Some members of kvm_memory_slot are not used by every architecture.
This patch is the first step to make this difference clear by
introducing kvm_memory_slot::arch; lpage_info is moved into it.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Narrow down the controlled text inside the conditional so that it will
include lpage_info and rmap stuff only.
For this we change the way we check whether the slot is being created
from "if (npages && !new.rmap)" to "if (npages && !old.npages)".
We also stop checking if lpage_info is NULL when we create lpage_info
because we do it from inside the slot creation code block.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This makes it easy to make lpage_info architecture specific.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch cleans up the code and removes the "(void)level;" warning
suppressor.
Note that we can also use this for PT_PAGE_TABLE_LEVEL to treat every
level uniformly later.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
There are several cases were we need the control registers for
userspace. Lets also provide those in kvm_run.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we do a stop and store status we need to pass ACTION_STOP_ON_STOP
flag to __sigp_stop().
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
In __inject_sigp_stop() do nothing when the CPU is already in stopped
state.
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
On reboot the guest sends in smp_send_stop() a sigp stop to all CPUs
except for current CPU. Then the guest switches to the IPL cpu by
sending a restart to the IPL CPU, followed by a sigp stop to the
current cpu. Since restart is handled by userspace it's possible that
the restart is delivered before the old stop. This means that the IPL
CPU isn't restarted and we have no running CPUs. So let's make sure
that there is no stop action pending when we do the restart.
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
In handle_stop() handle the stop bit before doing the store status as
described for "Stop and Store Status" in the Principles of Operation.
We have to give up the local_int.lock before calling kvm store status
since it calls gmap_fault() which might sleep. Since local_int.lock
only protects local_int.* and not guest memory we can give up the lock.
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
commit 7eef87dc99 (KVM: s390: fix
register setting) added a load of the floating point control register
to the KVM_SET_FPU path. Lets make sure that the fpc is valid.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch fixes a race introduced by:
commit 95d4c16ce7
KVM: Optimize dirty logging by rmap_write_protect()
During protecting pages for dirty logging, other threads may also try
to protect a page in mmu_sync_children() or kvm_mmu_get_page().
In such a case, because get_dirty_log releases mmu_lock before flushing
TLB's, the following race condition can happen:
A (get_dirty_log) B (another thread)
lock(mmu_lock)
clear pte.w
unlock(mmu_lock)
lock(mmu_lock)
pte.w is already cleared
unlock(mmu_lock)
skip TLB flush
return
...
TLB flush
Though thread B assumes the page has already been protected when it
returns, the remaining TLB entry will break that assumption.
This patch fixes this problem by making get_dirty_log hold the mmu_lock
until it flushes the TLB's.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
yield_on_hlt was introduced for CPU bandwidth capping. Now it is
redundant with CFS hardlimit.
yield_on_hlt also complicates the scenario in paravirtual environment,
that needs to trap halt. for e.g. paravirtualized ticket spinlocks.
Acked-by: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This allows us to track the original nanosecond and counter values
at each phase of TSC writing by the guest. This gets us perfect
offset matching for stable TSC systems, and perfect software
computed TSC matching for machines with unstable TSC.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
During a host suspend, TSC may go backwards, which KVM interprets
as an unstable TSC. Technically, KVM should not be marking the
TSC unstable, which causes the TSC clocksource to go bad, but we
need to be adjusting the TSC offsets in such a case.
Dealing with this issue is a little tricky as the only place we
can reliably do it is before much of the timekeeping infrastructure
is up and running. On top of this, we are not in a KVM thread
context, so we may not be able to safely access VCPU fields.
Instead, we compute our best known hardware offset at power-up and
stash it to be applied to all VCPUs when they actually start running.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Redefine the API to take a parameter indicating whether an
adjustment is in host or guest cycles.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The variable last_host_tsc was removed from upstream code. I am adding
it back for two reasons. First, it is unnecessary to use guest TSC
computation to conclude information about the host TSC. The guest may
set the TSC backwards (this case handled by the previous patch), but
the computation of guest TSC (and fetching an MSR) is significanlty more
work and complexity than simply reading the hardware counter. In addition,
we don't actually need the guest TSC for any part of the computation,
by always recomputing the offset, we can eliminate the need to deal with
the current offset and any scaling factors that may apply.
The second reason is that later on, we are going to be using the host
TSC value to restore TSC offsets after a host S4 suspend, so we need to
be reading the host values, not the guest values here.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The variable last_guest_tsc was being used as an ad-hoc indicator
that guest TSC has been initialized and recorded correctly. However,
it may not have been, it could be that guest TSC has been set to some
large value, the back to a small value (by, say, a software reboot).
