   have to update the delayed inode when we finish logging the inode and
   update its logged_trans in struct btrfs_inode, which makes it a bit
   cumbersome since we need to check if the delayed inode exists, if not
   create it and populate it and deal with any errors (-ENOMEM mostly).

This change is part of a patchset comprised of the following patches:

  1/5 btrfs: add helper to delete a dir entry from a log tree
  2/5 btrfs: pass the dentry to btrfs_log_new_name() instead of the inode
  3/5 btrfs: avoid logging all directory changes during renames
  4/5 btrfs: stop doing unnecessary log updates during a rename
  5/5 btrfs: avoid inode logging during rename and link when possible

The following test script mimics part of what the zypper tool does during
package installations/upgrades. It does not triggers inode evictions, but
it's similar because it triggers false positives from the inode_logged()
helper, because the inodes have a logged_trans of 0, there's a log tree
due to a fsync of an unrelated file and the directory inode has its
last_trans field set to the current transaction:

  $ cat test.sh

  #!/bin/bash

  DEV=/dev/nvme0n1
  MNT=/mnt/nvme0n1

  NUM_FILES=10000

  mkfs.btrfs -f $DEV
  mount $DEV $MNT

  mkdir $MNT/testdir

  for ((i = 1; i <= $NUM_FILES; i++)); do
      echo -n > $MNT/testdir/file_$i
  done

  sync

  # Now do some change to an unrelated file and fsync it.
  # This is just to create a log tree to make sure that inode_logged()
  # does not return false when called against "testdir".
  xfs_io -f -c "pwrite 0 4K" -c "fsync" $MNT/foo

  # Do some change to testdir. This is to make sure inode_logged()
  # will return true when called against "testdir", because its
  # logged_trans is 0, it was changed in the current transaction
  # and there's a log tree.
  echo -n > $MNT/testdir/file_$((NUM_FILES + 1))

  echo "Renaming $NUM_FILES files..."
  start=$(date +%s%N)
  for ((i = 1; i <= $NUM_FILES; i++)); do
      mv $MNT/testdir/file_$i $MNT/testdir/file_$i-RPMDELETE
  done
  end=$(date +%s%N)

  dur=$(( (end - start) / 1000000 ))
  echo "Renames took $dur milliseconds"

  umount $MNT

Testing this change on a box using a non-debug kernel (Debian's default
kernel config) gave the following results:

NUM_FILES=10000, before patchset:                   27837 ms
NUM_FILES=10000, after patches 1/5 to 4/5 applied:   9236 ms (-66.8%)
NUM_FILES=10000, after whole patchset applied:       8902 ms (-68.0%)

NUM_FILES=5000, before patchset:                     9127 ms
NUM_FILES=5000, after patches 1/5 to 4/5 applied:    4640 ms (-49.2%)
NUM_FILES=5000, after whole patchset applied:        4441 ms (-51.3%)

NUM_FILES=2000, before patchset:                     2528 ms
NUM_FILES=2000, after patches 1/5 to 4/5 applied:    1983 ms (-21.6%)
NUM_FILES=2000, after whole patchset applied:        1747 ms (-30.9%)

NUM_FILES=1000, before patchset:                     1085 ms
NUM_FILES=1000, after patches 1/5 to 4/5 applied:     893 ms (-17.7%)
NUM_FILES=1000, after whole patchset applied:         867 ms (-20.1%)

Running dbench on the same physical machine with the following script:

  $ cat run-dbench.sh
  #!/bin/bash

  NUM_JOBS=$(nproc --all)

  DEV=/dev/nvme0n1
  MNT=/mnt/nvme0n1
  MOUNT_OPTIONS="-o ssd"
  MKFS_OPTIONS="-O no-holes -R free-space-tree"

  echo "performance" | \
      tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

  mkfs.btrfs -f $MKFS_OPTIONS $DEV
  mount $MOUNT_OPTIONS $DEV $MNT

  dbench -D $MNT -t 120 $NUM_JOBS

  umount $MNT

Before patchset:

 Operation      Count    AvgLat    MaxLat
 ----------------------------------------
 NTCreateX    3761352     0.032   143.843
 Close        2762770     0.002     2.273
 Rename        159304     0.291    67.037
 Unlink        759784     0.207   143.998
 Deltree           72     4.028    15.977
 Mkdir             36     0.003     0.006
 Qpathinfo    3409780     0.013     9.678
 Qfileinfo     596772     0.001     0.878
 Qfsinfo       625189     0.003     1.245
 Sfileinfo     306443     0.006     1.840
 Find         1318106     0.063    19.798
 WriteX       1871137     0.021     8.532
 ReadX        5897325     0.003     3.567
 LockX          12252     0.003     0.258
 UnlockX        12252     0.002     0.100
 Flush         263666     3.327   155.632

Throughput 980.047 MB/sec  12 clients  12 procs  max_latency=155.636 ms

After whole patchset applied:

 Operation      Count    AvgLat    MaxLat
 ----------------------------------------
 NTCreateX    4195584     0.033   107.742
 Close        3081932     0.002     1.935
 Rename        177641     0.218    14.905
 Unlink        847333     0.166   107.822
 Deltree          118     5.315    15.247
 Mkdir             59     0.004     0.048
 Qpathinfo    3802612     0.014    10.302
 Qfileinfo     666748     0.001     1.034
 Qfsinfo       697329     0.003     0.944
 Sfileinfo     341712     0.006     2.099
 Find         1470365     0.065     9.359
 WriteX       2093921     0.021     8.087
 ReadX        6576234     0.003     3.407
 LockX          13660     0.003     0.308
 UnlockX        13660     0.002     0.114
 Flush         294090     2.906   115.539

Throughput 1093.11 MB/sec  12 clients  12 procs  max_latency=115.544 ms

+11.5% throughput    -25.8% max latency   rename max latency -77.8%

Link: https://bugzilla.opensuse.org/show_bug.cgi?id=1193549
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:48 +01:00
Filipe Manana
259c4b96d7 btrfs: stop doing unnecessary log updates during a rename
During a rename, we call __btrfs_unlink_inode(), which will call
btrfs_del_inode_ref_in_log() and btrfs_del_dir_entries_in_log(), in order
to remove an inode reference and a directory entry from the log. These
are necessary when __btrfs_unlink_inode() is called from the unlink path,
but not necessary when it's called from a rename context, because:

1) For the btrfs_del_inode_ref_in_log() call, it's pointless to delete the
   inode reference related to the old name, because later in the rename
   path we call btrfs_log_new_name(), which will drop all inode references
   from the log and copy all inode references from the subvolume tree to
   the log tree. So we are doing one unnecessary btree operation which
   adds additional latency and lock contention in case there are other
   tasks accessing the log tree;

2) For the btrfs_del_dir_entries_in_log() call, we are now doing the
   equivalent at btrfs_log_new_name() since the previous patch in the
   series, that has the subject "btrfs: avoid logging all directory
   changes during renames". In fact, having __btrfs_unlink_inode() call
   this function not only adds additional latency and lock contention due
   to the extra btree operation, but also can make btrfs_log_new_name()
   unnecessarily log a range item to track the deletion of the old name,
   since it has no way to known that the directory entry related to the
   old name was previously logged and already deleted by
   __btrfs_unlink_inode() through its call to
   btrfs_del_dir_entries_in_log().

So skip those calls at __btrfs_unlink_inode() when we are doing a rename.
Skipping them also allows us now to reduce the duration of time we are
pinning a log transaction during renames, which is always beneficial as
it's not delaying so much other tasks trying to sync the log tree, in
particular we end up not holding the log transaction pinned while adding
the new name (adding inode ref, directory entry, etc).

