We have allowed migration for only LRU pages until now and it was enough
to make high-order pages. But recently, embedded system(e.g., webOS,
android) uses lots of non-movable pages(e.g., zram, GPU memory) so we
have seen several reports about troubles of small high-order allocation.
For fixing the problem, there were several efforts (e,g,. enhance
compaction algorithm, SLUB fallback to 0-order page, reserved memory,
vmalloc and so on) but if there are lots of non-movable pages in system,
their solutions are void in the long run.
So, this patch is to support facility to change non-movable pages with
movable. For the feature, this patch introduces functions related to
migration to address_space_operations as well as some page flags.
If a driver want to make own pages movable, it should define three
functions which are function pointers of struct
address_space_operations.
1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);
What VM expects on isolate_page function of driver is to return *true*
if driver isolates page successfully. On returing true, VM marks the
page as PG_isolated so concurrent isolation in several CPUs skip the
page for isolation. If a driver cannot isolate the page, it should
return *false*.
Once page is successfully isolated, VM uses page.lru fields so driver
shouldn't expect to preserve values in that fields.
2. int (*migratepage) (struct address_space *mapping,
struct page *newpage, struct page *oldpage, enum migrate_mode);
After isolation, VM calls migratepage of driver with isolated page. The
function of migratepage is to move content of the old page to new page
and set up fields of struct page newpage. Keep in mind that you should
indicate to the VM the oldpage is no longer movable via
__ClearPageMovable() under page_lock if you migrated the oldpage
successfully and returns 0. If driver cannot migrate the page at the
moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page
migration in a short time because VM interprets -EAGAIN as "temporal
migration failure". On returning any error except -EAGAIN, VM will give
up the page migration without retrying in this time.
Driver shouldn't touch page.lru field VM using in the functions.
3. void (*putback_page)(struct page *);
If migration fails on isolated page, VM should return the isolated page
to the driver so VM calls driver's putback_page with migration failed
page. In this function, driver should put the isolated page back to the
own data structure.
4. non-lru movable page flags
There are two page flags for supporting non-lru movable page.
* PG_movable
Driver should use the below function to make page movable under
page_lock.
void __SetPageMovable(struct page *page, struct address_space *mapping)
It needs argument of address_space for registering migration family
functions which will be called by VM. Exactly speaking, PG_movable is
not a real flag of struct page. Rather than, VM reuses page->mapping's
lower bits to represent it.
#define PAGE_MAPPING_MOVABLE 0x2
page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;
so driver shouldn't access page->mapping directly. Instead, driver
should use page_mapping which mask off the low two bits of page->mapping
so it can get right struct address_space.
For testing of non-lru movable page, VM supports __PageMovable function.
However, it doesn't guarantee to identify non-lru movable page because
page->mapping field is unified with other variables in struct page. As
well, if driver releases the page after isolation by VM, page->mapping
doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at
__ClearPageMovable). But __PageMovable is cheap to catch whether page
is LRU or non-lru movable once the page has been isolated. Because LRU
pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also
good for just peeking to test non-lru movable pages before more
expensive checking with lock_page in pfn scanning to select victim.
For guaranteeing non-lru movable page, VM provides PageMovable function.
Unlike __PageMovable, PageMovable functions validates page->mapping and
mapping->a_ops->isolate_page under lock_page. The lock_page prevents
sudden destroying of page->mapping.
Driver using __SetPageMovable should clear the flag via
__ClearMovablePage under page_lock before the releasing the page.
* PG_isolated
To prevent concurrent isolation among several CPUs, VM marks isolated
page as PG_isolated under lock_page. So if a CPU encounters PG_isolated
non-lru movable page, it can skip it. Driver doesn't need to manipulate
the flag because VM will set/clear it automatically. Keep in mind that
if driver sees PG_isolated page, it means the page have been isolated by
VM so it shouldn't touch page.lru field. PG_isolated is alias with
PG_reclaim flag so driver shouldn't use the flag for own purpose.
[opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru]
Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test
Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: John Einar Reitan <john.reitan@foss.arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently, I got many reports about perfermance degradation in embedded
system(Android mobile phone, webOS TV and so on) and easy fork fail.
The problem was fragmentation caused by zram and GPU driver mainly.
With memory pressure, their pages were spread out all of pageblock and
it cannot be migrated with current compaction algorithm which supports
only LRU pages. In the end, compaction cannot work well so reclaimer
shrinks all of working set pages. It made system very slow and even to
fail to fork easily which requires order-[2 or 3] allocations.
Other pain point is that they cannot use CMA memory space so when OOM
kill happens, I can see many free pages in CMA area, which is not memory
efficient. In our product which has big CMA memory, it reclaims zones
too exccessively to allocate GPU and zram page although there are lots
of free space in CMA so system becomes very slow easily.
To solve these problem, this patch tries to add facility to migrate
non-lru pages via introducing new functions and page flags to help
migration.
struct address_space_operations {
..
..
bool (*isolate_page)(struct page *, isolate_mode_t);
void (*putback_page)(struct page *);
..
}
new page flags
PG_movable
PG_isolated
For details, please read description in "mm: migrate: support non-lru
movable page migration".
Originally, Gioh Kim had tried to support this feature but he moved so I
took over the work. I took many code from his work and changed a little
bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to
have many credit, too.
And I should mention Chulmin who have tested this patchset heavily so I
can find many bugs from him. :)
Thanks, Gioh, Konstantin and Chulmin!
This patchset consists of five parts.
1. clean up migration
mm: use put_page to free page instead of putback_lru_page
2. add non-lru page migration feature
mm: migrate: support non-lru movable page migration
3. rework KVM memory-ballooning
mm: balloon: use general non-lru movable page feature
4. zsmalloc refactoring for preparing page migration
zsmalloc: keep max_object in size_class
zsmalloc: use bit_spin_lock
zsmalloc: use accessor
zsmalloc: factor page chain functionality out
zsmalloc: introduce zspage structure
zsmalloc: separate free_zspage from putback_zspage
zsmalloc: use freeobj for index
5. zsmalloc page migration
zsmalloc: page migration support
zram: use __GFP_MOVABLE for memory allocation
This patch (of 12):
Procedure of page migration is as follows:
First of all, it should isolate a page from LRU and try to migrate the
page. If it is successful, it releases the page for freeing.
Otherwise, it should put the page back to LRU list.
For LRU pages, we have used putback_lru_page for both freeing and
putback to LRU list. It's okay because put_page is aware of LRU list so
if it releases last refcount of the page, it removes the page from LRU
list. However, It makes unnecessary operations (e.g., lru_cache_add,
pagevec and flags operations. It would be not significant but no worth
to do) and harder to support new non-lru page migration because put_page
isn't aware of non-lru page's data structure.
To solve the problem, we can add new hook in put_page with PageMovable
flags check but it can increase overhead in hot path and needs new
locking scheme to stabilize the flag check with put_page.
So, this patch cleans it up to divide two semantic(ie, put and putback).
If migration is successful, use put_page instead of putback_lru_page and
use putback_lru_page only on failure. That makes code more readable and
doesn't add overhead in put_page.
Comment from Vlastimil
"Yeah, and compaction (perhaps also other migration users) has to drain
the lru pvec... Getting rid of this stuff is worth even by itself."
Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's a part of oom context just like allocation order and nodemask, so
let's move it to oom_control instead of passing it in the argument list.
Link: http://lkml.kernel.org/r/40e03fd7aaf1f55c75d787128d6d17c5a71226c2.1464358556.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not used since oom_lock was instroduced.
Link: http://lkml.kernel.org/r/1464358093-22663-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory is onlined, we are only able to rezone from ZONE_MOVABLE to
ZONE_KERNEL, or from (ZONE_MOVABLE - 1) to ZONE_MOVABLE.
To be more flexible, use the following criteria instead; to online
memory from zone X into zone Y,
* Any zones between X and Y must be unused.
* If X is lower than Y, the onlined memory must lie at the end of X.