This defeats the logic and causes KVM to falsely assume that the
guest TSC has gone backwards, marking the host TSC unstable, which
is undesirable behavior.
In addition, rather than try to compute an offset adjustment for the
TSC on unstable platforms, just recompute the whole offset. This
allows us to get rid of one callsite for adjust_tsc_offset, which
is problematic because the units it takes are in guest units, but
here, the computation was originally being done in host units.
Doing this, and also recording last_guest_tsc when the TSC is written
allow us to remove the tricky logic which depended on last_guest_tsc
being zero to indicate a reset of uninitialized value.
Instead, we now have the guarantee that the guest TSC offset is
always at least something which will get us last_guest_tsc.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently, when the TSC is written by the guest, the variable
ns is updated to force the current write to appear to have taken
place at the time of the first write in this sync phase. This
leaves a cliff at the end of the match window where updates will
fall of the end. There are two scenarios where this can be a
problem in practe - first, on a system with a large number of
VCPUs, the sync period may last for an extended period of time.
The second way this can happen is if the VM reboots very rapidly
and we catch a VCPU TSC synchronization just around the edge.
We may be unaware of the reboot, and thus the first VCPU might
synchronize with an old set of the timer (at, say 0.97 seconds
ago, when first powered on). The second VCPU can come in 0.04
seconds later to try to synchronize, but it misses the window
because it is just over the threshold.
Instead, stop doing this artificial setback of the ns variable
and just update it with every write of the TSC.
It may be observed that doing so causes values computed by
compute_guest_tsc to diverge slightly across CPUs - note that
the last_tsc_ns and last_tsc_write variable are used here, and
now they last_tsc_ns will be different for each VCPU, reflecting
the actual time of the update.
However, compute_guest_tsc is used only for guests which already
have TSC stability issues, and further, note that the previous
patch has caused last_tsc_write to be incremented by the difference
in nanoseconds, converted back into guest cycles. As such, only
boundary rounding errors should be visible, which given the
resolution in nanoseconds, is going to only be a few cycles and
only visible in cross-CPU consistency tests. The problem can be
fixed by adding a new set of variables to track the start offset
and start write value for the current sync cycle.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
There are a few improvements that can be made to the TSC offset
matching code. First, we don't need to call the 128-bit multiply
(especially on a constant number), the code works much nicer to
do computation in nanosecond units.
Second, the way everything is setup with software TSC rate scaling,
we currently have per-cpu rates. Obviously this isn't too desirable
to use in practice, but if for some reason we do change the rate of
all VCPUs at runtime, then reset the TSCs, we will only want to
match offsets for VCPUs running at the same rate.
Finally, for the case where we have an unstable host TSC, but
rate scaling is being done in hardware, we should call the platform
code to compute the TSC offset, so the math is reorganized to recompute
the base instead, then transform the base into an offset using the
existing API.
[avi: fix 64-bit division on i386]
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM: Fix 64-bit division in kvm_write_tsc()
Breaks i386 build.
Signed-off-by: Avi Kivity <avi@redhat.com>
This requires some restructuring; rather than use 'virtual_tsc_khz'
to indicate whether hardware rate scaling is in effect, we consider
each VCPU to always have a virtual TSC rate. Instead, there is new
logic above the vendor-specific hardware scaling that decides whether
it is even necessary to use and updates all rate variables used by
common code. This means we can simply query the virtual rate at
any point, which is needed for software rate scaling.
There is also now a threshold added to the TSC rate scaling; minor
differences and variations of measured TSC rate can accidentally
provoke rate scaling to be used when it is not needed. Instead,
we have a tolerance variable called tsc_tolerance_ppm, which is
the maximum variation from user requested rate at which scaling
will be used. The default is 250ppm, which is the half the
threshold for NTP adjustment, allowing for some hardware variation.
In the event that hardware rate scaling is not available, we can
kludge a bit by forcing TSC catchup to turn on when a faster than
hardware speed has been requested, but there is nothing available
yet for the reverse case; this requires a trap and emulate software
implementation for RDTSC, which is still forthcoming.
[avi: fix 64-bit division on i386]
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Increase recommended max vcpus from 64 to 160 (tested internally
at Red Hat).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When kvm guest uses kvmclock, it may hang on vcpu hot-plug.
This is caused by an overflow in pvclock_get_nsec_offset,
u64 delta = tsc - shadow->tsc_timestamp;
which in turn is caused by an undefined values from percpu
hv_clock that hasn't been initialized yet.
