2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-24 22:55:35 +08:00
Commit Graph

215 Commits

Author SHA1 Message Date
Dave Hansen
28ae55c98e [PATCH] sparsemem extreme: hotplug preparation
This splits up sparse_index_alloc() into two pieces.  This is needed
because we'll allocate the memory for the second level in a different place
from where we actually consume it to keep the allocation from happening
underneath a lock

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05 00:05:38 -07:00
Bob Picco
3e347261a8 [PATCH] sparsemem extreme implementation
With cleanups from Dave Hansen <haveblue@us.ibm.com>

SPARSEMEM_EXTREME makes mem_section a one dimensional array of pointers to
mem_sections.  This two level layout scheme is able to achieve smaller
memory requirements for SPARSEMEM with the tradeoff of an additional shift
and load when fetching the memory section.  The current SPARSEMEM
implementation is a one dimensional array of mem_sections which is the
default SPARSEMEM configuration.  The patch attempts isolates the
implementation details of the physical layout of the sparsemem section
array.

SPARSEMEM_EXTREME requires bootmem to be functioning at the time of
memory_present() calls.  This is not always feasible, so architectures
which do not need it may allocate everything statically by using
SPARSEMEM_STATIC.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05 00:05:38 -07:00
Bob Picco
802f192e4a [PATCH] SPARSEMEM EXTREME
A new option for SPARSEMEM is ARCH_SPARSEMEM_EXTREME.  Architecture
platforms with a very sparse physical address space would likely want to
select this option.  For those architecture platforms that don't select the
option, the code generated is equivalent to SPARSEMEM currently in -mm.
I'll be posting a patch on ia64 ml which uses this new SPARSEMEM feature.

ARCH_SPARSEMEM_EXTREME makes mem_section a one dimensional array of
pointers to mem_sections.  This two level layout scheme is able to achieve
smaller memory requirements for SPARSEMEM with the tradeoff of an
additional shift and load when fetching the memory section.  The current
SPARSEMEM -mm implementation is a one dimensional array of mem_sections
which is the default SPARSEMEM configuration.  The patch attempts isolates
the implementation details of the physical layout of the sparsemem section
array.

ARCH_SPARSEMEM_EXTREME depends on 64BIT and is by default boolean false.

I've boot tested under aim load ia64 configured for ARCH_SPARSEMEM_EXTREME.
 I've also boot tested a 4 way Opteron machine with !ARCH_SPARSEMEM_EXTREME
and tested with aim.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05 00:05:38 -07:00
Andy Whitcroft
29751f6991 [PATCH] sparsemem hotplug base
Make sparse's initalization be accessible at runtime.  This allows sparse
mappings to be created after boot in a hotplug situation.

This patch is separated from the previous one just to give an indication how
much of the sparse infrastructure is *just* for hotplug memory.

The section_mem_map doesn't really store a pointer.  It stores something that
is convenient to do some math against to get a pointer.  It isn't valid to
just do *section_mem_map, so I don't think it should be stored as a pointer.

There are a couple of things I'd like to store about a section.  First of all,
the fact that it is !NULL does not mean that it is present.  There could be
such a combination where section_mem_map *is* NULL, but the math gets you
properly to a real mem_map.  So, I don't think that check is safe.

Since we're storing 32-bit-aligned structures, we have a few bits in the
bottom of the pointer to play with.  Use one bit to encode whether there's
really a mem_map there, and the other one to tell whether there's a valid
section there.  We need to distinguish between the two because sometimes
there's a gap between when a section is discovered to be present and when we
can get the mem_map for it.

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:05 -07:00
Andy Whitcroft
641c767389 [PATCH] sparsemem swiss cheese numa layouts
The part of the sparsemem patch which modifies memmap_init_zone() has recently
become a problem.  It changes behavior so that there is a call to
pfn_to_page() for each individual page inside of a node's range:
node_start_pfn through node_end_pfn.  It used to simply do this once, at the
beginning of the node, but having sparsemem's non-contiguous mem_map[]s inside
of a node made it necessary to change.

Mike Kravetz recently wrote a patch which made the NUMA code accept some new
kinds of layouts.  The system's memory was laid out like this, with node 0's
memory in two pieces: one before and one after node 1's memory:

	Node 0: +++++     +++++
	Node 1:      +++++

Previous behavior before Mike's patch was to assign nodes like this:

	Node 0: 00000     XXXXX
	Node 1:      11111

Where the 'X' areas were simply thrown away.  The new behavior was to make the
pg_data_t span node 0 across all of its areas, including areas that are really
node 1's: Node 0: 000000000000000 Node 1: 11111

This wastes a little bit of mem_map space, but ends up being OK, and more
fully utilizes the system's memory.  memmap_init_zone() initializes all of the
"struct page"s for node 0, even for the "hole", but those never get used,
because there is no pfn_to_page() that resolves to those pages.  However, only
calling pfn_to_page() once, memmap_init_zone() always uses the pages that were
allocated for node0->node_mem_map because:

	struct page *start = pfn_to_page(start_pfn);
	// effectively start = &node->node_mem_map[0]
	for (page = start; page < (start + size); page++) {
		init_page_here();...
		page++;
	}

Slow, and wasteful, but generally harmless.