This change is part of a patchset comprised of the following patches:

  1/5 btrfs: add helper to delete a dir entry from a log tree
  2/5 btrfs: pass the dentry to btrfs_log_new_name() instead of the inode
  3/5 btrfs: avoid logging all directory changes during renames
  4/5 btrfs: stop doing unnecessary log updates during a rename
  5/5 btrfs: avoid inode logging during rename and link when possible

Just like the previous patch in the series, "btrfs: avoid logging all
directory changes during renames", the following script mimics part of
what a package installation/upgrade with zypper does, which is basically
renaming a lot of files, in some directory under /usr, to a name with a
suffix of "-RPMDELETE":

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nvme0n1
  MNT=/mnt/nvme0n1

  NUM_FILES=10000

  mkfs.btrfs -f $DEV
  mount $DEV $MNT

  mkdir $MNT/testdir

  for ((i = 1; i <= $NUM_FILES; i++)); do
      echo -n > $MNT/testdir/file_$i
  done

  sync

  # Do some change to testdir and fsync it.
  echo -n > $MNT/testdir/file_$((NUM_FILES + 1))
  xfs_io -c "fsync" $MNT/testdir

  echo "Renaming $NUM_FILES files..."
  start=$(date +%s%N)
  for ((i = 1; i <= $NUM_FILES; i++)); do
      mv $MNT/testdir/file_$i $MNT/testdir/file_$i-RPMDELETE
  done
  end=$(date +%s%N)

  dur=$(( (end - start) / 1000000 ))
  echo "Renames took $dur milliseconds"

  umount $MNT

Testing this change on box a using a non-debug kernel (Debian's default
kernel config) gave the following results:

NUM_FILES=10000, before patchset:                   27399 ms
NUM_FILES=10000, after patches 1/5 to 3/5 applied:   9093 ms (-66.8%)
NUM_FILES=10000, after patches 1/5 to 4/5 applied:   9016 ms (-67.1%)

NUM_FILES=5000, before patchset:                     9241 ms
NUM_FILES=5000, after patches 1/5 to 3/5 applied:    4642 ms (-49.8%)
NUM_FILES=5000, after patches 1/5 to 4/5 applied:    4553 ms (-50.7%)

NUM_FILES=2000, before patchset:                     2550 ms
NUM_FILES=2000, after patches 1/5 to 3/5 applied:    1788 ms (-29.9%)
NUM_FILES=2000, after patches 1/5 to 4/5 applied:    1767 ms (-30.7%)

NUM_FILES=1000, before patchset:                     1088 ms
NUM_FILES=1000, after patches 1/5 to 3/5 applied:     905 ms (-16.9%)
NUM_FILES=1000, after patches 1/5 to 4/5 applied:     883 ms (-18.8%)

The next patch in the series (5/5), also contains dbench results after
applying to whole patchset.

Link: https://bugzilla.opensuse.org/show_bug.cgi?id=1193549
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Filipe Manana
88d2beec7e btrfs: avoid logging all directory changes during renames
When doing a rename of a file, if the file or its old parent directory
were logged before, we log the new name of the file and then make sure
we log the old parent directory, to ensure that after a log replay the
old name of the file is deleted and the new name added.

The logging of the old parent directory can take some time, because it
will scan all leaves modified in the current transaction, check which
directory entries were already logged, copy the ones that were not
logged before, etc. In this rename context all we need to do is make
sure that the old name of the file is deleted on log replay, so instead
of triggering a directory log operation, we can just delete the old
directory entry from the log if it's there, or in case it isn't there,
just log a range item to signal log replay that the old name must be
deleted. So change btrfs_log_new_name() to do that.

This scenario is actually not uncommon to trigger, and recently on a
5.15 kernel, an openSUSE Tumbleweed user reported package installations
and upgrades, with the zypper tool, were often taking a long time to
complete, much more than usual. With strace it could be observed that
zypper was spending over 99% of its time on rename operations, and then
with further analysis we checked that directory logging was happening
too frequently and causing high latencies for the rename operations.
Taking into account that installation/upgrade of some of these packages
needed about a few thousand file renames, the slowdown was very noticeable
for the user.

The issue was caused indirectly due to an excessive number of inode
evictions on a 5.15 kernel, about 100x more compared to a 5.13, 5.14
or a 5.16-rc8 kernel. After an inode eviction we can't tell for sure,
in an efficient way, if an inode was previously logged in the current
transaction, so we are pessimistic and assume it was, because in case
it was we need to update the logged inode. More details on that in one
of the patches in the same series (subject "btrfs: avoid inode logging
during rename and link when possible"). Either way, in case the parent
directory was logged before, we currently do more work then necessary
during a rename, and this change minimizes that amount of work.

