2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 14:13:58 +08:00
Commit Graph

4 Commits

Author SHA1 Message Date
Mathieu Desnoyers
8aec0f5d41 Fix: compat_rw_copy_check_uvector() misuse in aio, readv, writev, and security keys
Looking at mm/process_vm_access.c:process_vm_rw() and comparing it to
compat_process_vm_rw() shows that the compatibility code requires an
explicit "access_ok()" check before calling
compat_rw_copy_check_uvector(). The same difference seems to appear when
we compare fs/read_write.c:do_readv_writev() to
fs/compat.c:compat_do_readv_writev().

This subtle difference between the compat and non-compat requirements
should probably be debated, as it seems to be error-prone. In fact,
there are two others sites that use this function in the Linux kernel,
and they both seem to get it wrong:

Now shifting our attention to fs/aio.c, we see that aio_setup_iocb()
also ends up calling compat_rw_copy_check_uvector() through
aio_setup_vectored_rw(). Unfortunately, the access_ok() check appears to
be missing. Same situation for
security/keys/compat.c:compat_keyctl_instantiate_key_iov().

I propose that we add the access_ok() check directly into
compat_rw_copy_check_uvector(), so callers don't have to worry about it,
and it therefore makes the compat call code similar to its non-compat
counterpart. Place the access_ok() check in the same location where
copy_from_user() can trigger a -EFAULT error in the non-compat code, so
the ABI behaviors are alike on both compat and non-compat.

While we are here, fix compat_do_readv_writev() so it checks for
compat_rw_copy_check_uvector() negative return values.

And also, fix a memory leak in compat_keyctl_instantiate_key_iov() error
handling.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-03-12 11:05:45 -07:00
Christopher Yeoh
ac34ebb3a6 aio/vfs: cleanup of rw_copy_check_uvector() and compat_rw_copy_check_uvector()
A cleanup of rw_copy_check_uvector and compat_rw_copy_check_uvector after
changes made to support CMA in an earlier patch.

Rather than having an additional check_access parameter to these
functions, the first paramater type is overloaded to allow the caller to
specify CHECK_IOVEC_ONLY which means check that the contents of the iovec
are valid, but do not check the memory that they point to.  This is used
by process_vm_readv/writev where we need to validate that a iovec passed
to the syscall is valid but do not want to check the memory that it points
to at this point because it refers to an address space in another process.

Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-31 17:49:32 -07:00
Christopher Yeoh
8cdb878dcb Fix race in process_vm_rw_core
This fixes the race in process_vm_core found by Oleg (see

  http://article.gmane.org/gmane.linux.kernel/1235667/

for details).

This has been updated since I last sent it as the creation of the new
mm_access() function did almost exactly the same thing as parts of the
previous version of this patch did.

In order to use mm_access() even when /proc isn't enabled, we move it to
kernel/fork.c where other related process mm access functions already
are.

Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-02-02 12:55:17 -08:00
Christopher Yeoh
fcf634098c Cross Memory Attach
The basic idea behind cross memory attach is to allow MPI programs doing
intra-node communication to do a single copy of the message rather than a
double copy of the message via shared memory.

The following patch attempts to achieve this by allowing a destination
process, given an address and size from a source process, to copy memory
directly from the source process into its own address space via a system
call.  There is also a symmetrical ability to copy from the current
process's address space into a destination process's address space.

- Use of /proc/pid/mem has been considered, but there are issues with
  using it:
  - Does not allow for specifying iovecs for both src and dest, assuming
    preadv or pwritev was implemented either the area read from or
  written to would need to be contiguous.
  - Currently mem_read allows only processes who are currently
  ptrace'ing the target and are still able to ptrace the target to read
  from the target. This check could possibly be moved to the open call,
  but its not clear exactly what race this restriction is stopping
  (reason  appears to have been lost)
  - Having to send the fd of /proc/self/mem via SCM_RIGHTS on unix
  domain socket is a bit ugly from a userspace point of view,
  especially when you may have hundreds if not (eventually) thousands
  of processes  that all need to do this with each other
  - Doesn't allow for some future use of the interface we would like to
  consider adding in the future (see below)
  - Interestingly reading from /proc/pid/mem currently actually
  involves two copies! (But this could be fixed pretty easily)

As mentioned previously use of vmsplice instead was considered, but has
problems.  Since you need the reader and writer working co-operatively if
the pipe is not drained then you block.  Which requires some wrapping to
do non blocking on the send side or polling on the receive.  In all to all
communication it requires ordering otherwise you can deadlock.  And in the
example of many MPI tasks writing to one MPI task vmsplice serialises the
copying.

There are some cases of MPI collectives where even a single copy interface
does not get us the performance gain we could.  For example in an
MPI_Reduce rather than copy the data from the source we would like to
instead use it directly in a mathops (say the reduce is doing a sum) as
this would save us doing a copy.  We don't need to keep a copy of the data
from the source.  I haven't implemented this, but I think this interface
could in the future do all this through the use of the flags - eg could
specify the math operation and type and the kernel rather than just
copying the data would apply the specified operation between the source
and destination and store it in the destination.

Although we don't have a "second user" of the interface (though I've had
some nibbles from people who may be interested in using it for intra
process messaging which is not MPI).  This interface is something which
hardware vendors are already doing for their custom drivers to implement
fast local communication.  And so in addition to this being useful for
OpenMPI it would mean the driver maintainers don't have to fix things up
when the mm changes.

There was some discussion about how much faster a true zero copy would
go. Here's a link back to the email with some testing I did on that:

http://marc.info/?l=linux-mm&m=130105930902915&w=2

There is a basic man page for the proposed interface here:

http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt

This has been implemented for x86 and powerpc, other architecture should
mainly (I think) just need to add syscall numbers for the process_vm_readv
and process_vm_writev. There are 32 bit compatibility versions for
64-bit kernels.

For arch maintainers there are some simple tests to be able to quickly
verify that the syscalls are working correctly here:

http://ozlabs.org/~cyeoh/cma/cma-test-20110718.tgz

Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: <linux-man@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00