2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
Commit Graph

9 Commits

Author SHA1 Message Date
David Howells
ee009e4a0d KEYS: Add an iovec version of KEYCTL_INSTANTIATE
Add a keyctl op (KEYCTL_INSTANTIATE_IOV) that is like KEYCTL_INSTANTIATE, but
takes an iovec array and concatenates the data in-kernel into one buffer.
Since the KEYCTL_INSTANTIATE copies the data anyway, this isn't too much of a
problem.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-03-08 11:17:22 +11:00
David Howells
fdd1b94581 KEYS: Add a new keyctl op to reject a key with a specified error code
Add a new keyctl op to reject a key with a specified error code.  This works
much the same as negating a key, and so keyctl_negate_key() is made a special
case of keyctl_reject_key().  The difference is that keyctl_negate_key()
selects ENOKEY as the error to be reported.

Typically the key would be rejected with EKEYEXPIRED, EKEYREVOKED or
EKEYREJECTED, but this is not mandatory.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-03-08 11:17:18 +11:00
David Howells
ee18d64c1f KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent.  This
replaces the parent's session keyring.  Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again.  Normally this
will be after a wait*() syscall.

To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.

The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.

Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME.  This allows the
replacement to be performed at the point the parent process resumes userspace
execution.

This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership.  However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.

This can be tested with the following program:

	#include <stdio.h>
	#include <stdlib.h>
	#include <keyutils.h>

	#define KEYCTL_SESSION_TO_PARENT	18

	#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)

	int main(int argc, char **argv)
	{
		key_serial_t keyring, key;
		long ret;

		keyring = keyctl_join_session_keyring(argv[1]);
		OSERROR(keyring, "keyctl_join_session_keyring");

		key = add_key("user", "a", "b", 1, keyring);
		OSERROR(key, "add_key");

		ret = keyctl(KEYCTL_SESSION_TO_PARENT);
		OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");

		return 0;
	}

Compiled and linked with -lkeyutils, you should see something like:

	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: _ses
	355907932 --alswrv   4043    -1   \_ keyring: _uid.4043
	[dhowells@andromeda ~]$ /tmp/newpag
	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: _ses
	1055658746 --alswrv   4043  4043   \_ user: a
	[dhowells@andromeda ~]$ /tmp/newpag hello
	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: hello
	340417692 --alswrv   4043  4043   \_ user: a

Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 21:29:22 +10:00
David Howells
8bbf4976b5 KEYS: Alter use of key instantiation link-to-keyring argument
Alter the use of the key instantiation and negation functions' link-to-keyring
arguments.  Currently this specifies a keyring in the target process to link
the key into, creating the keyring if it doesn't exist.  This, however, can be
a problem for copy-on-write credentials as it means that the instantiating
process can alter the credentials of the requesting process.

This patch alters the behaviour such that:

 (1) If keyctl_instantiate_key() or keyctl_negate_key() are given a specific
     keyring by ID (ringid >= 0), then that keyring will be used.

 (2) If keyctl_instantiate_key() or keyctl_negate_key() are given one of the
     special constants that refer to the requesting process's keyrings
     (KEY_SPEC_*_KEYRING, all <= 0), then:

     (a) If sys_request_key() was given a keyring to use (destringid) then the
     	 key will be attached to that keyring.

     (b) If sys_request_key() was given a NULL keyring, then the key being
     	 instantiated will be attached to the default keyring as set by
     	 keyctl_set_reqkey_keyring().

 (3) No extra link will be made.

Decision point (1) follows current behaviour, and allows those instantiators
who've searched for a specifically named keyring in the requestor's keyring so
as to partition the keys by type to still have their named keyrings.

Decision point (2) allows the requestor to make sure that the key or keys that
get produced by request_key() go where they want, whilst allowing the
instantiator to request that the key is retained.  This is mainly useful for
situations where the instantiator makes a secondary request, the key for which
should be retained by the initial requestor:

	+-----------+        +--------------+        +--------------+
	|           |        |              |        |              |
	| Requestor |------->| Instantiator |------->| Instantiator |
	|           |        |              |        |              |
	+-----------+        +--------------+        +--------------+
	           request_key()           request_key()

This might be useful, for example, in Kerberos, where the requestor requests a
ticket, and then the ticket instantiator requests the TGT, which someone else
then has to go and fetch.  The TGT, however, should be retained in the
keyrings of the requestor, not the first instantiator.  To make this explict
an extra special keyring constant is also added.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:14 +11:00
David Howells
70a5bb72b5 keys: add keyctl function to get a security label
Add a keyctl() function to get the security label of a key.

The following is added to Documentation/keys.txt:

 (*) Get the LSM security context attached to a key.

	long keyctl(KEYCTL_GET_SECURITY, key_serial_t key, char *buffer,
		    size_t buflen)

     This function returns a string that represents the LSM security context
     attached to a key in the buffer provided.