* If X is higher than Y, the onlined memory must lie at the start of X.
Add zone_can_shift() to make this determination.
Link: http://lkml.kernel.org/r/1462816419-4479-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewd-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add move_pfn_range(), a wrapper to call move_pfn_range_left() or
move_pfn_range_right().
No functional change. This will be utilized by a later patch.
Link: http://lkml.kernel.org/r/1462816419-4479-2-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As a part of memory initialisation the architecture passes an array to
free_area_init_nodes() which specifies the max PFN of each memory zone.
This array is not necessarily monotonic (due to unused zones) so this
array is parsed to build monotonic lists of the min and max PFN for each
zone. ZONE_MOVABLE is special cased here as its limits are managed by
the mm subsystem rather than the architecture. Unfortunately, this
special casing is broken when ZONE_MOVABLE is the not the last zone in
the zone list. The core of the issue is:
if (i == ZONE_MOVABLE)
continue;
arch_zone_lowest_possible_pfn[i] =
arch_zone_highest_possible_pfn[i-1];
As ZONE_MOVABLE is skipped the lowest_possible_pfn of the next zone will
be set to zero. This patch fixes this bug by adding explicitly tracking
where the next zone should start rather than relying on the contents
arch_zone_highest_possible_pfn[].
Thie is low priority. To get bitten by this you need to enable a zone
that appears after ZONE_MOVABLE in the zone_type enum. As far as I can
tell this means running a kernel with ZONE_DEVICE or ZONE_CMA enabled,
so I can't see this affecting too many people.
I only noticed this because I've been fiddling with ZONE_DEVICE on
powerpc and 4.6 broke my test kernel. This bug, in conjunction with the
changes in Taku Izumi's kernelcore=mirror patch (d91749c1dd) and
powerpc being the odd architecture which initialises max_zone_pfn[] to
~0ul instead of 0 caused all of system memory to be placed into
ZONE_DEVICE at boot, followed a panic since device memory cannot be used
for kernel allocations. I've already submitted a patch to fix the
powerpc specific bits, but I figured this should be fixed too.
Link: http://lkml.kernel.org/r/1462435033-15601-1-git-send-email-oohall@gmail.com
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It seems like this parameter has never been used since being introduced
by 90254a6583 ("memcg: clean up move charge"). Not a big deal because
I assume the function would get inlined into the caller anyway but why
not get rid of it.
[mhocko@suse.com: wrote changelog]
Link: http://lkml.kernel.org/r/20160525151831.GJ20132@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1464145026-26693-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using list_move() instead of list_del() + list_add() to avoid needlessly
poisoning the next and prev values.
Link: http://lkml.kernel.org/r/1468929772-9174-1-git-send-email-weiyj_lk@163.com
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both SLAB and SLUB BUG() when a caller provides an invalid gfp_mask.
This is a rather harsh way to announce a non-critical issue. Allocator
is free to ignore invalid flags. Let's simply replace BUG() by
dump_stack to tell the offender and fixup the mask to move on with the
allocation request.
This is an example for kmalloc(GFP_KERNEL|__GFP_HIGHMEM) from a test
module:
Unexpected gfp: 0x2 (__GFP_HIGHMEM). Fixing up to gfp: 0x24000c0 (GFP_KERNEL). Fix your code!
CPU: 0 PID: 2916 Comm: insmod Tainted: G O 4.6.0-slabgfp2-00002-g4cdfc2ef4892-dirty #936
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Debian-1.8.2-1 04/01/2014
Call Trace:
dump_stack+0x67/0x90
cache_alloc_refill+0x201/0x617
kmem_cache_alloc_trace+0xa7/0x24a
? 0xffffffffa0005000
mymodule_init+0x20/0x1000 [test_slab]
do_one_initcall+0xe7/0x16c
? rcu_read_lock_sched_held+0x61/0x69
? kmem_cache_alloc_trace+0x197/0x24a
do_init_module+0x5f/0x1d9
load_module+0x1a3d/0x1f21
? retint_kernel+0x2d/0x2d
SyS_init_module+0xe8/0x10e
? SyS_init_module+0xe8/0x10e
do_syscall_64+0x68/0x13f
entry_SYSCALL64_slow_path+0x25/0x25
Link: http://lkml.kernel.org/r/1465548200-11384-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk offers %pGg for quite some time so let's use it to get a human
readable list of invalid flags.
The original output would be
[ 429.191962] gfp: 2
after the change
[ 429.191962] Unexpected gfp: 0x2 (__GFP_HIGHMEM)
Link: http://lkml.kernel.org/r/1465548200-11384-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implements freelist randomization for the SLUB allocator. It was
previous implemented for the SLAB allocator. Both use the same
configuration option (CONFIG_SLAB_FREELIST_RANDOM).
The list is randomized during initialization of a new set of pages. The
order on different freelist sizes is pre-computed at boot for
performance. Each kmem_cache has its own randomized freelist.
This security feature reduces the predictability of the kernel SLUB
allocator against heap overflows rendering attacks much less stable.
For example these attacks exploit the predictability of the heap:
- Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
- Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)
Performance results:
slab_test impact is between 3% to 4% on average for 100000 attempts
without smp. It is a very focused testing, kernbench show the overall
impact on the system is way lower.
Before:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 70 cycles
100000 times kmalloc(16)/kfree -> 70 cycles
100000 times kmalloc(32)/kfree -> 70 cycles
100000 times kmalloc(64)/kfree -> 70 cycles
100000 times kmalloc(128)/kfree -> 70 cycles
100000 times kmalloc(256)/kfree -> 69 cycles
100000 times kmalloc(512)/kfree -> 70 cycles
100000 times kmalloc(1024)/kfree -> 73 cycles
100000 times kmalloc(2048)/kfree -> 72 cycles
100000 times kmalloc(4096)/kfree -> 71 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 66 cycles
100000 times kmalloc(16)/kfree -> 66 cycles
100000 times kmalloc(32)/kfree -> 66 cycles
100000 times kmalloc(64)/kfree -> 66 cycles
100000 times kmalloc(128)/kfree -> 65 cycles
100000 times kmalloc(256)/kfree -> 67 cycles
100000 times kmalloc(512)/kfree -> 67 cycles
100000 times kmalloc(1024)/kfree -> 64 cycles
100000 times kmalloc(2048)/kfree -> 67 cycles
100000 times kmalloc(4096)/kfree -> 67 cycles
Kernbench, before:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 101.873 (1.16069)
User Time 1045.22 (1.60447)
System Time 88.969 (0.559195)
Percent CPU 1112.9 (13.8279)
Context Switches 189140 (2282.15)
Sleeps 99008.6 (768.091)
After:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 102.47 (0.562732)
User Time 1045.3 (1.34263)
System Time 88.311 (0.342554)
Percent CPU 1105.8 (6.49444)
Context Switches 189081 (2355.78)
Sleeps 99231.5 (800.358)
Link: http://lkml.kernel.org/r/1464295031-26375-3-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel heap allocators are using a sequential freelist making their
allocation predictable. This predictability makes kernel heap overflow
easier to exploit. An attacker can careful prepare the kernel heap to
control the following chunk overflowed.
For example these attacks exploit the predictability of the heap:
- Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
- Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)
***Problems that needed solving:
- Randomize the Freelist (singled linked) used in the SLUB allocator.
- Ensure good performance to encourage usage.
- Get best entropy in early boot stage.
***Parts:
- 01/02 Reorganize the SLAB Freelist randomization to share elements
with the SLUB implementation.
- 02/02 The SLUB Freelist randomization implementation. Similar approach
than the SLAB but tailored to the singled freelist used in SLUB.
***Performance data:
slab_test impact is between 3% to 4% on average for 100000 attempts
without smp. It is a very focused testing, kernbench show the overall
impact on the system is way lower.
