With these fixes space-info.c is clear for W=1 warnings, namely the
following ones are fixed:
fs/btrfs/space-info.c:575: warning: Function parameter or member 'fs_info' not described in 'may_commit_transaction'
fs/btrfs/space-info.c:575: warning: Function parameter or member 'space_info' not described in 'may_commit_transaction'
fs/btrfs/space-info.c:1231: warning: Function parameter or member 'fs_info' not described in 'handle_reserve_ticket'
fs/btrfs/space-info.c:1231: warning: Function parameter or member 'space_info' not described in 'handle_reserve_ticket'
fs/btrfs/space-info.c:1231: warning: Function parameter or member 'ticket' not described in 'handle_reserve_ticket'
fs/btrfs/space-info.c:1231: warning: Function parameter or member 'flush' not described in 'handle_reserve_ticket'
fs/btrfs/space-info.c:1315: warning: Function parameter or member 'fs_info' not described in '__reserve_bytes'
fs/btrfs/space-info.c:1315: warning: Function parameter or member 'space_info' not described in '__reserve_bytes'
fs/btrfs/space-info.c:1315: warning: Function parameter or member 'orig_bytes' not described in '__reserve_bytes'
fs/btrfs/space-info.c:1315: warning: Function parameter or member 'flush' not described in '__reserve_bytes'
fs/btrfs/space-info.c:1427: warning: Function parameter or member 'root' not described in 'btrfs_reserve_metadata_bytes'
fs/btrfs/space-info.c:1427: warning: Function parameter or member 'block_rsv' not described in 'btrfs_reserve_metadata_bytes'
fs/btrfs/space-info.c:1427: warning: Function parameter or member 'orig_bytes' not described in 'btrfs_reserve_metadata_bytes'
fs/btrfs/space-info.c:1427: warning: Function parameter or member 'flush' not described in 'btrfs_reserve_metadata_bytes'
fs/btrfs/space-info.c:1462: warning: Function parameter or member 'fs_info' not described in 'btrfs_reserve_data_bytes'
fs/btrfs/space-info.c:1462: warning: Function parameter or member 'bytes' not described in 'btrfs_reserve_data_bytes'
fs/btrfs/space-info.c:1462: warning: Function parameter or member 'flush' not described in 'btrfs_reserve_data_bytes'
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fixes following warnings:
fs/btrfs/delalloc-space.c:205: warning: Function parameter or member 'inode' not described in 'btrfs_inode_rsv_release'
fs/btrfs/delalloc-space.c:205: warning: Function parameter or member 'qgroup_free' not described in 'btrfs_inode_rsv_release'
fs/btrfs/delalloc-space.c:472: warning: Function parameter or member 'reserved' not described in 'btrfs_delalloc_release_space'
fs/btrfs/delalloc-space.c:472: warning: Function parameter or member 'qgroup_free' not described in 'btrfs_delalloc_release_space'
fs/btrfs/delalloc-space.c:472: warning: Excess function parameter 'release_bytes' description in 'btrfs_delalloc_release_space'
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fixes fs/btrfs/inode.c:3101: warning: Function parameter or member 'fs_info' not described in 'btrfs_wait_on_delayed_iputs'
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fixes fs/btrfs/block-group.c:1570: warning: Function parameter or member 'fs_info' not described in 'btrfs_rmap_block'
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fixes fs/btrfs/discard.c:203: warning: Function parameter or member 'now' not described in 'peek_discard_list'
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fixes following W=1 warnings:
fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'root' not described in '__btrfs_write_out_cache'
fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'inode' not described in '__btrfs_write_out_cache'
fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'ctl' not described in '__btrfs_write_out_cache'
fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'block_group' not described in '__btrfs_write_out_cache'
fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'io_ctl' not described in '__btrfs_write_out_cache'
fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'trans' not described in '__btrfs_write_out_cache'
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes the following warnings:
fs/btrfs/delayed-ref.c:80: warning: Function parameter or member 'fs_info' not described in 'btrfs_delayed_refs_rsv_release'
fs/btrfs/delayed-ref.c:80: warning: Function parameter or member 'nr' not described in 'btrfs_delayed_refs_rsv_release'
fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'fs_info' not described in 'btrfs_migrate_to_delayed_refs_rsv'
fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'src' not described in 'btrfs_migrate_to_delayed_refs_rsv'
fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'num_bytes' not described in 'btrfs_migrate_to_delayed_refs_rsv'
fs/btrfs/delayed-ref.c:174: warning: Function parameter or member 'fs_info' not described in 'btrfs_delayed_refs_rsv_refill'
fs/btrfs/delayed-ref.c:174: warning: Function parameter or member 'flush' not described in 'btrfs_delayed_refs_rsv_refill'
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes following W=1 warnings:
fs/btrfs/file-item.c:27: warning: Cannot understand * @inode: the inode we want to update the disk_i_size for
on line 27 - I thought it was a doc line
fs/btrfs/file-item.c:65: warning: Cannot understand * @inode - the inode we're modifying
on line 65 - I thought it was a doc line
fs/btrfs/file-item.c:91: warning: Cannot understand * @inode - the inode we're modifying
on line 91 - I thought it was a doc line
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes the following compiler warnings:
fs/btrfs/extent_map.c:601: warning: Function parameter or member 'fs_info' not described in 'btrfs_add_extent_mapping'
fs/btrfs/extent_map.c:601: warning: Function parameter or member 'em_tree' not described in 'btrfs_add_extent_mapping'
fs/btrfs/extent_map.c:601: warning: Function parameter or member 'em_in' not described in 'btrfs_add_extent_mapping'
fs/btrfs/extent_map.c:601: warning: Function parameter or member 'start' not described in 'btrfs_add_extent_mapping'
fs/btrfs/extent_map.c:601: warning: Function parameter or member 'len' not described in 'btrfs_add_extent_mapping'
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fixes fs/btrfs/extent_map.c:399: warning: Function parameter or member
'modified' not described in 'add_extent_mapping'
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a long existing bug in the last parameter of
btrfs_add_ordered_extent(), in commit 771ed689d2 ("Btrfs: Optimize
compressed writeback and reads") back to 2008.
In that ancient commit btrfs_add_ordered_extent() expects the @type
parameter to be one of the following:
- BTRFS_ORDERED_REGULAR
- BTRFS_ORDERED_NOCOW
- BTRFS_ORDERED_PREALLOC
- BTRFS_ORDERED_COMPRESSED
But we pass 0 in cow_file_range(), which means BTRFS_ORDERED_IO_DONE.
