2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
Commit Graph

17 Commits

Author SHA1 Message Date
David Gibson
99342cf804 kvmppc: Implement H_LOGICAL_CI_{LOAD,STORE} in KVM
On POWER, storage caching is usually configured via the MMU - attributes
such as cache-inhibited are stored in the TLB and the hashed page table.

This makes correctly performing cache inhibited IO accesses awkward when
the MMU is turned off (real mode).  Some CPU models provide special
registers to control the cache attributes of real mode load and stores but
this is not at all consistent.  This is a problem in particular for SLOF,
the firmware used on KVM guests, which runs entirely in real mode, but
which needs to do IO to load the kernel.

To simplify this qemu implements two special hypercalls, H_LOGICAL_CI_LOAD
and H_LOGICAL_CI_STORE which simulate a cache-inhibited load or store to
a logical address (aka guest physical address).  SLOF uses these for IO.

However, because these are implemented within qemu, not the host kernel,
these bypass any IO devices emulated within KVM itself.  The simplest way
to see this problem is to attempt to boot a KVM guest from a virtio-blk
device with iothread / dataplane enabled.  The iothread code relies on an
in kernel implementation of the virtio queue notification, which is not
triggered by the IO hcalls, and so the guest will stall in SLOF unable to
load the guest OS.

This patch addresses this by providing in-kernel implementations of the
2 hypercalls, which correctly scan the KVM IO bus.  Any access to an
address not handled by the KVM IO bus will cause a VM exit, hitting the
qemu implementation as before.

Note that a userspace change is also required, in order to enable these
new hcall implementations with KVM_CAP_PPC_ENABLE_HCALL.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
[agraf: fix compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:28 +02:00
Paul Mackerras
ef1af2e296 KVM: PPC: Book3S PR: Take SRCU read lock around RTAS kvm_read_guest() call
This does for PR KVM what c9438092ca ("KVM: PPC: Book3S HV: Take SRCU
read lock around kvm_read_guest() call") did for HV KVM, that is,
eliminate a "suspicious rcu_dereference_check() usage!" warning by
taking the SRCU lock around the call to kvmppc_rtas_hcall().

It also fixes a return of RESUME_HOST to return EMULATE_FAIL instead,
since kvmppc_h_pr() is supposed to return EMULATE_* values.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:16 +02:00
Paul Mackerras
ae2113a4f1 KVM: PPC: Book3S: Allow only implemented hcalls to be enabled or disabled
This adds code to check that when the KVM_CAP_PPC_ENABLE_HCALL
capability is used to enable or disable in-kernel handling of an
hcall, that the hcall is actually implemented by the kernel.
If not an EINVAL error is returned.

This also checks the default-enabled list of hcalls and prints a
warning if any hcall there is not actually implemented.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:18 +02:00
Paul Mackerras
699a0ea082 KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling
This provides a way for userspace controls which sPAPR hcalls get
handled in the kernel.  Each hcall can be individually enabled or
disabled for in-kernel handling, except for H_RTAS.  The exception
for H_RTAS is because userspace can already control whether
individual RTAS functions are handled in-kernel or not via the
KVM_PPC_RTAS_DEFINE_TOKEN ioctl, and because the numeric value for
H_RTAS is out of the normal sequence of hcall numbers.

Hcalls are enabled or disabled using the KVM_ENABLE_CAP ioctl for the
KVM_CAP_PPC_ENABLE_HCALL capability on the file descriptor for the VM.
The args field of the struct kvm_enable_cap specifies the hcall number
in args[0] and the enable/disable flag in args[1]; 0 means disable
in-kernel handling (so that the hcall will always cause an exit to
userspace) and 1 means enable.  Enabling or disabling in-kernel
handling of an hcall is effective across the whole VM.

The ability for KVM_ENABLE_CAP to be used on a VM file descriptor
on PowerPC is new, added by this commit.  The KVM_CAP_ENABLE_CAP_VM
capability advertises that this ability exists.