Before:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 70 cycles
100000 times kmalloc(16)/kfree -> 70 cycles
100000 times kmalloc(32)/kfree -> 70 cycles
100000 times kmalloc(64)/kfree -> 70 cycles
100000 times kmalloc(128)/kfree -> 70 cycles
100000 times kmalloc(256)/kfree -> 69 cycles
100000 times kmalloc(512)/kfree -> 70 cycles
100000 times kmalloc(1024)/kfree -> 73 cycles
100000 times kmalloc(2048)/kfree -> 72 cycles
100000 times kmalloc(4096)/kfree -> 71 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 66 cycles
100000 times kmalloc(16)/kfree -> 66 cycles
100000 times kmalloc(32)/kfree -> 66 cycles
100000 times kmalloc(64)/kfree -> 66 cycles
100000 times kmalloc(128)/kfree -> 65 cycles
100000 times kmalloc(256)/kfree -> 67 cycles
100000 times kmalloc(512)/kfree -> 67 cycles
100000 times kmalloc(1024)/kfree -> 64 cycles
100000 times kmalloc(2048)/kfree -> 67 cycles
100000 times kmalloc(4096)/kfree -> 67 cycles
Kernbench, before:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 101.873 (1.16069)
User Time 1045.22 (1.60447)
System Time 88.969 (0.559195)
Percent CPU 1112.9 (13.8279)
Context Switches 189140 (2282.15)
Sleeps 99008.6 (768.091)
After:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 102.47 (0.562732)
User Time 1045.3 (1.34263)
System Time 88.311 (0.342554)
Percent CPU 1105.8 (6.49444)
Context Switches 189081 (2355.78)
Sleeps 99231.5 (800.358)
This patch (of 2):
This commit reorganizes the previous SLAB freelist randomization to
prepare for the SLUB implementation. It moves functions that will be
shared to slab_common.
The entropy functions are changed to align with the SLUB implementation,
now using get_random_(int|long) functions. These functions were chosen
because they provide a bit more entropy early on boot and better
performance when specific arch instructions are not available.
[akpm@linux-foundation.org: fix build]
Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
wait_sb_inodes() currently does a walk of all inodes in the filesystem
to find dirty one to wait on during sync. This is highly inefficient
and wastes a lot of CPU when there are lots of clean cached inodes that
we don't need to wait on.
To avoid this "all inode" walk, we need to track inodes that are
currently under writeback that we need to wait for. We do this by
adding inodes to a writeback list on the sb when the mapping is first
tagged as having pages under writeback. wait_sb_inodes() can then walk
this list of "inodes under IO" and wait specifically just for the inodes
that the current sync(2) needs to wait for.
Define a couple helpers to add/remove an inode from the writeback list
and call them when the overall mapping is tagged for or cleared from
writeback. Update wait_sb_inodes() to walk only the inodes under
writeback due to the sync.
With this change, filesystem sync times are significantly reduced for
fs' with largely populated inode caches and otherwise no other work to
do. For example, on a 16xcpu 2GHz x86-64 server, 10TB XFS filesystem
with a ~10m entry inode cache, sync times are reduced from ~7.3s to less
than 0.1s when the filesystem is fully clean.
Link: http://lkml.kernel.org/r/1466594593-6757-2-git-send-email-bfoster@redhat.com
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: Holger Hoffstätte <holger.hoffstaette@applied-asynchrony.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 mm updates from Ingo Molnar:
"Various x86 low level modifications:
- preparatory work to support virtually mapped kernel stacks (Andy
Lutomirski)
- support for 64-bit __get_user() on 32-bit kernels (Benjamin
LaHaise)
- (involved) workaround for Knights Landing CPU erratum (Dave Hansen)
- MPX enhancements (Dave Hansen)
- mremap() extension to allow remapping of the special VDSO vma, for
purposes of user level context save/restore (Dmitry Safonov)
- hweight and entry code cleanups (Borislav Petkov)
- bitops code generation optimizations and cleanups with modern GCC
(H. Peter Anvin)
- syscall entry code optimizations (Paolo Bonzini)"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
x86/mm/cpa: Add missing comment in populate_pdg()
x86/mm/cpa: Fix populate_pgd(): Stop trying to deallocate failed PUDs
x86/syscalls: Add compat_sys_preadv64v2/compat_sys_pwritev64v2
x86/smp: Remove unnecessary initialization of thread_info::cpu
x86/smp: Remove stack_smp_processor_id()
x86/uaccess: Move thread_info::addr_limit to thread_struct
x86/dumpstack: Rename thread_struct::sig_on_uaccess_error to sig_on_uaccess_err
x86/uaccess: Move thread_info::uaccess_err and thread_info::sig_on_uaccess_err to thread_struct
x86/dumpstack: When OOPSing, rewind the stack before do_exit()
x86/mm/64: In vmalloc_fault(), use CR3 instead of current->active_mm
x86/dumpstack/64: Handle faults when printing the "Stack: " part of an OOPS
x86/dumpstack: Try harder to get a call trace on stack overflow
x86/mm: Remove kernel_unmap_pages_in_pgd() and efi_cleanup_page_tables()
x86/mm/cpa: In populate_pgd(), don't set the PGD entry until it's populated
x86/mm/hotplug: Don't remove PGD entries in remove_pagetable()
x86/mm: Use pte_none() to test for empty PTE
x86/mm: Disallow running with 32-bit PTEs to work around erratum
x86/mm: Ignore A/D bits in pte/pmd/pud_none()
x86/mm: Move swap offset/type up in PTE to work around erratum
x86/entry: Inline enter_from_user_mode()
...
The memory controller has quite a bit of state that usually outlives the
cgroup and pins its CSS until said state disappears. At the same time
it imposes a 16-bit limit on the CSS ID space to economically store IDs
in the wild. Consequently, when we use cgroups to contain frequent but
small and short-lived jobs that leave behind some page cache, we quickly
run into the 64k limitations of outstanding CSSs. Creating a new cgroup
fails with -ENOSPC while there are only a few, or even no user-visible
cgroups in existence.
Although pinning CSSs past cgroup removal is common, there are only two
instances that actually need an ID after a cgroup is deleted: cache
shadow entries and swapout records.
Cache shadow entries reference the ID weakly and can deal with the CSS
having disappeared when it's looked up later. They pose no hurdle.
Swap-out records do need to pin the css to hierarchically attribute
swapins after the cgroup has been deleted; though the only pages that
remain swapped out after offlining are tmpfs/shmem pages. And those
references are under the user's control, so they are manageable.
This patch introduces a private 16-bit memcg ID and switches swap and
cache shadow entries over to using that. This ID can then be recycled
after offlining when the CSS remains pinned only by objects that don't
specifically need it.
This script demonstrates the problem by faulting one cache page in a new
cgroup and deleting it again:
set -e
mkdir -p pages
for x in `seq 128000`; do
[ $((x % 1000)) -eq 0 ] && echo $x
mkdir /cgroup/foo
echo $$ >/cgroup/foo/cgroup.procs
echo trex >pages/$x
echo $$ >/cgroup/cgroup.procs
rmdir /cgroup/foo
done
When run on an unpatched kernel, we eventually run out of possible IDs
even though there are no visible cgroups:
[root@ham ~]# ./cssidstress.sh
[...]
65000
mkdir: cannot create directory '/cgroup/foo': No space left on device
After this patch, the IDs get released upon cgroup destruction and the
cache and css objects get released once memory reclaim kicks in.
[hannes@cmpxchg.org: init the IDR]
Link: http://lkml.kernel.org/r/20160621154601.GA22431@cmpxchg.org
Fixes: b2052564e6 ("mm: memcontrol: continue cache reclaim from offlined groups")
Link: http://lkml.kernel.org/r/20160617162516.GD19084@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: John Garcia <john.garcia@mesosphere.io>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Nikolay Borisov <kernel@kyup.com>
Cc: <stable@vger.kernel.org> [3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 612e44939c ("mm: workingset: eviction buckets for bigmem/lowbit
machines") added a printk without a log level. Quieten it by using
pr_info().