Ironically extra check in __btrfs_add_ordered_extent() won't set the bit
if we see (type == IO_DONE || type == IO_COMPLETE), and avoid any
obvious bug.
But this still leads to regular COW ordered extent having no bit to
indicate its type in various trace events, rendering REGULAR bit
useless.
[FIX]
Change the following aspects to avoid such problem:
- Reorder btrfs_ordered_extent::flags
Now the type bits go first (REGULAR/NOCOW/PREALLCO/COMPRESSED), then
DIRECT bit, finally extra status bits like IO_DONE/COMPLETE/IOERR.
- Add extra ASSERT() for btrfs_add_ordered_extent_*()
- Remove @type parameter for btrfs_add_ordered_extent_compress()
As the only valid @type here is BTRFS_ORDERED_COMPRESSED.
- Remove the unnecessary special check for IO_DONE/COMPLETE in
__btrfs_add_ordered_extent()
This is just to make the code work, with extra ASSERT(), there are
limited values can be passed in.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix below warnings reported by coccicheck:
./fs/btrfs/raid56.c:237:2-8: WARNING: NULL check before some freeing
functions is not needed.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Yang Li <abaci-bugfix@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Zygo reported the following panic when testing my error handling patches
for relocation:
kernel BUG at fs/btrfs/backref.c:2545!
invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 3 PID: 8472 Comm: btrfs Tainted: G W 14
Hardware name: QEMU Standard PC (i440FX + PIIX,
Call Trace:
btrfs_backref_error_cleanup+0x4df/0x530
build_backref_tree+0x1a5/0x700
? _raw_spin_unlock+0x22/0x30
? release_extent_buffer+0x225/0x280
? free_extent_buffer.part.52+0xd7/0x140
relocate_tree_blocks+0x2a6/0xb60
? kasan_unpoison_shadow+0x35/0x50
? do_relocation+0xc10/0xc10
? kasan_kmalloc+0x9/0x10
? kmem_cache_alloc_trace+0x6a3/0xcb0
? free_extent_buffer.part.52+0xd7/0x140
? rb_insert_color+0x342/0x360
? add_tree_block.isra.36+0x236/0x2b0
relocate_block_group+0x2eb/0x780
? merge_reloc_roots+0x470/0x470
btrfs_relocate_block_group+0x26e/0x4c0
btrfs_relocate_chunk+0x52/0x120
btrfs_balance+0xe2e/0x18f0
? pvclock_clocksource_read+0xeb/0x190
? btrfs_relocate_chunk+0x120/0x120
? lock_contended+0x620/0x6e0
? do_raw_spin_lock+0x1e0/0x1e0
? do_raw_spin_unlock+0xa8/0x140
btrfs_ioctl_balance+0x1f9/0x460
btrfs_ioctl+0x24c8/0x4380
? __kasan_check_read+0x11/0x20
? check_chain_key+0x1f4/0x2f0
? __asan_loadN+0xf/0x20
? btrfs_ioctl_get_supported_features+0x30/0x30
? kvm_sched_clock_read+0x18/0x30
? check_chain_key+0x1f4/0x2f0
? lock_downgrade+0x3f0/0x3f0
? handle_mm_fault+0xad6/0x2150
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? check_flags.part.50+0x6c/0x1e0
? check_flags.part.50+0x6c/0x1e0
? check_flags+0x26/0x30
? lock_is_held_type+0xc3/0xf0
? syscall_enter_from_user_mode+0x1b/0x60
? do_syscall_64+0x13/0x80
? rcu_read_lock_sched_held+0xa1/0xd0
? __kasan_check_read+0x11/0x20
? __fget_light+0xae/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This occurs because of this check
if (RB_EMPTY_NODE(&upper->rb_node))
BUG_ON(!list_empty(&node->upper));
As we are dropping the backref node, if we discover that our upper node
in the edge we just cleaned up isn't linked into the cache that we are
now done with this node, thus the BUG_ON().
However this is an erroneous assumption, as we will look up all the
references for a node first, and then process the pending edges. All of
the 'upper' nodes in our pending edges won't be in the cache's rb_tree
yet, because they haven't been processed. We could very well have many
edges still left to cleanup on this node.
The fact is we simply do not need this check, we can just process all of
the edges only for this node, because below this check we do the
following
if (list_empty(&upper->lower)) {
list_add_tail(&upper->lower, &cache->leaves);
upper->lowest = 1;
}
If the upper node truly isn't used yet, then we add it to the
cache->leaves list to be cleaned up later. If it is still used then the
last child node that has it linked into its node will add it to the
leaves list and then it will be cleaned up.