Uninitialized clock on being booted cpu is accessed from
start_secondary
-> smp_callin
-> smp_store_cpu_info
-> identify_secondary_cpu
-> mtrr_ap_init
-> mtrr_restore
-> stop_machine_from_inactive_cpu
-> queue_stop_cpus_work
...
-> sched_clock
-> kvm_clock_read
which is well before x86_cpuinit.setup_percpu_clockev call in
start_secondary, where percpu clock is initialized.
This patch introduces a hook that allows to setup/initialize
per_cpu clock early and avoid overflow due to reading
- undefined values
- old values if cpu was offlined and then onlined again
Another possible early user of this clock source is ftrace that
accesses it to get timestamps for ring buffer entries. So if
mtrr_ap_init is moved from identify_secondary_cpu to past
x86_cpuinit.setup_percpu_clockev in start_secondary, ftrace
may cause the same overflow/hang on cpu hot-plug anyway.
More complete description of the problem:
https://lkml.org/lkml/2012/2/2/101
Credits to Marcelo Tosatti <mtosatti@redhat.com> for hook idea.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The spec says that during initialization "The edge sense circuit is
reset which means that following initialization an interrupt request
(IR) input must make a low-to-high transition to generate an interrupt",
but currently if edge triggered interrupt is in IRR it is delivered
after i8259 initialization.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
We're currently allocating 16MB of linear memory on demand when creating
a guest. That does work some times, but finding 16MB of linear memory
available in the system at runtime is definitely not a given.
So let's add another command line option similar to the RMA preallocator,
that we can use to keep a pool of page tables around. Now, when a guest
gets created it has a pretty low chance of receiving an OOM.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
RMAs and HPT preallocated spaces should be zeroed, so we don't accidently
leak information from previous VM executions.
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
We have code to allocate big chunks of linear memory on bootup for later use.
This code is currently used for RMA allocation, but can be useful beyond that
extent.
Make it generic so we can reuse it for other stuff later.
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
This moves __gfn_to_memslot() and search_memslots() from kvm_main.c to
kvm_host.h to reduce the code duplication caused by the need for
non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c to call
gfn_to_memslot() in real mode.
Rather than putting gfn_to_memslot() itself in a header, which would
lead to increased code size, this puts __gfn_to_memslot() in a header.
Then, the non-modular uses of gfn_to_memslot() are changed to call
__gfn_to_memslot() instead. This way there is only one place in the
source code that needs to be changed should the gfn_to_memslot()
implementation need to be modified.
On powerpc, the Book3S HV style of KVM has code that is called from
real mode which needs to call gfn_to_memslot() and thus needs this.
(Module code is allocated in the vmalloc region, which can't be
accessed in real mode.)
With this, we can remove builtin_gfn_to_memslot() from book3s_hv_rm_mmu.c.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
If the guest thinks it's an AMD, it will not have prepared the SYSENTER MSRs,
and if the guest executes SYSENTER in compatibility mode, it will fails.
Detect this condition and #UD instead, like the spec says.
Signed-off-by: Avi Kivity <avi@redhat.com>
If the guest programs an IPI with level=0 (de-assert) and trig_mode=0 (edge),
it is erroneously treated as INIT de-assert and ignored, but to quote the
spec: "For this delivery mode [INIT de-assert], the level flag must be set to
0 and trigger mode flag to 1."
Signed-off-by: Julian Stecklina <js@alien8.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
find_index_from_host_irq returns 0 on error
but callers assume < 0 on error. This should
not matter much: an out of range irq should never happen since
irq handler was registered with this irq #,
and even if it does we get a spurious msix irq in guest
and typically nothing terrible happens.
Still, better to make it consistent.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Also use true instead of 1 for enabling by default.
Signed-off-by: Davidlohr Bueso <dave@gnu.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently we treat MOVSX/MOVZX with a byte source as a byte instruction,
and change the destination operand size with a hack. Change it to be
a word instruction, so the destination receives its natural size, and
change the source to be SrcMem8.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Instead of keeping separate copies of struct kvm_vcpu_arch_shared (one in
the code, one in the docs) that inevitably fail to be kept in sync
(already sr[] is missing from the doc version), just point to the header
file as the source of documentation on the contents of the magic page.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We need the KVM_REG namespace for generic register settings now, so
let's rename the existing users to something different, enabling
us to reuse the namespace for more visible interfaces.
While at it, also move these private constants to a private header.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This moves the get/set_one_reg implementation down from powerpc.c into
booke.c, book3s_pr.c and book3s_hv.c. This avoids #ifdefs in C code,
but more importantly, it fixes a bug on Book3s HV where we were
accessing beyond the end of the kvm_vcpu struct (via the to_book3s()
macro) and corrupting memory, causing random crashes and file corruption.