Link: http://lkml.kernel.org/r/1466982072-29836-2-git-send-email-anton@ozlabs.org
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM_BUG_ON_PAGE in page_move_anon_rmap() is more trouble than it's
worth: the syzkaller fuzzer hit it again. It's still wrong for some THP
cases, because linear_page_index() was never intended to apply to
addresses before the start of a vma.
That's easily fixed with a signed long cast inside linear_page_index();
and Dmitry has tested such a patch, to verify the false positive. But
why extend linear_page_index() just for this case? when the avoidance in
page_move_anon_rmap() has already grown ugly, and there's no reason for
the check at all (nothing else there is using address or index).
Remove address arg from page_move_anon_rmap(), remove VM_BUG_ON_PAGE,
remove CONFIG_DEBUG_VM PageTransHuge adjustment.
And one more thing: should the compound_head(page) be done inside or
outside page_move_anon_rmap()? It's usually pushed down to the lowest
level nowadays (and mm/memory.c shows no other explicit use of it), so I
think it's better done in page_move_anon_rmap() than by caller.
Fixes: 0798d3c022 ("mm: thp: avoid false positive VM_BUG_ON_PAGE in page_move_anon_rmap()")
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1607120444540.12528@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous patch addresses the race between split_huge_pmd_address()
and someone changing the pmd. The fix is only for splitting of normal
thp (i.e. pmd-mapped thp,) and for splitting of pte-mapped thp there
still is the similar race.
For splitting pte-mapped thp, the pte's conversion is done by
try_to_unmap_one(TTU_MIGRATION). This function checks
page_check_address() to get the target pte, but it can return NULL under
some race, leading to VM_BUG_ON() in freeze_page(). Fortunately,
page_check_address() already has an argument to decide whether we do a
quick/racy check or not, so let's flip it when called from
freeze_page().
Link: http://lkml.kernel.org/r/1466990929-7452-2-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_page_uninitialised looks up an arbitrary PFN. While a machine
without node 0 will boot with "mm, page_alloc: Always return a valid
node from early_pfn_to_nid", it works because it assumes that nodes are
always in PFN order. This is not guaranteed so this patch adds
robustness by always checking if the node being checked is online.
Link: http://lkml.kernel.org/r/1468008031-3848-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_pfn_to_nid can return node 0 if a PFN is invalid on machines that
has no node 0. A machine with only node 1 was observed to crash with
the following message:
BUG: unable to handle kernel paging request at 000000000002a3c8
PGD 0
Modules linked in:
Hardware name: Supermicro H8DSP-8/H8DSP-8, BIOS 080011 06/30/2006
task: ffffffff81c0d500 ti: ffffffff81c00000 task.ti: ffffffff81c00000
RIP: reserve_bootmem_region+0x6a/0xef
CR2: 000000000002a3c8 CR3: 0000000001c06000 CR4: 00000000000006b0
Call Trace:
free_all_bootmem+0x4b/0x12a
mem_init+0x70/0xa3
start_kernel+0x25b/0x49b
The problem is that early_page_uninitialised uses the early_pfn_to_nid
helper which returns node 0 for invalid PFNs. No caller of
early_pfn_to_nid cares except early_page_uninitialised. This patch has
early_pfn_to_nid always return a valid node.
Link: http://lkml.kernel.org/r/1468008031-3848-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two bugs on qlist_move_cache(). One is that qlist's tail
isn't set properly. curr->next can be NULL since it is singly linked
list and NULL value on tail is invalid if there is one item on qlist.
Another one is that if cache is matched, qlist_put() is called and it
will set curr->next to NULL. It would cause to stop the loop
prematurely.
These problems come from complicated implementation so I'd like to
re-implement it completely. Implementation in this patch is really
simple. Iterate all qlist_nodes and put them to appropriate list.
Unfortunately, I got this bug sometime ago and lose oops message. But,
the bug looks trivial and no need to attach oops.
Fixes: 55834c5909 ("mm: kasan: initial memory quarantine implementation")
Link: http://lkml.kernel.org/r/1467766348-22419-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Kuthonuzo Luruo <poll.stdin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise_free_huge_pmd should return 0 if the fallback PTE operations are
required. In madvise_free_huge_pmd, if part pages of THP are discarded,
the THP will be split and fallback PTE operations should be used if
splitting succeeds. But the original code will make fallback PTE
operations skipped, after splitting succeeds. Fix that via make
madvise_free_huge_pmd return 0 after splitting successfully, so that the
fallback PTE operations will be done.
Link: http://lkml.kernel.org/r/1467135452-16688-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's possible to isolate some freepages in a pageblock and then fail
split_free_page() due to the low watermark check. In this case, we hit
VM_BUG_ON() because the freeing scanner terminated early without a
contended lock or enough freepages.
This should never have been a VM_BUG_ON() since it's not a fatal
condition. It should have been a VM_WARN_ON() at best, or even handled
gracefully.
Regardless, we need to terminate anytime the full pageblock scan was not
done. The logic belongs in isolate_freepages_block(), so handle its
state gracefully by terminating the pageblock loop and making a note to
restart at the same pageblock next time since it was not possible to
complete the scan this time.
[rientjes@google.com: don't rescan pages in a pageblock]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1607111244150.83138@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606291436300.145590@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Minchan Kim <minchan@kernel.org>
Tested-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The well-spotted fallocate undo fix is good in most cases, but not when
fallocate failed on the very first page. index 0 then passes lend -1
to shmem_undo_range(), and that has two bad effects: (a) that it will
undo every fallocation throughout the file, unrestricted by the current
range; but more importantly (b) it can cause the undo to hang, because
lend -1 is treated as truncation, which makes it keep on retrying until
every page has gone, but those already fully instantiated will never go
away. Big thank you to xfstests generic/269 which demonstrates this.
Fixes: b9b4bb26af ("tmpfs: don't undo fallocate past its last page")
Cc: stable@vger.kernel.org
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add possibility for 32-bit user-space applications to move
the vDSO mapping.
Previously, when a user-space app called mremap() for the vDSO
address, in the syscall return path it would land on the previous
address of the vDSOpage, resulting in segmentation violation.
Now it lands fine and returns to userspace with a remapped vDSO.
This will also fix the context.vdso pointer for 64-bit, which does
not affect the user of vDSO after mremap() currently, but this
may change in the future.
As suggested by Andy, return -EINVAL for mremap() that would
split the vDSO image: that operation cannot possibly result in
a working system so reject it.
Renamed and moved the text_mapping structure declaration inside
map_vdso(), as it used only there and now it complements the
vvar_mapping variable.
There is still a problem for remapping the vDSO in glibc
applications: the linker relocates addresses for syscalls
on the vDSO page, so you need to relink with the new
addresses.
Without that the next syscall through glibc may fail:
Program received signal SIGSEGV, Segmentation fault.
#0 0xf7fd9b80 in __kernel_vsyscall ()
#1 0xf7ec8238 in _exit () from /usr/lib32/libc.so.6
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: 0x7f454c46@gmail.com
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160628113539.13606-2-dsafonov@virtuozzo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have dereferenced page_ext before checking it. Lets check it first
and then used it.
Fixes: f86e427197 ("mm: check the return value of lookup_page_ext for all call sites")
Link: http://lkml.kernel.org/r/1465249059-7883-1-git-send-email-sudipm.mukherjee@gmail.com
Signed-off-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the memory compaction free scanner cannot successfully split a free
page (only possible due to per-zone low watermark), terminate the free
scanner rather than continuing to scan memory needlessly. If the
watermark is insufficient for a free page of order <= cc->order, then
terminate the scanner since all future splits will also likely fail.
This prevents the compaction freeing scanner from scanning all memory on
very large zones (very noticeable for zones > 128GB, for instance) when
all splits will likely fail while holding zone->lock.
compaction_alloc() iterating a 128GB zone has been benchmarked to take
over 400ms on some systems whereas any free page isolated and ready to
be split ends up failing in split_free_page() because of the low
watermark check and thus the iteration continues.