Fix this problem by dropping this logic altogether. With this fix I no
longer see the panic when testing with error injection in the backref
code.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While testing the error paths in relocation, I hit the following lockdep
splat:
======================================================
WARNING: possible circular locking dependency detected
5.10.0-rc3+ #206 Not tainted
------------------------------------------------------
btrfs-balance/1571 is trying to acquire lock:
ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0
but task is already holding lock:
ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (btrfs-tree-00){++++}-{3:3}:
down_write_nested+0x43/0x80
__btrfs_tree_lock+0x27/0x100
btrfs_search_slot+0x248/0x890
relocate_tree_blocks+0x490/0x650
relocate_block_group+0x1ba/0x5d0
kretprobe_trampoline+0x0/0x50
-> #1 (btrfs-csum-01){++++}-{3:3}:
down_read_nested+0x43/0x130
__btrfs_tree_read_lock+0x27/0x100
btrfs_read_lock_root_node+0x31/0x40
btrfs_search_slot+0x5ab/0x890
btrfs_del_csums+0x10b/0x3c0
__btrfs_free_extent+0x49d/0x8e0
__btrfs_run_delayed_refs+0x283/0x11f0
btrfs_run_delayed_refs+0x86/0x220
btrfs_start_dirty_block_groups+0x2ba/0x520
kretprobe_trampoline+0x0/0x50
-> #0 (&head_ref->mutex){+.+.}-{3:3}:
__lock_acquire+0x1167/0x2150
lock_acquire+0x116/0x3e0
__mutex_lock+0x7e/0x7b0
btrfs_lookup_extent_info+0x156/0x3b0
walk_down_proc+0x1c3/0x280
walk_down_tree+0x64/0xe0
btrfs_drop_subtree+0x182/0x260
do_relocation+0x52e/0x660
relocate_tree_blocks+0x2ae/0x650
relocate_block_group+0x1ba/0x5d0
kretprobe_trampoline+0x0/0x50
other info that might help us debug this:
Chain exists of:
&head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-tree-00);
lock(btrfs-csum-01);
lock(btrfs-tree-00);
lock(&head_ref->mutex);
*** DEADLOCK ***
5 locks held by btrfs-balance/1571:
#0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40
#1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300
#2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0
#3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100
#4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100
stack backtrace:
CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack+0x8b/0xb0
check_noncircular+0xcf/0xf0
? trace_call_bpf+0x139/0x260
__lock_acquire+0x1167/0x2150
lock_acquire+0x116/0x3e0
? btrfs_lookup_extent_info+0x156/0x3b0
__mutex_lock+0x7e/0x7b0
? btrfs_lookup_extent_info+0x156/0x3b0
? btrfs_lookup_extent_info+0x156/0x3b0
? release_extent_buffer+0x124/0x170
? _raw_spin_unlock+0x1f/0x30
? release_extent_buffer+0x124/0x170
btrfs_lookup_extent_info+0x156/0x3b0
walk_down_proc+0x1c3/0x280
walk_down_tree+0x64/0xe0
btrfs_drop_subtree+0x182/0x260
do_relocation+0x52e/0x660
relocate_tree_blocks+0x2ae/0x650
? add_tree_block+0x149/0x1b0
relocate_block_group+0x1ba/0x5d0
elfcorehdr_read+0x40/0x40
? elfcorehdr_read+0x40/0x40
? btrfs_balance+0x796/0xf40
? __kthread_parkme+0x66/0x90
? btrfs_balance+0xf40/0xf40
? balance_kthread+0x37/0x50
? kthread+0x137/0x150
? __kthread_bind_mask+0x60/0x60
? ret_from_fork+0x1f/0x30
As you can see this is bogus, we never take another tree's lock under
the csum lock. This happens because sometimes we have to read tree
blocks from disk without knowing which root they belong to during
relocation. We defaulted to an owner of 0, which translates to an fs
tree. This is fine as all fs trees have the same class, but obviously
isn't fine if the block belongs to a COW only tree.
Thankfully COW only trees only have their owners root as a reference to
them, and since we already look up the extent information during
relocation, go ahead and check and see if this block might belong to a
COW only tree, and if so save the owner in the tree_block struct. This
allows us to read_tree_block with the proper owner, which gets rid of
this lockdep splat.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will extract the code to grab an extent buffer from a page
into a helper, grab_extent_buffer_from_page().
This reduces one indent level, and provides the work place for later
expansion for subapge support.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The original comment is from the initial merge, which has several
problems:
- No holes check any more
- No inline decision is made
Update the out-of-date comment with more correct one.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The refactoring involves the following modifications:
- iosize alignment
In fact we don't really need to manually do alignment at all.
All extent maps should already be aligned, thus basic ASSERT() check
would be enough.
- redundant variables
We have extra variable like blocksize/pg_offset/end.
They are all unnecessary.
@blocksize can be replaced by sectorsize size directly, and it's only
used to verify the em start/size is aligned.
@pg_offset can be easily calculated using @cur and page_offset(page).
@end is just assigned from @page_end and never modified, use
"start + PAGE_SIZE - 1" directly and remove @page_end.
- remove some BUG_ON()s
The BUG_ON()s are for extent map, which we have tree-checker to check
on-disk extent data item and runtime check.
ASSERT() should be enough.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter offset is confusing, it's supposed to be the disk bytenr
of metadata/data. Rename it to disk_bytenr and update the comment.
Also rename each offset passed to submit_extent_page() as @disk_bytenr
so they're consistent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The refactoring involves the following modifications:
- Return bool instead of int
- Parameter update for @cached of btrfs_dec_test_first_ordered_pending()
For btrfs_dec_test_first_ordered_pending(), @cached is only used to
return the finished ordered extent.
Rename it to @finished_ret.
- Comment updates
* Change one stale comment
Which still refers to btrfs_dec_test_ordered_pending(), but the
context is calling btrfs_dec_test_first_ordered_pending().
* Follow the common comment style for both functions
Add more detailed descriptions for parameters and the return value
* Move the reason why test_and_set_bit() is used into the call sites
- Change how the return value is calculated
The most anti-human part of the return value is:
if (...)
ret = 1;
...
return ret == 0;
This means, when we set ret to 1, the function returns 0.
Change the local variable name to @finished, and directly return the
value of it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_dio_private::bytes is only assigned from bio::bi_iter::bi_size,
which is never larger than U32.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following the rework in e076ab2a2c ("btrfs: shrink delalloc pages
instead of full inodes") the nr variable is no longer passed by
reference to start_delalloc_inodes hence it cannot change. Additionally
we are always guaranteed for it to be positive number hence it's
redundant to have it as a condition in the loop. Simply remove that
usage.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's currently u64 which gets instantly translated either to LONG_MAX
(if U64_MAX is passed) or cast to an unsigned long (which is in fact,
wrong because writeback_control::nr_to_write is a signed, long type).
Just convert the function's argument to be long time which obviates the
need to manually convert u64 value to a long. Adjust all call sites
which pass U64_MAX to pass LONG_MAX. Finally ensure that in
shrink_delalloc the u64 is converted to a long without overflowing,
resulting in a negative number.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After commit 040ee6120c ("Btrfs: send, improve clone range") we do not
use anymore the data_offset field of struct backref_ctx, as after that we
do all the necessary checks for the data offset of file extent items at
clone_range(). Since there are no more users of data_offset from that
structure, remove it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of having three 'if' to handle non-NULL return value consolidate
this in one 'if (ret)'. That way the code is more obvious:
- Always drop delete_unused_bgs_mutex if ret is not NULL
- If ret is negative -> goto done
- If it's 1 -> reset ret to 0, release the path and finish the loop.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I noticed that shared ref entries in ref-verify didn't have the proper
owner set, which caused me to think there was something seriously wrong.
However the problem is if we have a parent we simply weren't filling out
the owner part of the reference, even though we have it.
Fix this by making sure we set all the proper fields when we modify a
reference, this way we'll have the proper owner if a problem happens and
we don't waste time thinking we're updating the wrong level.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I noticed that sometimes I would have the wrong level printed out with
ref-verify while testing some error injection related problems. This is
because we only get the level from the main extent item, but our
references could go off the current leaf into another, and at that point
we lose our level.
