2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 21:53:54 +08:00
Commit Graph

5 Commits

Author SHA1 Message Date
Ken Cox
dbe91a2e6e C6X: add basic support for TMS320C6678 SoC
This patch adds support for the TMS320C6678 SoC on an EVMC6678LE
evaluation board. The 6678 is a C66x family CPU which is very similar
to the already supported C64x CPUs with the addition of floating point
instructions.

Signed-off-by: Ken Cox <jkc@redhat.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
CC: Aurelien Jacquiot <a-jacquiot@ti.com>
CC: linux-c6x-dev@linux-c6x.org
2012-07-18 23:52:31 -04:00
David Howells
6a846f3f82 Disintegrate asm/system.h for C6X
Disintegrate asm/system.h for C6X.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
cc: linux-c6x-dev@linux-c6x.org
2012-03-28 18:30:02 +01:00
Mark Salter
7123a6cab0 C6X: add register_cpu call
Commit ccbc60d3e1 requires CPU
topology information even in !SMP cases. This requires C6X to
add a call tp register_cpu() in order to avoid a panic at
boot time.

Signed-off-by: Mark Salter <msalter@redhat.com>
2012-01-08 15:13:10 -05:00
Mark Salter
d5981a5f16 C6X: deal with memblock API changes
Recent memblock related commits require the following C6X changes:

  * commit 24aa07882b
    asm/memblock.h no longer required

  * commit 1440c4e2c9
    memblock_analyze() no longer needed to update total size

  * commit fe091c208a
    memblock_init() no longer needed

Signed-off-by: Mark Salter <msalter@redhat.com>
2012-01-08 15:12:44 -05:00
Aurelien Jacquiot
c1a144d77a C6X: early boot code
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>

This patch provides the early boot code for C6X architecture. There is a
16 entry vector table which is used to direct reset and interrupt events. The
vector table entries contain a small amount of code (maximum of 8 opcodes)
which simply branches to the actual event handling code.

The head.S code simply clears BSS, setups up a few control registers, and calls
machine_init followed by start_kernel. The machine_init code in setup.c does
the early flat tree parsing (memory, commandline, etc). At setup_arch time, the
code does the usual memory setup and minimally scans the devicetree for any
needed information.

Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2011-10-06 19:47:28 -04:00