The next time compaction occurs, the freeing scanner will likely start
at the end of the zone again since no success was made previously and we
get the same lengthy iteration until the zone is brought above the low
watermark. All thp page faults can take >400ms in such a state without
this fix.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211820350.97086@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While working on s390 support for gigantic hugepages I ran into the
following "Bad page state" warning when freeing gigantic pages:
BUG: Bad page state in process bash pfn:580001
page:000003d116000040 count:0 mapcount:0 mapping:ffffffff00000000 index:0x0
flags: 0x7fffc0000000000()
page dumped because: non-NULL mapping
This is because page->compound_mapcount, which is part of a union with
page->mapping, is initialized with -1 in prep_compound_gigantic_page(),
and not cleared again during destroy_compound_gigantic_page(). Fix this
by clearing the compound_mapcount in destroy_compound_gigantic_page()
before clearing compound_head.
Interestingly enough, the warning will not show up on x86_64, although
this should not be architecture specific. Apparently there is an
endianness issue, combined with the fact that the union contains both a
64 bit ->mapping pointer and a 32 bit atomic_t ->compound_mapcount as
members. The resulting bogus page->mapping on x86_64 therefore contains
00000000ffffffff instead of ffffffff00000000 on s390, which will falsely
trigger the PageAnon() check in free_pages_prepare() because
page->mapping & PAGE_MAPPING_ANON is true on little-endian architectures
like x86_64 in this case (the page is not compound anymore,
->compound_head was already cleared before). As a result, page->mapping
will be cleared before doing the checks in free_pages_check().
Not sure if the bogus "PageAnon() returning true" on x86_64 for the
first tail page of a gigantic page (at this stage) has other theoretical
implications, but they would also be fixed with this patch.
Link: http://lkml.kernel.org/r/1466612719-5642-1-git-send-email-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we can have compound pages held on per cpu pagevecs, which
leads to a lot of memory unavailable for reclaim when needed. In the
systems with hundreads of processors it can be GBs of memory.
On of the way of reproducing the problem is to not call munmap
explicitly on all mapped regions (i.e. after receiving SIGTERM). After
that some pages (with THP enabled also huge pages) may end up on
lru_add_pvec, example below.
void main() {
#pragma omp parallel
{
size_t size = 55 * 1000 * 1000; // smaller than MEM/CPUS
void *p = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS , -1, 0);
if (p != MAP_FAILED)
memset(p, 0, size);
//munmap(p, size); // uncomment to make the problem go away
}
}
When we run it with THP enabled it will leave significant amount of
memory on lru_add_pvec. This memory will be not reclaimed if we hit
OOM, so when we run above program in a loop:
for i in `seq 100`; do ./a.out; done
many processes (95% in my case) will be killed by OOM.
The primary point of the LRU add cache is to save the zone lru_lock
contention with a hope that more pages will belong to the same zone and
so their addition can be batched. The huge page is already a form of
batched addition (it will add 512 worth of memory in one go) so skipping
the batching seems like a safer option when compared to a potential
excess in the caching which can be quite large and much harder to fix
because lru_add_drain_all is way to expensive and it is not really clear
what would be a good moment to call it.
Similarly we can reproduce the problem on lru_deactivate_pvec by adding:
madvise(p, size, MADV_FREE); after memset.
This patch flushes lru pvecs on compound page arrival making the problem
less severe - after applying it kill rate of above example drops to 0%,
due to reducing maximum amount of memory held on pvec from 28MB (with
THP) to 56kB per CPU.
Suggested-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/1466180198-18854-1-git-send-email-lukasz.odzioba@intel.com
Signed-off-by: Lukasz Odzioba <lukasz.odzioba@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Ming Li <mingli199x@qq.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We account HugeTLB's shared page table to all processes who share it.
The accounting happens during huge_pmd_share().
If somebody populates pud entry under us, we should decrease pagetable's
refcount and decrease nr_pmds of the process.
By mistake, I increase nr_pmds again in this case. :-/ It will lead to
"BUG: non-zero nr_pmds on freeing mm: 2" on process' exit.
Let's fix this by increasing nr_pmds only when we're sure that the page
table will be used.
Link: http://lkml.kernel.org/r/20160617122506.GC6534@node.shutemov.name
Fixes: dc6c9a35b6 ("mm: account pmd page tables to the process")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: zhongjiang <zhongjiang@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit d0834a6c2c.
After revert of 5c0a85fad9 ("mm: make faultaround produce old ptes")
faultaround doesn't have dependencies on hardware accessed bit, so let's
revert this one too.
Link: http://lkml.kernel.org/r/1465893750-44080-3-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 5c0a85fad9.
The commit causes ~6% regression in unixbench.
Let's revert it for now and consider other solution for reclaim problem
later.
Link: http://lkml.kernel.org/r/1465893750-44080-2-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit d0164adc89 ("mm, page_alloc: distinguish between being unable
to sleep, unwilling to sleep and avoiding waking kswapd") modified
__GFP_WAIT to explicitly identify the difference between atomic callers
and those that were unwilling to sleep. Later the definition was
removed entirely.
The GFP_RECLAIM_MASK is the set of flags that affect watermark checking
and reclaim behaviour but __GFP_ATOMIC was never added. Without it,
atomic users of the slab allocator strip the __GFP_ATOMIC flag and
cannot access the page allocator atomic reserves. This patch addresses
the problem.
The user-visible impact depends on the workload but potentially atomic
allocations unnecessarily fail without this path.
Link: http://lkml.kernel.org/r/20160610093832.GK2527@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Marcin Wojtas <mw@semihalf.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org> [4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we may put reserved by mempool elements into quarantine via
kasan_kfree(). This is totally wrong since quarantine may really free
these objects. So when mempool will try to use such element,
use-after-free will happen. Or mempool may decide that it no longer
need that element and double-free it.
So don't put object into quarantine in kasan_kfree(), just poison it.
Rename kasan_kfree() to kasan_poison_kfree() to respect that.
Also, we shouldn't use kasan_slab_alloc()/kasan_krealloc() in
kasan_unpoison_element() because those functions may update allocation
stacktrace. This would be wrong for the most of the remove_element call
sites.
(The only call site where we may want to update alloc stacktrace is
in mempool_alloc(). Kmemleak solves this by calling
kmemleak_update_trace(), so we could make something like that too.
But this is out of scope of this patch).
Fixes: 55834c5909 ("mm: kasan: initial memory quarantine implementation")
Link: http://lkml.kernel.org/r/575977C3.1010905@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When fallocate is interrupted it will undo a range that extends one byte
past its range of allocated pages. This can corrupt an in-use page by
zeroing out its first byte. Instead, undo using the inclusive byte
range.
Fixes: 1635f6a741 ("tmpfs: undo fallocation on failure")
Link: http://lkml.kernel.org/r/1462713387-16724-1-git-send-email-anthony.romano@coreos.com
Signed-off-by: Anthony Romano <anthony.romano@coreos.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Brandon Philips <brandon@ifup.co>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 36324a990c ("oom: clear TIF_MEMDIE after oom_reaper
managed to unmap the address space") changed to use find_lock_task_mm()
for finding a mm_struct to reap, it is guaranteed that mm->mm_users > 0
because find_lock_task_mm() returns a task_struct with ->mm != NULL.
Therefore, we can safely use atomic_inc().
Link: http://lkml.kernel.org/r/1465024759-8074-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e2fe14564d ("oom_reaper: close race with exiting task") reduced
frequency of needlessly selecting next OOM victim, but was calling
mmput_async() when atomic_inc_not_zero() failed.
Link: http://lkml.kernel.org/r/1464423365-5555-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export these symbols such that UBIFS can implement
->migratepage.
Cc: stable@vger.kernel.org
Signed-off-by: Richard Weinberger <richard@nod.at>
Acked-by: Christoph Hellwig <hch@lst.de>
Pull percpu fixes from Tejun Heo:
"While adding GFP_ATOMIC support to the percpu allocator, the
synchronization for the fast-path which doesn't require external
allocations was separated into pcpu_lock.