Fix this by keeping track of the last tree block level that we found,
the same way we keep track of our bytenr and num_bytes, in case we
happen to wander into another leaf while still processing the references
for a bytenr.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I was attempting to reproduce a problem that Zygo hit, but my error
injection wasn't firing for a few of the common calls to
btrfs_should_cancel_balance. This is because the compiler decided to
inline it at these spots. Keep this from happening by explicitly
marking the function as noinline so that error injection will always
work.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following patches are going to address error handling in relocation,
in order to test those patches I need to be able to inject errors in
btrfs_search_slot and btrfs_cow_block, as we call both of these pretty
often in different cases during relocation.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer used. While at it also remove new_dirid in create_subvol
as it's used in a single place and open code it. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Adjust the way free_objectid is being initialized, it now stores
BTRFS_FIRST_FREE_OBJECTID rather than the, somewhat arbitrary,
BTRFS_FIRST_FREE_OBJECTID - 1. This change also has the added benefit
that now it becomes unnecessary to explicitly initialize free_objectid
for a newly create fs root.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reflects the true purpose of the member as it's being used solely
in context where a new objectid is being allocated. Future changes will
also change the way it's being used to closely follow this semantics.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This better reflects the semantics of the function i.e no search is
performed whatsoever.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is used to initialize the in-memory
btrfs_root::highest_objectid member, which is used to get an available
objectid. Rename it to better reflect its semantics.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
First replace all inode instances with a pointer to btrfs_inode. This
removes multiple invocations of the BTRFS_I macro, subsequently remove
2 local variables as they are called only once and simply refer to
them directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Return value in __load_free_space_cache is not properly set after
(unlikely) memory allocation failures and 0 is returned instead.
This is not a problem for the caller load_free_space_cache because only
value 1 is considered as 'cache loaded' but for clarity it's better
to set the errors accordingly.
Fixes: a67509c300 ("Btrfs: add a io_ctl struct and helpers for dealing with the space cache")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While doing error injection I would sometimes get a corrupt file system.
This is because I was injecting errors at btrfs_search_slot, but would
only do it one time per stack. This uncovered a problem in
commit_fs_roots, where if we get an error we would just break. However
we're in a nested loop, the first loop being a loop to find all the
dirty fs roots, and then subsequent root updates would succeed clearing
the error value.
This isn't likely to happen in real scenarios, however we could
potentially get a random ENOMEM once and then not again, and we'd end up
with a corrupted file system. Fix this by moving the error checking
around a bit to the main loop, as this is the only place where something
will fail, and return the error as soon as it occurs.
With this patch my reproducer no longer corrupts the file system.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAUIkAACgkQxWXV+ddt
WDsWVg/+IIEk9H1v9q9ShvVmPvmnlT8/0ywj1hdwFMBkFBjIeU8tBz9ZMGPXCzrF
XemmWKChVOnR3SIq/bMrwuRC/Gv/pBvwVshXLP51YJHv7lSGX0Ayrb27BFQcVaC/
3QhpE7veEiqxwLyMj+LWG4hE2X+oqiqzrXCpeC5un4zEluT45RSKooqueQ4jM8aw
DrKLQA57a1YEIqrE2KQzy5A6BnSNyxPXEEX34kbugmmen46Fh77hrwme1K9vQn1t
v3/V4LcarXADxxokAxU2Igb/vK0+BN33NOYsBwLWWD4kUaTGS4KczsDOowkRRTMH
/qiQUdca0X7ElR+VFl8rgB8PxuJcZ87aCdsMkErUA4sjxyp11VDIeEgirPNAcXtR
b+1LIkn3k3l8JzkKyXwDuZuNBsh0idTY24IE+QDBMIGq+jE1N6N3t5gEwa2NeaiP
9O5QnS5XAJCo8a9+gp1aF5z94vwQwvf9TA80nGrnpxGmXEEEZ9PgXsc4JON1Blhn
NtJDwBPzEjHCEYdE73/lRMsLmYeGhpRugKb+lQ+OTo2iZzxH2SjWn9vXKiN7vAp2
zysjzdPfkY5BLggH5cPg0fuRaf/Is00EeVqn3eA7QsFKDhrpoPFBO+aV5xeshsaz
8fjt7kkXFb+Vyy4SDvmPioJQ7/MFZ5Czn+BL1JwO4l/vYcEMUzM=
=/yHv
-----END PGP SIGNATURE-----
Merge tag 'for-5.11-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes for a late rc:
- fix lockdep complaint on 32bit arches and also remove an unsafe
memory use due to device vs filesystem lifetime
- two fixes for free space tree:
* race during log replay and cache rebuild, now more likely to
happen due to changes in this dev cycle
* possible free space tree corruption with online conversion
during initial tree population"
* tag 'for-5.11-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix log replay failure due to race with space cache rebuild
btrfs: fix lockdep warning due to seqcount_mutex on 32bit arch
btrfs: fix possible free space tree corruption with online conversion
After a sudden power failure we may end up with a space cache on disk that
is not valid and needs to be rebuilt from scratch.
If that happens, during log replay when we attempt to pin an extent buffer
from a log tree, at btrfs_pin_extent_for_log_replay(), we do not wait for
the space cache to be rebuilt through the call to:
btrfs_cache_block_group(cache, 1);
That is because that only waits for the task (work queue job) that loads
the space cache to change the cache state from BTRFS_CACHE_FAST to any
other value. That is ok when the space cache on disk exists and is valid,
but when the cache is not valid and needs to be rebuilt, it ends up
returning as soon as the cache state changes to BTRFS_CACHE_STARTED (done
at caching_thread()).
So this means that we can end up trying to unpin a range which is not yet
marked as free in the block group. This results in the call to
btrfs_remove_free_space() to return -EINVAL to
btrfs_pin_extent_for_log_replay(), which in turn makes the log replay fail
as well as mounting the filesystem. More specifically the -EINVAL comes
from free_space_cache.c:remove_from_bitmap(), because the requested range
is not marked as free space (ones in the bitmap), we have the following
condition triggered:
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
(...)
if (ret < 0 || search_start != *offset)
return -EINVAL;
(...)
It's the "search_start != *offset" that results in the condition being
evaluated to true.
When this happens we got the following in dmesg/syslog:
[72383.415114] BTRFS: device fsid 32b95b69-0ea9-496a-9f02-3f5a56dc9322 devid 1 transid 1432 /dev/sdb scanned by mount (3816007)
[72383.417837] BTRFS info (device sdb): disk space caching is enabled
[72383.418536] BTRFS info (device sdb): has skinny extents
[72383.423846] BTRFS info (device sdb): start tree-log replay
[72383.426416] BTRFS warning (device sdb): block group 30408704 has wrong amount of free space
[72383.427686] BTRFS warning (device sdb): failed to load free space cache for block group 30408704, rebuilding it now
[72383.454291] BTRFS: error (device sdb) in btrfs_recover_log_trees:6203: errno=-22 unknown (Failed to pin buffers while recovering log root tree.)