The following script mimics part of what a package installation/upgrade
with zypper does, which is basically renaming a lot of files, in some
directory under /usr, to a name with a suffix of "-RPMDELETE":

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nvme0n1
  MNT=/mnt/nvme0n1

  NUM_FILES=10000

  mkfs.btrfs -f $DEV
  mount $DEV $MNT

  mkdir $MNT/testdir

  for ((i = 1; i <= $NUM_FILES; i++)); do
      echo -n > $MNT/testdir/file_$i
  done

  sync

  # Do some change to testdir and fsync it.
  echo -n > $MNT/testdir/file_$((NUM_FILES + 1))
  xfs_io -c "fsync" $MNT/testdir

  echo "Renaming $NUM_FILES files..."
  start=$(date +%s%N)
  for ((i = 1; i <= $NUM_FILES; i++)); do
      mv $MNT/testdir/file_$i $MNT/testdir/file_$i-RPMDELETE
  done
  end=$(date +%s%N)

  dur=$(( (end - start) / 1000000 ))
  echo "Renames took $dur milliseconds"

  umount $MNT

Testing this change on box using a non-debug kernel (Debian's default
kernel config) gave the following results:

NUM_FILES=10000, before this patch: 27399 ms
NUM_FILES=10000, after this patch:   9093 ms (-66.8%)

NUM_FILES=5000, before this patch:   9241 ms
NUM_FILES=5000, after this patch:    4642 ms (-49.8%)

NUM_FILES=2000, before this patch:   2550 ms
NUM_FILES=2000, after this patch:    1788 ms (-29.9%)

NUM_FILES=1000, before this patch:   1088 ms
NUM_FILES=1000, after this patch:     905 ms (-16.9%)

Link: https://bugzilla.opensuse.org/show_bug.cgi?id=1193549
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Filipe Manana
d5f5bd5465 btrfs: pass the dentry to btrfs_log_new_name() instead of the inode
In the next patch in the series, there will be the need to access the old
name, and its length, of an inode when logging the inode during a rename.
So instead of passing the inode to btrfs_log_new_name() pass the dentry,
because from the dentry we can get the inode, the name and its length.

This will avoid passing 3 new parameters to btrfs_log_new_name() in the
next patch - the name, its length and an index number. This way we end
up passing only 1 new parameter, the index number.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Filipe Manana
839061fe88 btrfs: add helper to delete a dir entry from a log tree
Move the code that finds and deletes a logged dir entry out of
btrfs_del_dir_entries_in_log() into a helper function. This new helper
function will be used by another patch in the same series, and serves
to avoid having duplicated logic.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Minghao Chi
0292ecf19b btrfs: send: remove redundant ret variable in fs_path_copy
Return value from fs_path_add_path() directly instead of taking this in
another redundant variable.

Reported-by: Zeal Robot <zealci@zte.com.cn>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Minghao Chi <chi.minghao@zte.com.cn>
Signed-off-by: CGEL ZTE <cgel.zte@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Nikolay Borisov
db5df25412 btrfs: move QUOTA_ENABLED check to rescan_should_stop from btrfs_qgroup_rescan_worker
Instead of having 2 places that short circuit the qgroup leaf scan have
everything in the qgroup_rescan_leaf function. In addition to that, also
ensure that the inconsistent qgroup flag is set when rescan_should_stop
returns true. This both retains the old behavior when -EINTR was set in
the body of the loop and at the same time also extends this behavior
when scanning is interrupted due to remount or unmount operations.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Jiapeng Chong
5c07c53f2d btrfs: scrub: remove redundant initialization of increment
increment is being initialized to map->stripe_len but this is never
read as increment is overwritten later on. Remove the redundant
initialization.

Cleans up the following clang-analyzer warning:

fs/btrfs/scrub.c:3193:6: warning: Value stored to 'increment' during its
initialization is never read [clang-analyzer-deadcode.DeadStores].

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Jiapeng Chong
c4bf190999 btrfs: zoned: remove redundant initialization of to_add
to_add is being initialized to len but this is never read as to_add is
overwritten later on. Remove the redundant initialization.

Cleans up the following clang-analyzer warning:

fs/btrfs/extent-tree.c:2769:8: warning: Value stored to 'to_add' during
its initialization is never read [clang-analyzer-deadcode.DeadStores].