Unfortunately, it incorrectly decoupled async paths and percpu
chunks could get destroyed while still being operated on. This
contains two patches to fix the bug"
* 'for-4.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: fix synchronization between synchronous map extension and chunk destruction
percpu: fix synchronization between chunk->map_extend_work and chunk destruction
Pull block layer fixes from Jens Axboe:
"A small collection of fixes for the current series. This contains:
- Two fixes for xen-blkfront, from Bob Liu.
- A bug fix for NVMe, releasing only the specific resources we
requested.
- Fix for a debugfs flags entry for nbd, from Josef.
- Plug fix from Omar, fixing up a case of code being switched between
two functions.
- A missing bio_put() for the new discard callers of
submit_bio_wait(), fixing a regression causing a leak of the bio.
From Shaun.
- Improve dirty limit calculation precision in the writeback code,
fixing a case where setting a limit lower than 1% of memory would
end up being zero. From Tejun"
* 'for-linus' of git://git.kernel.dk/linux-block:
NVMe: Only release requested regions
xen-blkfront: fix resume issues after a migration
xen-blkfront: don't call talk_to_blkback when already connected to blkback
nbd: pass the nbd pointer for flags debugfs
block: missing bio_put following submit_bio_wait
blk-mq: really fix plug list flushing for nomerge queues
writeback: use higher precision calculation in domain_dirty_limits()
I noticed that the logic in the fadvise64_64 syscall is incorrect for
partial pages. While first page of the region is correctly skipped if
it is partial, the last page of the region is mistakenly discarded.
This leads to problems for applications that read data in
non-page-aligned chunks discarding already processed data between the
reads.
A somewhat misguided application that does something like write(XX bytes
(non-page-alligned)); drop the data it just wrote; repeat gets a
significant penalty in performance as a result.
Link: http://lkml.kernel.org/r/1464917140-1506698-1-git-send-email-green@linuxhacker.ru
Signed-off-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is based on https://patchwork.ozlabs.org/patch/574623/.
Tejun submitted commit 23d11a58a9 ("workqueue: skip flush dependency
checks for legacy workqueues") for the legacy create*_workqueue()
interface.
But some workq created by alloc_workqueue still reports warning on
memory reclaim, e.g nvme_workq with flag WQ_MEM_RECLAIM set:
workqueue: WQ_MEM_RECLAIM nvme:nvme_reset_work is flushing !WQ_MEM_RECLAIM events:lru_add_drain_per_cpu
------------[ cut here ]------------
WARNING: CPU: 0 PID: 6 at SoC/linux/kernel/workqueue.c:2448 check_flush_dependency+0xb4/0x10c
...
check_flush_dependency+0xb4/0x10c
flush_work+0x54/0x140
lru_add_drain_all+0x138/0x188
migrate_prep+0xc/0x18
alloc_contig_range+0xf4/0x350
cma_alloc+0xec/0x1e4
dma_alloc_from_contiguous+0x38/0x40
__dma_alloc+0x74/0x25c
nvme_alloc_queue+0xcc/0x36c
nvme_reset_work+0x5c4/0xda8
process_one_work+0x128/0x2ec
worker_thread+0x58/0x434
kthread+0xd4/0xe8
ret_from_fork+0x10/0x50
That's because lru_add_drain_all() will schedule the drain work on
system_wq, whose flag is set to 0, !WQ_MEM_RECLAIM.
Introduce a dedicated WQ_MEM_RECLAIM workqueue to do
lru_add_drain_all(), aiding in getting memory freed.
Link: http://lkml.kernel.org/r/1464917521-9775-1-git-send-email-shhuiw@foxmail.com
Signed-off-by: Wang Sheng-Hui <shhuiw@foxmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Christian Borntraeger reported a kernel panic after corrupt page counts,
and it turned out to be a regression introduced with commit aa88b68c3b
("thp: keep huge zero page pinned until tlb flush"), at least on s390.
put_huge_zero_page() was moved over from zap_huge_pmd() to
release_pages(), and it was replaced by tlb_remove_page(). However,
release_pages() might not always be triggered by (the arch-specific)
tlb_remove_page().
On s390 we call free_page_and_swap_cache() from tlb_remove_page(), and
not tlb_flush_mmu() -> free_pages_and_swap_cache() like the generic
version, because we don't use the MMU-gather logic. Although both
functions have very similar names, they are doing very unsimilar things,
in particular free_page_xxx is just doing a put_page(), while
free_pages_xxx calls release_pages().
This of course results in very harmful put_page()s on the huge zero
page, on architectures where tlb_remove_page() is implemented in this
way. It seems to affect only s390 and sh, but sh doesn't have THP
support, so the problem (currently) probably only exists on s390.
The following quick hack fixed the issue:
Link: http://lkml.kernel.org/r/20160602172141.75c006a9@thinkpad
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: <stable@vger.kernel.org> [4.6.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 1383399d7b ("mm: memcontrol: fix possible css ref leak
on oom"). Johannes points out "There is a task_in_memcg_oom() check
before calling mem_cgroup_oom()".
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the following memory hot-add error messages to info messages.
There is no need for these to be errors.
kasan: WARNING: KASAN doesn't support memory hot-add
kasan: Memory hot-add will be disabled
Link: http://lkml.kernel.org/r/1464794430-5486-1-git-send-email-shuahkh@osg.samsung.com
Signed-off-by: Shuah Khan <shuahkh@osg.samsung.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When creating a private mapping of a hugetlbfs file, it is possible to
unmap pages via ftruncate or fallocate hole punch. If subsequent faults
repopulate these mappings, the reserve counts will go negative. This is
because the code currently assumes all faults to private mappings will
consume reserves. The problem can be recreated as follows:
- mmap(MAP_PRIVATE) a file in hugetlbfs filesystem
- write fault in pages in the mapping
- fallocate(FALLOC_FL_PUNCH_HOLE) some pages in the mapping
- write fault in pages in the hole
This will result in negative huge page reserve counts and negative
subpool usage counts for the hugetlbfs. Note that this can also be
recreated with ftruncate, but fallocate is more straight forward.
This patch modifies the routines vma_needs_reserves and vma_has_reserves
to examine the reserve map associated with private mappings similar to
that for shared mappings. However, the reserve map semantics for
private and shared mappings are very different. This results in subtly
different code that is explained in the comments.
Link: http://lkml.kernel.org/r/1464720957-15698-1-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The optimistic fast path may use cpuset_current_mems_allowed instead of
of a NULL nodemask supplied by the caller for cpuset allocations. The
preferred zone is calculated on this basis for statistic purposes and as
a starting point in the zonelist iterator.
However, if the context can ignore memory policies due to being atomic
or being able to ignore watermarks then the starting point in the
zonelist iterator is no longer correct. This patch resets the zonelist
iterator in the allocator slowpath if the context can ignore memory
policies. This will alter the zone used for statistics but only after
it is known that it makes sense for that context. Resetting it before
entering the slowpath would potentially allow an ALLOC_CPUSET allocation
to be accounted for against the wrong zone. Note that while nodemask is
not explicitly set to the original nodemask, it would only have been
overwritten if cpuset_enabled() and it was reset before the slowpath was
entered.