But, modify that to call pfn_to_page() for each loop iteration (like sparsemem
does):

	for (pfn = start_pfn; pfn < < (start_pfn + size); pfn++++) {
		page = pfn_to_page(pfn);
	}

And you end up trying to initialize node 1's pages too early, along with bogus
data from node 0.  This patch checks for those weird layouts and declines to
touch the pages, making the more frequent pfn_to_page() calls OK to do.

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:05 -07:00
Andy Whitcroft
d41dee369b [PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[].  This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems.  Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.

A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA.  When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.

Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous.  It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.

Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory.  This is what allows the mem_map[]
to be chopped up.

In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags.  Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations.  However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions.  Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.

One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags.  It might provide
speed increases on certain platforms and will be stored there if there is
room.  But, if out of room, an alternate (theoretically slower) mechanism is
used.

This patch introduces CONFIG_FLATMEM.  It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:04 -07:00
Andy Whitcroft
b159d43fbf [PATCH] generify early_pfn_to_nid
Provide a default implementation for early_pfn_to_nid returning node 0.  Allow
architectures to override this with their own implementation out of
asm/mmzone.h.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:04 -07:00
Dave Hansen
93b7504e3e [PATCH] Introduce new Kconfig option for NUMA or DISCONTIG
There is some confusion that arose when working on SPARSEMEM patch between
what is needed for DISCONTIG vs. NUMA.

Multiple pg_data_t's are needed for DISCONTIGMEM or NUMA, independently.
All of the current NUMA implementations require an implementation of
DISCONTIG.  Because of this, quite a lot of code which is really needed for
NUMA is actually under DISCONTIG #ifdefs.  For SPARSEMEM, we changed some
of these #ifdefs to CONFIG_NUMA, but that broke the DISCONTIG=y and NUMA=n
case.

Introducing this new NEED_MULTIPLE_NODES config option allows code that is
needed for both NUMA or DISCONTIG to be separated out from code that is
specific to DISCONTIG.

One great advantage of this approach is that it doesn't require every
architecture to be converted over.  All of the current implementations
should "just work", only the ones implementing SPARSEMEM will have to be
fixed up.

The change to free_area_init() makes it work inside, or out of the new
config option.

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:03 -07:00
Dave Hansen
348f8b6c48 [PATCH] sparsemem base: reorganize page->flags bit operations
Generify the value fields in the page_flags.  The aim is to allow the location
and size of these fields to be varied.  Additionally we want to move away from
fixed allocations per field whilst still enforcing the overall bit utilisation
limits.  We rely on the compiler to spot and optimise the accessor functions.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:01 -07:00
Dave Hansen
408fde81c1 [PATCH] remove non-DISCONTIG use of pgdat->node_mem_map
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code.  On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.

There was also a node_mem_map(nid) macro on many architectures.  Its use
along with the use of ->node_mem_map itself was not consistent.  It has
been removed in favor of two new, more explicit, arch-independent macros:

	pgdat_page_nr(pgdat, pagenr)
	nid_page_nr(nid, pagenr)

I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways.  I
believe the newer names are much clearer.

These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead.  We could
make this the only behavior if people want, but I don't want to change too
much at once.  One thing at a time.

This patch removes more code than it adds.

Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64.  Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/

Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:00 -07:00
Christoph Lameter
e7c8d5c995 [PATCH] node local per-cpu-pages
This patch modifies the way pagesets in struct zone are managed.

Each zone has a per-cpu array of pagesets.  So any particular CPU has some
memory in each zone structure which belongs to itself.  Even if that CPU is
not local to that zone.

So the patch relocates the pagesets for each cpu to the node that is nearest
to the cpu instead of allocating the pagesets in the (possibly remote) target
zone.  This means that the operations to manage pages on remote zone can be
done with information available locally.

We play a macro trick so that non-NUMA pmachines avoid the additional
pointer chase on the page allocator fastpath.

AIM7 benchmark on a 32 CPU SGI Altix

w/o patches:
Tasks    jobs/min  jti  jobs/min/task      real       cpu
    1      484.68  100       484.6769     12.01      1.97   Fri Mar 25 11:01:42 2005
  100    27140.46   89       271.4046     21.44    148.71   Fri Mar 25 11:02:04 2005
  200    30792.02   82       153.9601     37.80    296.72   Fri Mar 25 11:02:42 2005
  300    32209.27   81       107.3642     54.21    451.34   Fri Mar 25 11:03:37 2005
  400    34962.83   78        87.4071     66.59    588.97   Fri Mar 25 11:04:44 2005
  500    31676.92   75        63.3538     91.87    742.71   Fri Mar 25 11:06:16 2005
  600    36032.69   73        60.0545     96.91    885.44   Fri Mar 25 11:07:54 2005
  700    35540.43   77        50.7720    114.63   1024.28   Fri Mar 25 11:09:49 2005
  800    33906.70   74        42.3834    137.32   1181.65   Fri Mar 25 11:12:06 2005
  900    34120.67   73        37.9119    153.51   1325.26   Fri Mar 25 11:14:41 2005
 1000    34802.37   74        34.8024    167.23   1465.26   Fri Mar 25 11:17:28 2005

with slab API changes and pageset patch:

Tasks    jobs/min  jti  jobs/min/task      real       cpu
    1      485.00  100       485.0000     12.00      1.96   Fri Mar 25 11:46:18 2005
  100    28000.96   89       280.0096     20.79    150.45   Fri Mar 25 11:46:39 2005
  200    32285.80   79       161.4290     36.05    293.37   Fri Mar 25 11:47:16 2005
  300    40424.15   84       134.7472     43.19    438.42   Fri Mar 25 11:47:59 2005
  400    39155.01   79        97.8875     59.46    590.05   Fri Mar 25 11:48:59 2005
  500    37881.25   82        75.7625     76.82    730.19   Fri Mar 25 11:50:16 2005
  600    39083.14   78        65.1386     89.35    872.79   Fri Mar 25 11:51:46 2005
  700    38627.83   77        55.1826    105.47   1022.46   Fri Mar 25 11:53:32 2005
  800    39631.94   78        49.5399    117.48   1169.94   Fri Mar 25 11:55:30 2005
  900    36903.70   79        41.0041    141.94   1310.78   Fri Mar 25 11:57:53 2005
 1000    36201.23   77        36.2012    160.77   1458.31   Fri Mar 25 12:00:34 2005

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com>
Signed-off-by: Shai Fultheim <Shai@Scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 18:46:16 -07:00
Martin Hicks
1e7e5a9048 [PATCH] VM: rate limit early reclaim
When early zone reclaim is turned on the LRU is scanned more frequently when a
zone is low on memory.  This limits when the zone reclaim can be called by
skipping the scan if another thread (either via kswapd or sync reclaim) is
already reclaiming from the zone.

Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 18:46:14 -07:00
Martin Hicks
753ee72896 [PATCH] VM: early zone reclaim
This is the core of the (much simplified) early reclaim.  The goal of this
patch is to reclaim some easily-freed pages from a zone before falling back
onto another zone.

One of the major uses of this is NUMA machines.  With the default allocator
behavior the allocator would look for memory in another zone, which might be
off-node, before trying to reclaim from the current zone.

This adds a zone tuneable to enable early zone reclaim.  It is selected on a
per-zone basis and is turned on/off via syscall.

Adding some extra throttling on the reclaim was also required (patch
4/4).  Without the machine would grind to a crawl when doing a "make -j"
kernel build.  Even with this patch the System Time is higher on
average, but it seems tolerable.  Here are some numbers for kernbench
runs on a 2-node, 4cpu, 8Gig RAM Altix in the "make -j" run:

			wall  user   sys   %cpu  ctx sw.  sleeps
			----  ----   ---   ----   ------  ------
No patch		1009  1384   847   258   298170   504402
w/patch, no reclaim     880   1376   667   288   254064   396745
w/patch & reclaim       1079  1385   926   252   291625   548873

These numbers are the average of 2 runs of 3 "make -j" runs done right
after system boot.  Run-to-run variability for "make -j" is huge, so
these numbers aren't terribly useful except to seee that with reclaim
the benchmark still finishes in a reasonable amount of time.

I also looked at the NUMA hit/miss stats for the "make -j" runs and the
reclaim doesn't make any difference when the machine is thrashing away.

Doing a "make -j8" on a single node that is filled with page cache pages
takes 700 seconds with reclaim turned on and 735 seconds without reclaim
(due to remote memory accesses).

The simple zone_reclaim syscall program is at
http://www.bork.org/~mort/sgi/zone_reclaim.c

Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 18:46:14 -07:00
Ingo Molnar
39c715b717 [PATCH] smp_processor_id() cleanup
This patch implements a number of smp_processor_id() cleanup ideas that
Arjan van de Ven and I came up with.

The previous __smp_processor_id/_smp_processor_id/smp_processor_id API
spaghetti was hard to follow both on the implementational and on the
usage side.

Some of the complexity arose from picking wrong names, some of the
complexity comes from the fact that not all architectures defined
__smp_processor_id.

In the new code, there are two externally visible symbols:

 - smp_processor_id(): debug variant.

 - raw_smp_processor_id(): nondebug variant. Replaces all existing
   uses of _smp_processor_id() and __smp_processor_id(). Defined
   by every SMP architecture in include/asm-*/smp.h.

There is one new internal symbol, dependent on DEBUG_PREEMPT:

 - debug_smp_processor_id(): internal debug variant, mapped to
                             smp_processor_id().

Also, i moved debug_smp_processor_id() from lib/kernel_lock.c into a new
lib/smp_processor_id.c file.  All related comments got updated and/or
clarified.

I have build/boot tested the following 8 .config combinations on x86:

 {SMP,UP} x {PREEMPT,!PREEMPT} x {DEBUG_PREEMPT,!DEBUG_PREEMPT}

I have also build/boot tested x64 on UP/PREEMPT/DEBUG_PREEMPT.  (Other
architectures are untested, but should work just fine.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 18:46:13 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00