When a VM is created, an initial set of hcalls are enabled for
in-kernel handling.  The set that is enabled is the set that have
an in-kernel implementation at this point.  Any new hcall
implementations from this point onwards should not be added to the
default set without a good reason.

No distinction is made between real-mode and virtual-mode hcall
implementations; the one setting controls them both.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:17 +02:00
Alexander Graf
f396df3518 KVM: PPC: Book3S PR: Fix sparse endian checks
While sending sparse with endian checks over the code base, it triggered at
some places that were missing casts or had wrong types. Fix them up.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:16 +02:00
Alexander Graf
5deb8e7ad8 KVM: PPC: Make shared struct aka magic page guest endian
The shared (magic) page is a data structure that contains often used
supervisor privileged SPRs accessible via memory to the user to reduce
the number of exits we have to take to read/write them.

When we actually share this structure with the guest we have to maintain
it in guest endianness, because some of the patch tricks only work with
native endian load/store operations.

Since we only share the structure with either host or guest in little
endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.

For booke, the shared struct stays big endian. For book3s_64 hv we maintain
the struct in host native endian, since it never gets shared with the guest.

For book3s_64 pr we introduce a variable that tells us which endianness the
shared struct is in and route every access to it through helper inline
functions that evaluate this variable.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:21 +02:00
Alexander Graf
1692aa3faa KVM: PPC: Book3S PR: PAPR: Access HTAB in big endian
The HTAB on PPC is always in big endian. When we access it via hypercalls
on behalf of the guest and we're running on a little endian host, we need
to make sure we swap the bits accordingly.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:20 +02:00
Paul Mackerras
9308ab8e2d KVM: PPC: Book3S PR: Make HPT accesses and updates SMP-safe
This adds a per-VM mutex to provide mutual exclusion between vcpus
for accesses to and updates of the guest hashed page table (HPT).
This also makes the code use single-byte writes to the HPT entry
when updating of the reference (R) and change (C) bits.  The reason
for doing this, rather than writing back the whole HPTE, is that on
non-PAPR virtual machines, the guest OS might be writing to the HPTE
concurrently, and writing back the whole HPTE might conflict with
that.  Also, real hardware does single-byte writes to update R and C.

The new mutex is taken in kvmppc_mmu_book3s_64_xlate() when reading
the HPT and updating R and/or C, and in the PAPR HPT update hcalls
(H_ENTER, H_REMOVE, etc.).  Having the mutex means that we don't need
to use a hypervisor lock bit in the HPT update hcalls, and we don't
need to be careful about the order in which the bytes of the HPTE are
updated by those hcalls.

The other change here is to make emulated TLB invalidations (tlbie)
effective across all vcpus.  To do this we call kvmppc_mmu_pte_vflush
for all vcpus in kvmppc_ppc_book3s_64_tlbie().

For 32-bit, this makes the setting of the accessed and dirty bits use
single-byte writes, and makes tlbie invalidate shadow HPTEs for all
vcpus.

With this, PR KVM can successfully run SMP guests.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:04 +02:00
Paul Mackerras
5cd92a9521 KVM: PPC: Book3S PR: Correct errors in H_ENTER implementation
The implementation of H_ENTER in PR KVM has some errors:

* With H_EXACT not set, if the HPTEG is full, we return H_PTEG_FULL
  as the return value of kvmppc_h_pr_enter, but the caller is expecting
  one of the EMULATE_* values.  The H_PTEG_FULL needs to go in the
  guest's R3 instead.

* With H_EXACT set, if the selected HPTE is already valid, the H_ENTER
  call should return a H_PTEG_FULL error.

This fixes these errors and also makes it write only the selected HPTE,
not the whole group, since only the selected HPTE has been modified.
This also micro-optimizes the calculations involving pte_index and i.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:04 +02:00
Paul Mackerras
8e44ddc3f3 powerpc/kvm/book3s: Add support for H_IPOLL and H_XIRR_X in XICS emulation
This adds the remaining two hypercalls defined by PAPR for manipulating
the XICS interrupt controller, H_IPOLL and H_XIRR_X.  H_IPOLL returns
information about the priority and pending interrupts for a virtual
cpu, without changing any state.  H_XIRR_X is like H_XIRR in that it
reads and acknowledges the highest-priority pending interrupt, but it
also returns the timestamp (timebase register value) from when the
interrupt was first received by the hypervisor.  Currently we just
return the current time, since we don't do any software queueing of
virtual interrupts inside the XICS emulation code.