[72383.456725] BTRFS: error (device sdb) in btrfs_replay_log:2253: errno=-22 unknown (Failed to recover log tree)
[72383.460241] BTRFS error (device sdb): open_ctree failed
We also mark the range for the extent buffer in the excluded extents io
tree. That is fine when the space cache is valid on disk and we can load
it, in which case it causes no problems.
However, for the case where we need to rebuild the space cache, because it
is either invalid or it is missing, having the extent buffer range marked
in the excluded extents io tree leads to a -EINVAL failure from the call
to btrfs_remove_free_space(), resulting in the log replay and mount to
fail. This is because by having the range marked in the excluded extents
io tree, the caching thread ends up never adding the range of the extent
buffer as free space in the block group since the calls to
add_new_free_space(), called from load_extent_tree_free(), filter out any
ranges that are marked as excluded extents.
So fix this by making sure that during log replay we wait for the caching
task to finish completely when we need to rebuild a space cache, and also
drop the need to mark the extent buffer range in the excluded extents io
tree, as well as clearing ranges from that tree at
btrfs_finish_extent_commit().
This started to happen with some frequency on large filesystems having
block groups with a lot of fragmentation since the recent commit
e747853cae ("btrfs: load free space cache asynchronously"), but in
fact the issue has been there for years, it was just much less likely
to happen.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This effectively reverts commit d5c8238849 ("btrfs: convert
data_seqcount to seqcount_mutex_t").
While running fstests on 32 bits test box, many tests failed because of
warnings in dmesg. One of those warnings (btrfs/003):
[66.441317] WARNING: CPU: 6 PID: 9251 at include/linux/seqlock.h:279 btrfs_remove_chunk+0x58b/0x7b0 [btrfs]
[66.441446] CPU: 6 PID: 9251 Comm: btrfs Tainted: G O 5.11.0-rc4-custom+ #5
[66.441449] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.14.0-1 04/01/2014
[66.441451] EIP: btrfs_remove_chunk+0x58b/0x7b0 [btrfs]
[66.441472] EAX: 00000000 EBX: 00000001 ECX: c576070c EDX: c6b15803
[66.441475] ESI: 10000000 EDI: 00000000 EBP: c56fbcfc ESP: c56fbc70
[66.441477] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00010246
[66.441481] CR0: 80050033 CR2: 05c8da20 CR3: 04b20000 CR4: 00350ed0
[66.441485] Call Trace:
[66.441510] btrfs_relocate_chunk+0xb1/0x100 [btrfs]
[66.441529] ? btrfs_lookup_block_group+0x17/0x20 [btrfs]
[66.441562] btrfs_balance+0x8ed/0x13b0 [btrfs]
[66.441586] ? btrfs_ioctl_balance+0x333/0x3c0 [btrfs]
[66.441619] ? __this_cpu_preempt_check+0xf/0x11
[66.441643] btrfs_ioctl_balance+0x333/0x3c0 [btrfs]
[66.441664] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[66.441683] btrfs_ioctl+0x414/0x2ae0 [btrfs]
[66.441700] ? __lock_acquire+0x35f/0x2650
[66.441717] ? lockdep_hardirqs_on+0x87/0x120
[66.441720] ? lockdep_hardirqs_on_prepare+0xd0/0x1e0
[66.441724] ? call_rcu+0x2d3/0x530
[66.441731] ? __might_fault+0x41/0x90
[66.441736] ? kvm_sched_clock_read+0x15/0x50
[66.441740] ? sched_clock+0x8/0x10
[66.441745] ? sched_clock_cpu+0x13/0x180
[66.441750] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[66.441750] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[66.441768] __ia32_sys_ioctl+0x165/0x8a0
[66.441773] ? __this_cpu_preempt_check+0xf/0x11
[66.441785] ? __might_fault+0x89/0x90
[66.441791] __do_fast_syscall_32+0x54/0x80
[66.441796] do_fast_syscall_32+0x32/0x70
[66.441801] do_SYSENTER_32+0x15/0x20
[66.441805] entry_SYSENTER_32+0x9f/0xf2
[66.441808] EIP: 0xab7b5549
[66.441814] EAX: ffffffda EBX: 00000003 ECX: c4009420 EDX: bfa91f5c
[66.441816] ESI: 00000003 EDI: 00000001 EBP: 00000000 ESP: bfa91e98
[66.441818] DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 007b EFLAGS: 00000292
[66.441833] irq event stamp: 42579
[66.441835] hardirqs last enabled at (42585): [<c60eb065>] console_unlock+0x495/0x590
[66.441838] hardirqs last disabled at (42590): [<c60eafd5>] console_unlock+0x405/0x590
[66.441840] softirqs last enabled at (41698): [<c601b76c>] call_on_stack+0x1c/0x60
[66.441843] softirqs last disabled at (41681): [<c601b76c>] call_on_stack+0x1c/0x60
========================================================================
btrfs_remove_chunk+0x58b/0x7b0:
__seqprop_mutex_assert at linux/./include/linux/seqlock.h:279
(inlined by) btrfs_device_set_bytes_used at linux/fs/btrfs/volumes.h:212
(inlined by) btrfs_remove_chunk at linux/fs/btrfs/volumes.c:2994
========================================================================
The warning is produced by lockdep_assert_held() in
__seqprop_mutex_assert() if CONFIG_LOCKDEP is enabled.
And "olumes.c:2994 is btrfs_device_set_bytes_used() with mutex lock
fs_info->chunk_mutex held already.
After adding some debug prints, the cause was found that many
__alloc_device() are called with NULL @fs_info (during scanning ioctl).
Inside the function, btrfs_device_data_ordered_init() is expanded to
seqcount_mutex_init(). In this scenario, its second
parameter info->chunk_mutex is &NULL->chunk_mutex which equals
to offsetof(struct btrfs_fs_info, chunk_mutex) unexpectedly. Thus,
seqcount_mutex_init() is called in wrong way. And later
btrfs_device_get/set helpers trigger lockdep warnings.
The device and filesystem object lifetimes are different and we'd have
to synchronize initialization of the btrfs_device::data_seqcount with
the fs_info, possibly using some additional synchronization. It would
still not prevent concurrent access to the seqcount lock when it's used
for read and initialization.