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Anand Jain
823f8e5c1f btrfs: cleanup temporary variables when finding rotational device status
The pointer to struct request_queue is used only to get device type
rotating or the non-rotating. So use it directly.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Anand Jain
330a5bf455 btrfs: use dev_t to match device in device_matched
Commit "btrfs: add device major-minor info in the struct btrfs_device"
saved the device major-minor number in the struct btrfs_device upon
discovering it.

So no need to lookup_bdev() again just match, which means
device_matched() can go away.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Anand Jain
4889bc05a9 btrfs: add device major-minor info in the struct btrfs_device
Internally it is common to use the major-minor number to identify a
device and, at a few locations in btrfs, we use the major-minor number
to match the device.

So when we identify a new btrfs device through device add or device
replace or device-scan/ready save the device's major-minor (dev_t) in the
struct btrfs_device so that we don't have to call lookup_bdev() again.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Anand Jain
16cab91a0c btrfs: match stale devices by dev_t
After the commit "btrfs: harden identification of the stale device", we
don't have to match the device path anymore. Instead, we match the dev_t.
So pass in the dev_t instead of the device path, in the call chain
btrfs_forget_devices()->btrfs_free_stale_devices().

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:47 +01:00
Anand Jain
770c79fb65 btrfs: harden identification of a stale device
Identifying and removing the stale device from the fs_uuids list is done
by btrfs_free_stale_devices().  btrfs_free_stale_devices() in turn
depends on device_path_matched() to check if the device appears in more
than one btrfs_device structure.

The matching of the device happens by its path, the device path. However,
when device mapper is in use, the dm device paths are nothing but a link
to the actual block device, which leads to the device_path_matched()
failing to match.

Fix this by matching the dev_t as provided by lookup_bdev() instead of
plain string compare of the device paths.

Reported-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:46 +01:00
Anand Jain
bef16b5298 btrfs: simplify fs_devices member access in btrfs_init_dev_replace_tgtdev
In btrfs_init_dev_replace_tgtdev() we dereference fs_info to get
fs_devices many times, instead save a point to the fs_devices.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:46 +01:00
Sahil Kang
9ad1230533 btrfs: reuse existing inode from btrfs_ioctl
btrfs_ioctl extracts inode from file so we can pass that into the
callbacks.

Signed-off-by: Sahil Kang <sahil.kang@asilaycomputing.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:46 +01:00
Nikolay Borisov
ff37c89f94 btrfs: move missing device handling in a dedicate function
This simplifies the code flow in read_one_chunk and makes error handling
when handling missing devices a bit simpler by reducing it to a single
check if something went wrong. No functional changes.

Reviewed-by: Su Yue <l@damenly.su>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:46 +01:00
Filipe Manana
de6bc7f598 btrfs: stop trying to log subdirectories created in past transactions
When logging a directory we are trying to log subdirectories that were
changed in the current transaction and created in a past transaction.
This type of behaviour was introduced by commit 2f2ff0ee5e ("Btrfs:
fix metadata inconsistencies after directory fsync"), to fix some metadata
inconsistencies that in the meanwhile no longer need this behaviour due to
numerous other changes that happened throughout the years.

This behaviour, besides not needed anymore, it's also undesirable because:

1) It's not reliable because it's only triggered for the directories
   of dentries (dir items) that happen to be present on a leaf that
   was changed in the current transaction. If a dentry that points to
   a directory resides on a leaf that was not changed in the current
   transaction, then it's not logged, as at log_dir_items() and
   log_new_dir_dentries() we use btrfs_search_forward();

2) It's not required by posix or any standard, it's undefined territory.
   The only way to guarantee a subdirectory is logged, it to explicitly
   fsync it;

Making the behaviour guaranteed would require scanning all directory
items, check which point to a directory, and then fsync each subdirectory
which was modified in the current transaction. This could be very
expensive for large directories with many subdirectories and/or large
subdirectories.

So remove that obsolete logic.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:46 +01:00
Filipe Manana
732d591a5d btrfs: stop copying old dir items when logging a directory
When logging a directory, we go over every leaf of the subvolume tree that
was changed in the current transaction and copy all its dir index keys to
the log tree.