Link: http://lkml.kernel.org/r/20160602103936.GU2527@techsingularity.net
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Geert Uytterhoeven reported the following problem that bisected to
commit c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone
in a zonelist twice") on m68k/ARAnyM
BUG: scheduling while atomic: cron/668/0x10c9a0c0
Modules linked in:
CPU: 0 PID: 668 Comm: cron Not tainted 4.6.0-atari-05133-gc33d6c06f60f710f #364
Call Trace: [<0003d7d0>] __schedule_bug+0x40/0x54
__schedule+0x312/0x388
__schedule+0x0/0x388
prepare_to_wait+0x0/0x52
schedule+0x64/0x82
schedule_timeout+0xda/0x104
set_next_entity+0x18/0x40
pick_next_task_fair+0x78/0xda
io_schedule_timeout+0x36/0x4a
bit_wait_io+0x0/0x40
bit_wait_io+0x12/0x40
__wait_on_bit+0x46/0x76
wait_on_page_bit_killable+0x64/0x6c
bit_wait_io+0x0/0x40
wake_bit_function+0x0/0x4e
__lock_page_or_retry+0xde/0x124
do_scan_async+0x114/0x17c
lookup_swap_cache+0x24/0x4e
handle_mm_fault+0x626/0x7de
find_vma+0x0/0x66
down_read+0x0/0xe
wait_on_page_bit_killable_timeout+0x77/0x7c
find_vma+0x16/0x66
do_page_fault+0xe6/0x23a
res_func+0xa3c/0x141a
buserr_c+0x190/0x6d4
res_func+0xa3c/0x141a
buserr+0x20/0x28
res_func+0xa3c/0x141a
buserr+0x20/0x28
The relationship is not obvious but it's due to a failure to rescan the
full zonelist after the fair zone allocation policy exhausts the batch
count. While this is a functional problem, it's also a performance
issue. A page allocator microbenchmark showed the following
4.7.0-rc1 4.7.0-rc1
vanilla reset-v1r2
Min alloc-odr0-1 327.00 ( 0.00%) 326.00 ( 0.31%)
Min alloc-odr0-2 235.00 ( 0.00%) 235.00 ( 0.00%)
Min alloc-odr0-4 198.00 ( 0.00%) 198.00 ( 0.00%)
Min alloc-odr0-8 170.00 ( 0.00%) 170.00 ( 0.00%)
Min alloc-odr0-16 156.00 ( 0.00%) 156.00 ( 0.00%)
Min alloc-odr0-32 150.00 ( 0.00%) 150.00 ( 0.00%)
Min alloc-odr0-64 146.00 ( 0.00%) 146.00 ( 0.00%)
Min alloc-odr0-128 145.00 ( 0.00%) 145.00 ( 0.00%)
Min alloc-odr0-256 155.00 ( 0.00%) 155.00 ( 0.00%)
Min alloc-odr0-512 168.00 ( 0.00%) 165.00 ( 1.79%)
Min alloc-odr0-1024 175.00 ( 0.00%) 174.00 ( 0.57%)
Min alloc-odr0-2048 180.00 ( 0.00%) 180.00 ( 0.00%)
Min alloc-odr0-4096 187.00 ( 0.00%) 186.00 ( 0.53%)
Min alloc-odr0-8192 190.00 ( 0.00%) 190.00 ( 0.00%)
Min alloc-odr0-16384 191.00 ( 0.00%) 191.00 ( 0.00%)
Min alloc-odr1-1 736.00 ( 0.00%) 445.00 ( 39.54%)
Min alloc-odr1-2 343.00 ( 0.00%) 335.00 ( 2.33%)
Min alloc-odr1-4 277.00 ( 0.00%) 270.00 ( 2.53%)
Min alloc-odr1-8 238.00 ( 0.00%) 233.00 ( 2.10%)
Min alloc-odr1-16 224.00 ( 0.00%) 218.00 ( 2.68%)
Min alloc-odr1-32 210.00 ( 0.00%) 208.00 ( 0.95%)
Min alloc-odr1-64 207.00 ( 0.00%) 203.00 ( 1.93%)
Min alloc-odr1-128 276.00 ( 0.00%) 202.00 ( 26.81%)
Min alloc-odr1-256 206.00 ( 0.00%) 202.00 ( 1.94%)
Min alloc-odr1-512 207.00 ( 0.00%) 202.00 ( 2.42%)
Min alloc-odr1-1024 208.00 ( 0.00%) 205.00 ( 1.44%)
Min alloc-odr1-2048 213.00 ( 0.00%) 212.00 ( 0.47%)
Min alloc-odr1-4096 218.00 ( 0.00%) 216.00 ( 0.92%)
Min alloc-odr1-8192 341.00 ( 0.00%) 219.00 ( 35.78%)
Note that order-0 allocations are unaffected but higher orders get a
small boost from this patch and a large reduction in system CPU usage
overall as can be seen here:
4.7.0-rc1 4.7.0-rc1
vanilla reset-v1r2
User 85.32 86.31
System 2221.39 2053.36
Elapsed 2368.89 2202.47
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Link: http://lkml.kernel.org/r/20160531100848.GR2527@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg has noted that siglock usage in try_oom_reaper is both pointless
and dangerous. signal_group_exit can be checked lockless. The problem
is that sighand becomes NULL in __exit_signal so we can crash.
Fixes: 3ef22dfff2 ("oom, oom_reaper: try to reap tasks which skip regular OOM killer path")
Link: http://lkml.kernel.org/r/1464679423-30218-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In DEBUG_VM kernel, we can hit infinite loop for order == 0 in
buffered_rmqueue() when check_new_pcp() returns 1, because the bad page
is never removed from the pcp list. Fix this by removing the page
before retrying. Also we don't need to check if page is non-NULL,
because we simply grab it from the list which was just tested for being
non-empty.
Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20160530090154.GM2527@techsingularity.net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix erroneous z3fold header access in a HEADLESS page in reclaim
function, and change one remaining direct handle-to-buddy conversion to
use the appropriate helper.
Link: http://lkml.kernel.org/r/5748706F.9020208@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_offline_kmem() may be called from memcg_free_kmem() after a css
init failure. memcg_free_kmem() is a ->css_free callback which is
called without cgroup_mutex and memcg_offline_kmem() ends up using
css_for_each_descendant_pre() without any locking. Fix it by adding rcu
read locking around it.
mkdir: cannot create directory `65530': No space left on device
===============================
[ INFO: suspicious RCU usage. ]
4.6.0-work+ #321 Not tainted
-------------------------------
kernel/cgroup.c:4008 cgroup_mutex or RCU read lock required!
[ 527.243970] other info that might help us debug this:
[ 527.244715]
rcu_scheduler_active = 1, debug_locks = 0
2 locks held by kworker/0:5/1664:
#0: ("cgroup_destroy"){.+.+..}, at: [<ffffffff81060ab5>] process_one_work+0x165/0x4a0
#1: ((&css->destroy_work)#3){+.+...}, at: [<ffffffff81060ab5>] process_one_work+0x165/0x4a0
[ 527.248098] stack backtrace:
CPU: 0 PID: 1664 Comm: kworker/0:5 Not tainted 4.6.0-work+ #321
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014
Workqueue: cgroup_destroy css_free_work_fn
Call Trace:
dump_stack+0x68/0xa1
lockdep_rcu_suspicious+0xd7/0x110
css_next_descendant_pre+0x7d/0xb0
memcg_offline_kmem.part.44+0x4a/0xc0
mem_cgroup_css_free+0x1ec/0x200
css_free_work_fn+0x49/0x5e0
process_one_work+0x1c5/0x4a0
worker_thread+0x49/0x490
kthread+0xea/0x100
ret_from_fork+0x1f/0x40
Link: http://lkml.kernel.org/r/20160526203018.GG23194@mtj.duckdns.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per the discussion with Joonsoo Kim [1], we need check the return value
of lookup_page_ext() for all call sites since it might return NULL in
some cases, although it is unlikely, i.e. memory hotplug.
Tested with ltp with "page_owner=0".
[1] http://lkml.kernel.org/r/20160519002809.GA10245@js1304-P5Q-DELUXE
[akpm@linux-foundation.org: fix build-breaking typos]
[arnd@arndb.de: fix build problems from lookup_page_ext]
Link: http://lkml.kernel.org/r/6285269.2CksypHdYp@wuerfel
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1464023768-31025-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When remapping pages accounting for 4G or more memory space, the
operation 'count << PAGE_SHIFT' overflows as it is performed on an
integer. Solution: cast before doing the bitshift.