Commit d5c8238849 ("btrfs: convert data_seqcount to seqcount_mutex_t")
does not mention a particular problem being fixed so revert should not
cause any harm and we'll get the lockdep warning fixed.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=210139
Reported-by: Erhard F <erhard_f@mailbox.org>
Fixes: d5c8238849 ("btrfs: convert data_seqcount to seqcount_mutex_t")
CC: stable@vger.kernel.org # 5.10
CC: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While running btrfs/011 in a loop I would often ASSERT() while trying to
add a new free space entry that already existed, or get an EEXIST while
adding a new block to the extent tree, which is another indication of
double allocation.
This occurs because when we do the free space tree population, we create
the new root and then populate the tree and commit the transaction.
The problem is when you create a new root, the root node and commit root
node are the same. During this initial transaction commit we will run
all of the delayed refs that were paused during the free space tree
generation, and thus begin to cache block groups. While caching block
groups the caching thread will be reading from the main root for the
free space tree, so as we make allocations we'll be changing the free
space tree, which can cause us to add the same range twice which results
in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a
variety of different errors when running delayed refs because of a
double allocation.
Fix this by marking the fs_info as unsafe to load the free space tree,
and fall back on the old slow method. We could be smarter than this,
for example caching the block group while we're populating the free
space tree, but since this is a serious problem I've opted for the
simplest solution.
CC: stable@vger.kernel.org # 4.9+
Fixes: a5ed918285 ("Btrfs: implement the free space B-tree")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAIojwACgkQxWXV+ddt
WDstnw/+O0KSsK6ChZCNdjqFAgWL41RYj0fPOgM/8xlNaQyYHS0Jczeoud6m/2Wm
U41kTb/a6xpmx0Z/2uf/5pDIBPFld/IUuUf/AdJsMzy8Bpky2/sfg6Kmx0tKGLXQ
1WKp9ox0MlAUI0Tz/jGfX5rwsIgWKYKIF2iGUio/H1ktR3l+cXlmLWsSIB43F6VL
AjKRRyFCNU//dV7syNMmmj9yU0HpSs53SpWxUIURuTFaE71LyUgzaxDTlZ6c/PET
e4wdf8nl0wzEESCgSUPdh2AWNNiTEbbGhhhNi9250PUyQki2f4AGBlxVSLZH/fDn
6PbBDvefW4umCMeMxxmgnYJU6tG78qg/LvxzZXt54rOtB0WMbrIl0u7hFCVhQ3Qk
nqrS4tqeaL+OeuR6xamBMaRohgRFa9S+QVjTwtDFo/oVYH4TVvQDfKQS6GsWwDvB
ySzz3WewoFqhe47cMsy28Dg49xkDSIJIr5hmSNGSXTreZ2JIa+qLKywoH87+YDIE
ql0PN47z4NB+MbWDV7SZM8DCVqiQ7+1LOV9bPmqfvNl3YTfvXyMaoPLmWWVstPr2
iyhXrvESgm1s2RCF1a0tXIkv82L6QYjJ3eeEDsvAmtKBouNL9BnMvwi3zW5yKiry
m1qj7C7e6C1TivYitcCfbRCKqeAnUv8VwkSbW9BvNDe7i5AD++U=
=gSYr
-----END PGP SIGNATURE-----
Merge tag 'for-5.11-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more one line fixes for various bugs, stable material.
- fix send when emitting clone operation from the same file and root
- fix double free on error when cleaning backrefs
- lockdep fix during relocation
- handle potential error during reloc when starting transaction
- skip running delayed refs during commit (leftover from code removal
in this dev cycle)"
* tag 'for-5.11-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: don't clear ret in btrfs_start_dirty_block_groups
btrfs: fix lockdep splat in btrfs_recover_relocation
btrfs: do not double free backref nodes on error
btrfs: don't get an EINTR during drop_snapshot for reloc
btrfs: send: fix invalid clone operations when cloning from the same file and root
btrfs: no need to run delayed refs after commit_fs_roots during commit
If we fail to update a block group item in the loop we'll break, however
we'll do btrfs_run_delayed_refs and lose our error value in ret, and
thus not clean up properly. Fix this by only running the delayed refs
if there was no failure.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Zygo reported the following KASAN splat:
BUG: KASAN: use-after-free in btrfs_backref_cleanup_node+0x18a/0x420
Read of size 8 at addr ffff888112402950 by task btrfs/28836
CPU: 0 PID: 28836 Comm: btrfs Tainted: G W 5.10.0-e35f27394290-for-next+ #23
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
Call Trace:
dump_stack+0xbc/0xf9
? btrfs_backref_cleanup_node+0x18a/0x420
print_address_description.constprop.8+0x21/0x210
? record_print_text.cold.34+0x11/0x11
? btrfs_backref_cleanup_node+0x18a/0x420
? btrfs_backref_cleanup_node+0x18a/0x420
kasan_report.cold.10+0x20/0x37
? btrfs_backref_cleanup_node+0x18a/0x420
__asan_load8+0x69/0x90
btrfs_backref_cleanup_node+0x18a/0x420
btrfs_backref_release_cache+0x83/0x1b0
relocate_block_group+0x394/0x780
? merge_reloc_roots+0x4a0/0x4a0
btrfs_relocate_block_group+0x26e/0x4c0
btrfs_relocate_chunk+0x52/0x120
btrfs_balance+0xe2e/0x1900
? check_flags.part.50+0x6c/0x1e0
? btrfs_relocate_chunk+0x120/0x120
? kmem_cache_alloc_trace+0xa06/0xcb0
? _copy_from_user+0x83/0xc0
btrfs_ioctl_balance+0x3a7/0x460
btrfs_ioctl+0x24c8/0x4360
? __kasan_check_read+0x11/0x20
? check_chain_key+0x1f4/0x2f0
? __asan_loadN+0xf/0x20
? btrfs_ioctl_get_supported_features+0x30/0x30
? kvm_sched_clock_read+0x18/0x30
? check_chain_key+0x1f4/0x2f0
? lock_downgrade+0x3f0/0x3f0
? handle_mm_fault+0xad6/0x2150
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? check_flags.part.50+0x6c/0x1e0
? check_flags.part.50+0x6c/0x1e0
? check_flags+0x26/0x30
? lock_is_held_type+0xc3/0xf0
? syscall_enter_from_user_mode+0x1b/0x60
? do_syscall_64+0x13/0x80
? rcu_read_lock_sched_held+0xa1/0xd0
? __kasan_check_read+0x11/0x20
? __fget_light+0xae/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f4c4bdfe427
Allocated by task 28836:
kasan_save_stack+0x21/0x50
__kasan_kmalloc.constprop.18+0xbe/0xd0
kasan_kmalloc+0x9/0x10
kmem_cache_alloc_trace+0x410/0xcb0
btrfs_backref_alloc_node+0x46/0xf0
btrfs_backref_add_tree_node+0x60d/0x11d0
build_backref_tree+0xc5/0x700
relocate_tree_blocks+0x2be/0xb90
relocate_block_group+0x2eb/0x780
btrfs_relocate_block_group+0x26e/0x4c0
btrfs_relocate_chunk+0x52/0x120
btrfs_balance+0xe2e/0x1900
btrfs_ioctl_balance+0x3a7/0x460
btrfs_ioctl+0x24c8/0x4360
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 28836:
kasan_save_stack+0x21/0x50