That includes copying dir index keys created in past transactions. This is
done mostly for simplicity, as after logging the keys we log an item that
specifies the start and end ranges of the keys we logged. That item is
then used during log replay to figure out which keys need to be deleted -
every key in that range that we find in the subvolume tree and is not in
the log tree, needs to be deleted.

Now that we log only dir index keys, and not dir item keys anymore, when
we remove dentries from a directory (due to unlink and rename operations),
we can get entire leaves that we changed only for deleting old dir index
keys, or that have few dir index keys that are new - this is due to the
fact that the offset for new index keys comes from a monotonically
increasing counter.

We can avoid logging dir index keys from past transactions, and in order
to track the deletions, only log range items (BTRFS_DIR_LOG_INDEX_KEY key
type) when we find gaps between consecutive index keys. This massively
reduces the amount of logged metadata when we have deleted directory
entries, even if it's a small percentage of the total number of entries.
The reduction comes from both less items that are logged and instead of
logging many dir index items (struct btrfs_dir_item), which have a size
of 30 bytes plus a file name, we typically log just a few range items
(struct btrfs_dir_log_item), which take only 8 bytes each.

Even if no entries were deleted from a directory and only new entries
were added, we typically still get a reduction on the amount of logged
metadata, because it's very likely the first leaf that got the new
dir index entries also has several old dir index entries.

So change the logging logic to not log dir index keys created in past
transactions and log a range item for every gap it finds between each
pair of consecutive index keys, to ensure deletions are tracked and
replayed on log replay.

This patch is part of a patchset comprised of the following patches:

 1/4 btrfs: don't log unnecessary boundary keys when logging directory
 2/4 btrfs: put initial index value of a directory in a constant
 3/4 btrfs: stop copying old dir items when logging a directory
 4/4 btrfs: stop trying to log subdirectories created in past transactions

The following test was run on a branch without this patchset and on a
branch with the first three patches applied:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nvme0n1
  MNT=/mnt/nvme0n1

  NUM_FILES=1000000
  NUM_FILE_DELETES=10000

  MKFS_OPTIONS="-O no-holes -R free-space-tree"
  MOUNT_OPTIONS="-o ssd"

  mkfs.btrfs -f $MKFS_OPTIONS $DEV
  mount $MOUNT_OPTIONS $DEV $MNT

  mkdir $MNT/testdir
  for ((i = 1; i <= $NUM_FILES; i++)); do
      echo -n > $MNT/testdir/file_$i
  done

  sync

  del_inc=$(( $NUM_FILES / $NUM_FILE_DELETES ))
  for ((i = 1; i <= $NUM_FILES; i += $del_inc)); do
      rm -f $MNT/testdir/file_$i
  done

  start=$(date +%s%N)
  xfs_io -c "fsync" $MNT/testdir
  end=$(date +%s%N)

  dur=$(( (end - start) / 1000000 ))
  echo "dir fsync took $dur ms after deleting $NUM_FILE_DELETES files"
  echo

  umount $MNT

The test was run on a non-debug kernel (Debian's default kernel config),
and the results were the following for various values of NUM_FILES and
NUM_FILE_DELETES:

** before, NUM_FILES = 1 000 000, NUM_FILE_DELETES = 10 000 **

dir fsync took 585 ms after deleting 10000 files

** after, NUM_FILES = 1 000 000, NUM_FILE_DELETES = 10 000 **

dir fsync took 34 ms after deleting 10000 files   (-94.2%)

** before, NUM_FILES = 100 000, NUM_FILE_DELETES = 1 000 **

dir fsync took 50 ms after deleting 1000 files

** after, NUM_FILES = 100 000, NUM_FILE_DELETES = 1 000 **

dir fsync took 7 ms after deleting 1000 files    (-86.0%)

** before, NUM_FILES = 10 000, NUM_FILE_DELETES = 100 **

dir fsync took 9 ms after deleting 100 files

** after, NUM_FILES = 10 000, NUM_FILE_DELETES = 100 **

dir fsync took 5 ms after deleting 100 files     (-44.4%)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:46 +01:00