     Unless there's an error, it always returns the amount of data it could
     produce, even if that's too big for the buffer, but it won't copy more
     than requested to userspace. If the buffer pointer is NULL then no copy
     will take place.

     A NUL character is included at the end of the string if the buffer is
     sufficiently big.  This is included in the returned count.  If no LSM is
     in force then an empty string will be returned.

     A process must have view permission on the key for this function to be
     successful.

[akpm@linux-foundation.org: declare keyctl_get_security()]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:16 -07:00
David Howells
b5f545c880 [PATCH] keys: Permit running process to instantiate keys
Make it possible for a running process (such as gssapid) to be able to
instantiate a key, as was requested by Trond Myklebust for NFS4.

The patch makes the following changes:

 (1) A new, optional key type method has been added. This permits a key type
     to intercept requests at the point /sbin/request-key is about to be
     spawned and do something else with them - passing them over the
     rpc_pipefs files or netlink sockets for instance.

     The uninstantiated key, the authorisation key and the intended operation
     name are passed to the method.

 (2) The callout_info is no longer passed as an argument to /sbin/request-key
     to prevent unauthorised viewing of this data using ps or by looking in
     /proc/pid/cmdline.

     This means that the old /sbin/request-key program will not work with the
     patched kernel as it will expect to see an extra argument that is no
     longer there.

     A revised keyutils package will be made available tomorrow.

 (3) The callout_info is now attached to the authorisation key. Reading this
     key will retrieve the information.

 (4) A new field has been added to the task_struct. This holds the
     authorisation key currently active for a thread. Searches now look here
     for the caller's set of keys rather than looking for an auth key in the
     lowest level of the session keyring.

     This permits a thread to be servicing multiple requests at once and to
     switch between them. Note that this is per-thread, not per-process, and
     so is usable in multithreaded programs.

     The setting of this field is inherited across fork and exec.

 (5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that
     permits a thread to assume the authority to deal with an uninstantiated
     key. Assumption is only permitted if the authorisation key associated
     with the uninstantiated key is somewhere in the thread's keyrings.

     This function can also clear the assumption.

 (6) A new magic key specifier has been added to refer to the currently
     assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY).

 (7) Instantiation will only proceed if the appropriate authorisation key is
     assumed first. The assumed authorisation key is discarded if
     instantiation is successful.

 (8) key_validate() is moved from the file of request_key functions to the
     file of permissions functions.

 (9) The documentation is updated.

From: <Valdis.Kletnieks@vt.edu>

    Build fix.

Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 20:13:53 -08:00
David Howells
017679c4d4 [PATCH] keys: Permit key expiry time to be set
Add a new keyctl function that allows the expiry time to be set on a key or
removed from a key, provided the caller has attribute modification access.

Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 20:13:53 -08:00
David Howells
3e30148c3d [PATCH] Keys: Make request-key create an authorisation key
The attached patch makes the following changes:

 (1) There's a new special key type called ".request_key_auth".

     This is an authorisation key for when one process requests a key and
     another process is started to construct it. This type of key cannot be
     created by the user; nor can it be requested by kernel services.

     Authorisation keys hold two references:

     (a) Each refers to a key being constructed. When the key being
     	 constructed is instantiated the authorisation key is revoked,
     	 rendering it of no further use.

     (b) The "authorising process". This is either:

     	 (i) the process that called request_key(), or:

     	 (ii) if the process that called request_key() itself had an
     	      authorisation key in its session keyring, then the authorising
     	      process referred to by that authorisation key will also be
     	      referred to by the new authorisation key.

	 This means that the process that initiated a chain of key requests
	 will authorise the lot of them, and will, by default, wind up with
	 the keys obtained from them in its keyrings.

 (2) request_key() creates an authorisation key which is then passed to
     /sbin/request-key in as part of a new session keyring.

 (3) When request_key() is searching for a key to hand back to the caller, if
     it comes across an authorisation key in the session keyring of the
     calling process, it will also search the keyrings of the process
     specified therein and it will use the specified process's credentials
     (fsuid, fsgid, groups) to do that rather than the calling process's
     credentials.

     This allows a process started by /sbin/request-key to find keys belonging
     to the authorising process.

 (4) A key can be read, even if the process executing KEYCTL_READ doesn't have
     direct read or search permission if that key is contained within the
     keyrings of a process specified by an authorisation key found within the
     calling process's session keyring, and is searchable using the
     credentials of the authorising process.

     This allows a process started by /sbin/request-key to read keys belonging
     to the authorising process.

 (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or
     KEYCTL_NEGATE will specify a keyring of the authorising process, rather
     than the process doing the instantiation.

 (6) One of the process keyrings can be nominated as the default to which
     request_key() should attach new keys if not otherwise specified. This is
     done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_*
     constants. The current setting can also be read using this call.

 (7) request_key() is partially interruptible. If it is waiting for another
     process to finish constructing a key, it can be interrupted. This permits
     a request-key cycle to be broken without recourse to rebooting.

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 00:05:19 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00