kasan_set_track+0x20/0x30
kasan_set_free_info+0x1f/0x30
__kasan_slab_free+0xf3/0x140
kasan_slab_free+0xe/0x10
kfree+0xde/0x200
btrfs_backref_error_cleanup+0x452/0x530
build_backref_tree+0x1a5/0x700
relocate_tree_blocks+0x2be/0xb90
relocate_block_group+0x2eb/0x780
btrfs_relocate_block_group+0x26e/0x4c0
btrfs_relocate_chunk+0x52/0x120
btrfs_balance+0xe2e/0x1900
btrfs_ioctl_balance+0x3a7/0x460
btrfs_ioctl+0x24c8/0x4360
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This occurred because we freed our backref node in
btrfs_backref_error_cleanup(), but then tried to free it again in
btrfs_backref_release_cache(). This is because
btrfs_backref_release_cache() will cycle through all of the
cache->leaves nodes and free them up. However
btrfs_backref_error_cleanup() freed the backref node with
btrfs_backref_free_node(), which simply kfree()d the backref node
without unlinking it from the cache. Change this to a
btrfs_backref_drop_node(), which does the appropriate cleanup and
removes the node from the cache->leaves list, so when we go to free the
remaining cache we don't trip over items we've already dropped.
Fixes: 75bfb9aff4 ("Btrfs: cleanup error handling in build_backref_tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was partially fixed by f3e3d9cc35 ("btrfs: avoid possible signal
interruption of btrfs_drop_snapshot() on relocation tree"), however it
missed a spot when we restart a trans handle because we need to end the
transaction. The fix is the same, simply use btrfs_join_transaction()
instead of btrfs_start_transaction() when deleting reloc roots.
Fixes: f3e3d9cc35 ("btrfs: avoid possible signal interruption of btrfs_drop_snapshot() on relocation tree")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When an incremental send finds an extent that is shared, it checks which
file extent items in the range refer to that extent, and for those it
emits clone operations, while for others it emits regular write operations
to avoid corruption at the destination (as described and fixed by commit
d906d49fc5 ("Btrfs: send, fix file corruption due to incorrect cloning
operations")).
However when the root we are cloning from is the send root, we are cloning
from the inode currently being processed and the source file range has
several extent items that partially point to the desired extent, with an
offset smaller than the offset in the file extent item for the range we
want to clone into, it can cause the algorithm to issue a clone operation
that starts at the current eof of the file being processed in the receiver
side, in which case the receiver will fail, with EINVAL, when attempting
to execute the clone operation.
Example reproducer:
$ cat test-send-clone.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV >/dev/null
mount $DEV $MNT
# Create our test file with a single and large extent (1M) and with
# different content for different file ranges that will be reflinked
# later.
xfs_io -f \
-c "pwrite -S 0xab 0 128K" \
-c "pwrite -S 0xcd 128K 128K" \
-c "pwrite -S 0xef 256K 256K" \
-c "pwrite -S 0x1a 512K 512K" \
$MNT/foobar
btrfs subvolume snapshot -r $MNT $MNT/snap1
btrfs send -f /tmp/snap1.send $MNT/snap1
# Now do a series of changes to our file such that we end up with
# different parts of the extent reflinked into different file offsets
# and we overwrite a large part of the extent too, so no file extent
# items refer to that part that was overwritten. This used to confuse
# the algorithm used by the kernel to figure out which file ranges to
# clone, making it attempt to clone from a source range starting at
# the current eof of the file, resulting in the receiver to fail since
# it is an invalid clone operation.
#
xfs_io -c "reflink $MNT/foobar 64K 1M 960K" \
-c "reflink $MNT/foobar 0K 512K 256K" \
-c "reflink $MNT/foobar 512K 128K 256K" \
-c "pwrite -S 0x73 384K 640K" \
$MNT/foobar
btrfs subvolume snapshot -r $MNT $MNT/snap2
btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2
echo -e "\nFile digest in the original filesystem:"
md5sum $MNT/snap2/foobar
# Now unmount the filesystem, create a new one, mount it and try to
# apply both send streams to recreate both snapshots.
umount $DEV
mkfs.btrfs -f $DEV >/dev/null
mount $DEV $MNT
btrfs receive -f /tmp/snap1.send $MNT
btrfs receive -f /tmp/snap2.send $MNT
# Must match what we got in the original filesystem of course.
echo -e "\nFile digest in the new filesystem:"
md5sum $MNT/snap2/foobar
umount $MNT
When running the reproducer, the incremental send operation fails due to
an invalid clone operation:
$ ./test-send-clone.sh
wrote 131072/131072 bytes at offset 0
128 KiB, 32 ops; 0.0015 sec (80.906 MiB/sec and 20711.9741 ops/sec)
wrote 131072/131072 bytes at offset 131072
128 KiB, 32 ops; 0.0013 sec (90.514 MiB/sec and 23171.6148 ops/sec)
wrote 262144/262144 bytes at offset 262144
256 KiB, 64 ops; 0.0025 sec (98.270 MiB/sec and 25157.2327 ops/sec)
wrote 524288/524288 bytes at offset 524288
512 KiB, 128 ops; 0.0052 sec (95.730 MiB/sec and 24506.9883 ops/sec)
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
At subvol /mnt/sdi/snap1
linked 983040/983040 bytes at offset 1048576
960 KiB, 1 ops; 0.0006 sec (1.419 GiB/sec and 1550.3876 ops/sec)
linked 262144/262144 bytes at offset 524288
256 KiB, 1 ops; 0.0020 sec (120.192 MiB/sec and 480.7692 ops/sec)
linked 262144/262144 bytes at offset 131072
256 KiB, 1 ops; 0.0018 sec (133.833 MiB/sec and 535.3319 ops/sec)
wrote 655360/655360 bytes at offset 393216
640 KiB, 160 ops; 0.0093 sec (66.781 MiB/sec and 17095.8436 ops/sec)
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
At subvol /mnt/sdi/snap2
File digest in the original filesystem:
9c13c61cb0b9f5abf45344375cb04dfa /mnt/sdi/snap2/foobar
At subvol snap1
At snapshot snap2
ERROR: failed to clone extents to foobar: Invalid argument
File digest in the new filesystem:
132f0396da8f48d2e667196bff882cfc /mnt/sdi/snap2/foobar
The clone operation is invalid because its source range starts at the
current eof of the file in the receiver, causing the receiver to get
an EINVAL error from the clone operation when attempting it.