On Book3s HV we only accept setting the HIOR to zero, since the guest
runs in supervisor mode and its vectors are never offset from zero.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
[agraf update to apply on top of changed ONE_REG patches]
Signed-off-by: Avi Kivity <avi@redhat.com>
Until now, we always set HIOR based on the PVR, but this is just wrong.
Instead, we should be setting HIOR explicitly, so user space can decide
what the initial HIOR value is - just like on real hardware.
We keep the old PVR based way around for backwards compatibility, but
once user space uses the SET_ONE_REG based method, we drop the PVR logic.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Right now we transfer a static struct every time we want to get or set
registers. Unfortunately, over time we realize that there are more of
these than we thought of before and the extensibility and flexibility of
transferring a full struct every time is limited.
So this is a new approach to the problem. With these new ioctls, we can
get and set a single register that is identified by an ID. This allows for
very precise and limited transmittal of data. When we later realize that
it's a better idea to shove over multiple registers at once, we can reuse
most of the infrastructure and simply implement a GET_MANY_REGS / SET_MANY_REGS
interface.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently the code kzalloc()s new VCPUs instead of using the kmem_cache
which is created when KVM is initialized.
Modify it to allocate VCPUs from that kmem_cache.
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The existing kvm_stlb_write/kvm_gtlb_write were a poor match for
the e500/book3e MMU -- mas1 was passed as "tid", mas2 was limited
to "unsigned int" which will be a problem on 64-bit, mas3/7 got
split up rather than treated as a single 64-bit word, etc.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
[scottwood@freescale.com: made mas2 64-bit, and added mas8 init]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This changes the implementation of kvm_vm_ioctl_get_dirty_log() for
Book3s HV guests to use the hardware C (changed) bits in the guest
hashed page table. Since this makes the implementation quite different
from the Book3s PR case, this moves the existing implementation from
book3s.c to book3s_pr.c and creates a new implementation in book3s_hv.c.
That implementation calls kvmppc_hv_get_dirty_log() to do the actual
work by calling kvm_test_clear_dirty on each page. It iterates over
the HPTEs, clearing the C bit if set, and returns 1 if any C bit was
set (including the saved C bit in the rmap entry).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This uses the host view of the hardware R (referenced) bit to speed
up kvm_age_hva() and kvm_test_age_hva(). Instead of removing all
the relevant HPTEs in kvm_age_hva(), we now just reset their R bits
if set. Also, kvm_test_age_hva() now scans the relevant HPTEs to
see if any of them have R set.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This allows both the guest and the host to use the referenced (R) and
changed (C) bits in the guest hashed page table. The guest has a view
of R and C that is maintained in the guest_rpte field of the revmap
entry for the HPTE, and the host has a view that is maintained in the
rmap entry for the associated gfn.
Both view are updated from the guest HPT. If a bit (R or C) is zero
in either view, it will be initially set to zero in the HPTE (or HPTEs),
until set to 1 by hardware. When an HPTE is removed for any reason,
the R and C bits from the HPTE are ORed into both views. We have to
be careful to read the R and C bits from the HPTE after invalidating
it, but before unlocking it, in case of any late updates by the hardware.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This reworks the implementations of the H_REMOVE and H_BULK_REMOVE
hcalls to make sure that we keep the HPTE locked and in the reverse-
mapping chain until we have finished invalidating it. Previously
we would remove it from the chain and unlock it before invalidating
it, leaving a tiny window when the guest could access the page even
though we believe we have removed it from the guest (e.g.,
kvm_unmap_hva() has been called for the page and has found no HPTEs
in the chain). In addition, we'll need this for future patches where
we will need to read the R and C bits in the HPTE after invalidating
it.
Doing this required restructuring kvmppc_h_bulk_remove() substantially.
Since we want to batch up the tlbies, we now need to keep several
HPTEs locked simultaneously. In order to avoid possible deadlocks,
we don't spin on the HPTE bitlock for any except the first HPTE in
a batch. If we can't acquire the HPTE bitlock for the second or
subsequent HPTE, we terminate the batch at that point, do the tlbies
that we have accumulated so far, unlock those HPTEs, and then start
a new batch to do the remaining invalidations.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
PPC KVM lacks these two capabilities, and as such a userland system must assume
a max of 4 VCPUs (following api.txt). With these, a userland can determine
a more realistic limit.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Fix usage of vcpu struct before check that it's actually valid.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>