These hcalls are not currently used by Linux guests, but may be in
future.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-06-01 08:29:27 +10:00
Benjamin Herrenschmidt
bc5ad3f370 KVM: PPC: Book3S: Add kernel emulation for the XICS interrupt controller
This adds in-kernel emulation of the XICS (eXternal Interrupt
Controller Specification) interrupt controller specified by PAPR, for
both HV and PR KVM guests.

The XICS emulation supports up to 1048560 interrupt sources.
Interrupt source numbers below 16 are reserved; 0 is used to mean no
interrupt and 2 is used for IPIs.  Internally these are represented in
blocks of 1024, called ICS (interrupt controller source) entities, but
that is not visible to userspace.

Each vcpu gets one ICP (interrupt controller presentation) entity,
used to store the per-vcpu state such as vcpu priority, pending
interrupt state, IPI request, etc.

This does not include any API or any way to connect vcpus to their
ICP state; that will be added in later patches.

This is based on an initial implementation by Michael Ellerman
<michael@ellerman.id.au> reworked by Benjamin Herrenschmidt and
Paul Mackerras.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix typo, add dependency on !KVM_MPIC]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:30 +02:00
Michael Ellerman
8e591cb720 KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS calls
For pseries machine emulation, in order to move the interrupt
controller code to the kernel, we need to intercept some RTAS
calls in the kernel itself.  This adds an infrastructure to allow
in-kernel handlers to be registered for RTAS services by name.
A new ioctl, KVM_PPC_RTAS_DEFINE_TOKEN, then allows userspace to
associate token values with those service names.  Then, when the
guest requests an RTAS service with one of those token values, it
will be handled by the relevant in-kernel handler rather than being
passed up to userspace as at present.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix warning]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:29 +02:00
Benjamin Herrenschmidt
1dee7a3dc8 powerpc/kvm: Fix "PR" KVM implementation of H_CEDE
H_CEDE should enable the vcpu's MSR:EE bit. It does on "HV" KVM (it's
burried in the assembly code though) and as far as I can tell, qemu
does it as well.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-07-11 17:36:38 +02:00
Benjamin Herrenschmidt
f31e65e117 kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
There is nothing in the code for emulating TCE tables in the kernel
that prevents it from working on "PR" KVM... other than ifdef's and
location of the code.

This and moves the bulk of the code there to a new file called
book3s_64_vio.c.

This speeds things up a bit on my G5.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix for hv kvm, 32bit, whitespace]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-06 16:19:11 +02:00
Alexander Graf
966cd0f3bd KVM: PPC: Ignore unhalt request from kvm_vcpu_block
When running kvm_vcpu_block and it realizes that the CPU is actually good
to run, we get a request bit set for KVM_REQ_UNHALT. Right now, there's
nothing we can do with that bit, so let's unset it right after the call
again so we don't get confused in our later checks for pending work.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 14:02:38 +03:00
Matt Evans
3aaefef200 KVM: PPC: Book3s: PR: Add SPAPR H_BULK_REMOVE support
SPAPR support includes various in-kernel hypercalls, improving performance
by cutting out the exit to userspace.  H_BULK_REMOVE is implemented in this
patch.

Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:55:31 +03:00
Alexander Graf
0254f07429 KVM: PPC: Add PAPR hypercall code for PR mode
When running a PAPR guest, we need to handle a few hypercalls in kernel space,
most prominently the page table invalidation (to sync the shadows).

So this patch adds handling for a few PAPR hypercalls to PR mode KVM. I tried
to share the code with HV mode, but it ended up being a lot easier this way
around, as the two differ too much in those details.

Signed-off-by: Alexander Graf <agraf@suse.de>

---

v1 -> v2:

  - whitespace fix
2011-09-25 19:52:24 +03:00