For the example above, what happens is the following:
1) When processing the extent at file offset 1M, the algorithm checks that
the extent is shared and can be (fully or partially) found at file
offset 0.
At this point the file has a size (and eof) of 1M at the receiver;
2) It finds that our extent item at file offset 1M has a data offset of
64K and, since the file extent item at file offset 0 has a data offset
of 0, it issues a clone operation, from the same file and root, that
has a source range offset of 64K, destination offset of 1M and a length
of 64K, since the extent item at file offset 0 refers only to the first
128K of the shared extent.
After this clone operation, the file size (and eof) at the receiver is
increased from 1M to 1088K (1M + 64K);
3) Now there's still 896K (960K - 64K) of data left to clone or write, so
it checks for the next file extent item, which starts at file offset
128K. This file extent item has a data offset of 0 and a length of
256K, so a clone operation with a source range offset of 256K, a
destination offset of 1088K (1M + 64K) and length of 128K is issued.
After this operation the file size (and eof) at the receiver increases
from 1088K to 1216K (1088K + 128K);
4) Now there's still 768K (896K - 128K) of data left to clone or write, so
it checks for the next file extent item, located at file offset 384K.
This file extent item points to a different extent, not the one we want
to clone, with a length of 640K. So we issue a write operation into the
file range 1216K (1088K + 128K, end of the last clone operation), with
a length of 640K and with a data matching the one we can find for that
range in send root.
After this operation, the file size (and eof) at the receiver increases
from 1216K to 1856K (1216K + 640K);
5) Now there's still 128K (768K - 640K) of data left to clone or write, so
we look into the file extent item, which is for file offset 1M and it
points to the extent we want to clone, with a data offset of 64K and a
length of 960K.
However this matches the file offset we started with, the start of the
range to clone into. So we can't for sure find any file extent item
from here onwards with the rest of the data we want to clone, yet we
proceed and since the file extent item points to the shared extent,
with a data offset of 64K, we issue a clone operation with a source
range starting at file offset 1856K, which matches the file extent
item's offset, 1M, plus the amount of data cloned and written so far,
which is 64K (step 2) + 128K (step 3) + 640K (step 4). This clone
operation is invalid since the source range offset matches the current
eof of the file in the receiver. We should have stopped looking for
extents to clone at this point and instead fallback to write, which
would simply the contain the data in the file range from 1856K to
1856K + 128K.
So fix this by stopping the loop that looks for file ranges to clone at
clone_range() when we reach the current eof of the file being processed,
if we are cloning from the same file and using the send root as the clone
root. This ensures any data not yet cloned will be sent to the receiver
through a write operation.
A test case for fstests will follow soon.
Reported-by: Massimo B. <massimo.b@gmx.net>
Link: https://lore.kernel.org/linux-btrfs/6ae34776e85912960a253a8327068a892998e685.camel@gmx.net/
Fixes: 11f2069c11 ("Btrfs: send, allow clone operations within the same file")
CC: stable@vger.kernel.org # 5.5+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The inode number cache has been removed in this dev cycle, there's one
more leftover. We don't need to run the delayed refs again after
commit_fs_roots as stated in the comment, because btrfs_save_ino_cache
is no more since 5297199a8b ("btrfs: remove inode number cache
feature").
Nothing else between commit_fs_roots and btrfs_qgroup_account_extents
could create new delayed refs so the qgroup consistency should be safe.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 38d715f494 ("btrfs: use btrfs_start_delalloc_roots in
shrink_delalloc") cleaned up how we do delalloc shrinking by utilizing
some infrastructure we have in place to flush inodes that we use for
device replace and snapshot. However this introduced a pretty serious
performance regression. To reproduce the user untarred the source
tarball of Firefox (360MiB xz compressed/1.5GiB uncompressed), and would
see it take anywhere from 5 to 20 times as long to untar in 5.10
compared to 5.9. This was observed on fast devices (SSD and better) and
not on HDD.
The root cause is because before we would generally use the normal
writeback path to reclaim delalloc space, and for this we would provide
it with the number of pages we wanted to flush. The referenced commit
changed this to flush that many inodes, which drastically increased the
amount of space we were flushing in certain cases, which severely
affected performance.
We cannot revert this patch unfortunately because of 3d45f221ce
("btrfs: fix deadlock when cloning inline extent and low on free
metadata space") which requires the ability to skip flushing inodes that
are being cloned in certain scenarios, which means we need to keep using
our flushing infrastructure or risk re-introducing the deadlock.
Instead to fix this problem we can go back to providing
btrfs_start_delalloc_roots with a number of pages to flush, and then set
up a writeback_control and utilize sync_inode() to handle the flushing
for us. This gives us the same behavior we had prior to the fix, while
still allowing us to avoid the deadlock that was fixed by Filipe. I
redid the users original test and got the following results on one of
our test machines (256GiB of ram, 56 cores, 2TiB Intel NVMe drive)
5.9 0m54.258s
5.10 1m26.212s
5.10+patch 0m38.800s
5.10+patch is significantly faster than plain 5.9 because of my patch
series "Change data reservations to use the ticketing infra" which
contained the patch that introduced the regression, but generally
improved the overall ENOSPC flushing mechanisms.
Additional testing on consumer-grade SSD (8GiB ram, 8 CPU) confirm
the results:
5.10.5 4m00s
5.10.5+patch 1m08s
5.11-rc2 5m14s
5.11-rc2+patch 1m30s
Reported-by: René Rebe <rene@exactcode.de>
Fixes: 38d715f494 ("btrfs: use btrfs_start_delalloc_roots in shrink_delalloc")
CC: stable@vger.kernel.org # 5.10
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: David Sterba <dsterba@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add my test results ]
Signed-off-by: David Sterba <dsterba@suse.com>