[akpm@linux-foundation.org: fix vm_unmap_ram() also]
[akpm@linux-foundation.org: fix vmap() as well, per Guillermo]
Link: http://lkml.kernel.org/r/etPan.57175fb3.7a271c6b.2bd@naudit.es
Signed-off-by: Guillermo Julián Moreno <guillermo.julian@naudit.es>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As vm.dirty_[background_]bytes can't be applied verbatim to multiple
cgroup writeback domains, they get converted to percentages in
domain_dirty_limits() and applied the same way as
vm.dirty_[background]ratio. However, if the specified bytes is lower
than 1% of available memory, the calculated ratios become zero and the
writeback domain gets throttled constantly.
Fix it by using per-PAGE_SIZE instead of percentage for ratio
calculations. Also, the updated DIV_ROUND_UP() usages now should
yield 1/4096 (0.0244%) as the minimum ratio as long as the specified
bytes are above zero.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Miao Xie <miaoxie@huawei.com>
Link: http://lkml.kernel.org/g/57333E75.3080309@huawei.com
Cc: stable@vger.kernel.org # v4.2+
Fixes: 9fc3a43e17 ("writeback: separate out domain_dirty_limits()")
Reviewed-by: Jan Kara <jack@suse.cz>
Adjusted comment based on Jan's suggestion.
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull vfs fixes from Al Viro:
"Followups to the parallel lookup work:
- update docs
- restore killability of the places that used to take ->i_mutex
killably now that we have down_write_killable() merged
- Additionally, it turns out that I missed a prerequisite for
security_d_instantiate() stuff - ->getxattr() wasn't the only thing
that could be called before dentry is attached to inode; with smack
we needed the same treatment applied to ->setxattr() as well"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
switch ->setxattr() to passing dentry and inode separately
switch xattr_handler->set() to passing dentry and inode separately
restore killability of old mutex_lock_killable(&inode->i_mutex) users
add down_write_killable_nested()
update D/f/directory-locking
The do_brk() and vm_brk() return value was "unsigned long" and returned
the starting address on success, and an error value on failure. The
reasons are entirely historical, and go back to it basically behaving
like the mmap() interface does.
However, nobody actually wanted that interface, and it causes totally
pointless IS_ERR_VALUE() confusion.
What every single caller actually wants is just the simpler integer
return of zero for success and negative error number on failure.
So just convert to that much clearer and more common calling convention,
and get rid of all the IS_ERR_VALUE() uses wrt vm_brk().
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The register_page_bootmem_info_node() function needs to be marked __init
in order to avoid a new warning introduced by commit f65e91df25 ("mm:
use early_pfn_to_nid in register_page_bootmem_info_node").
Otherwise you'll get a warning about how a non-init function calls
early_pfn_to_nid (which is __meminit)
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we have !NO_BOOTMEM, the deferred page struct initialization
doesn't work well because the pages reserved in bootmem are released to
the page allocator uncoditionally. It causes memory corruption and
system crash eventually.
As Mel suggested, the bootmem is retiring slowly. We fix the issue by
simply hiding DEFERRED_STRUCT_PAGE_INIT when bootmem is enabled.
Link: http://lkml.kernel.org/r/1460602170-5821-1-git-send-email-gwshan@linux.vnet.ibm.com
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the comments for get_mctgt_type() to be before get_mctgt_type()
implementation.
Link: http://lkml.kernel.org/r/1463644638-7446-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_margin() might return (memory.limit - memory_count) when the
memsw.limit is in excess. This doesn't happen usually because we do not
allow excess on hard limits and (memory.limit <= memsw.limit), but
__GFP_NOFAIL charges can force the charge and cause the excess when no
memory is really swappable (swap is full or no anonymous memory is
left).
[mhocko@suse.com: rewrote changelog]
Link: http://lkml.kernel.org/r/20160525155122.GK20132@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1464068266-27736-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pageblock_order can be (at least) an unsigned int or an unsigned long
depending on the kernel config and architecture, so use max_t(unsigned
long, ...) when comparing it.
fixes these warnings:
In file included from include/asm-generic/bug.h:13:0,
from arch/powerpc/include/asm/bug.h:127,
from include/linux/bug.h:4,
from include/linux/mmdebug.h:4,
from include/linux/mm.h:8,
from include/linux/memblock.h:18,
from mm/cma.c:28:
mm/cma.c: In function 'cma_init_reserved_mem':
include/linux/kernel.h:748:17: warning: comparison of distinct pointer types lacks a cast
(void) (&_max1 == &_max2); ^
mm/cma.c:186:27: note: in expansion of macro 'max'
alignment = PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order);
^
mm/cma.c: In function 'cma_declare_contiguous':
include/linux/kernel.h:748:17: warning: comparison of distinct pointer types lacks a cast
(void) (&_max1 == &_max2); ^
include/linux/kernel.h:747:9: note: in definition of macro 'max'
typeof(y) _max2 = (y); ^
mm/cma.c:270:29: note: in expansion of macro 'max'
(phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
^
include/linux/kernel.h:748:17: warning: comparison of distinct pointer types lacks a cast
(void) (&_max1 == &_max2); ^
include/linux/kernel.h:747:21: note: in definition of macro 'max'
typeof(y) _max2 = (y); ^
mm/cma.c:270:29: note: in expansion of macro 'max'
(phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
^
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160526150748.5be38a4f@canb.auug.org.au
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If page_move_anon_rmap() is refiling a pmd-splitted THP mapped in a tail
page from a pte, the "address" must be THP aligned in order for the
page->index bugcheck to pass in the CONFIG_DEBUG_VM=y builds.
Link: http://lkml.kernel.org/r/1464253620-106404-1-git-send-email-kirill.shutemov@linux.intel.com
Fixes: 6d0a07edd1 ("mm: thp: calculate the mapcount correctly for THP pages during WP faults")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo has reported:
Out of memory: Kill process 443 (oleg's-test) score 855 or sacrifice child
Killed process 443 (oleg's-test) total-vm:493248kB, anon-rss:423880kB, file-rss:4kB, shmem-rss:0kB
sh invoked oom-killer: gfp_mask=0x24201ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD), order=0, oom_score_adj=0
sh cpuset=/ mems_allowed=0
CPU: 2 PID: 1 Comm: sh Not tainted 4.6.0-rc7+ #51
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013
Call Trace:
dump_stack+0x85/0xc8
dump_header+0x5b/0x394
oom_reaper: reaped process 443 (oleg's-test), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
In other words:
__oom_reap_task exit_mm
atomic_inc_not_zero
tsk->mm = NULL
mmput
atomic_dec_and_test # > 0
exit_oom_victim # New victim will be
# selected
<OOM killer invoked>
# no TIF_MEMDIE task so we can select a new one
unmap_page_range # to release the memory
The race exists even without the oom_reaper because anybody who pins the
address space and gets preempted might race with exit_mm but oom_reaper
made this race more probable.
We can address the oom_reaper part by using oom_lock for __oom_reap_task
because this would guarantee that a new oom victim will not be selected
if the oom reaper might race with the exit path. This doesn't solve the
original issue, though, because somebody else still might be pinning
mm_users and so __mmput won't be called to release the memory but that
is not really realiably solvable because the task will get away from the
oom sight as soon as it is unhashed from the task_list and so we cannot
guarantee a new victim won't be selected.
[akpm@linux-foundation.org: fix use of unused `mm', Per Stephen]
[akpm@linux-foundation.org: coding-style fixes]
Fixes: aac4536355 ("mm, oom: introduce oom reaper")
Link: http://lkml.kernel.org/r/1464271493-20008-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
register_page_bootmem_info_node() is invoked in mem_init(), so it will
be called before page_alloc_init_late() if DEFERRED_STRUCT_PAGE_INIT is
enabled. But, pfn_to_nid() depends on memmap which won't be fully setup
until page_alloc_init_late() is done, so replace pfn_to_nid() by
early_pfn_to_nid().
Link: http://lkml.kernel.org/r/1464210007-30930-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_ext_init() checks suitable pages with pfn_to_nid(), but
pfn_to_nid() depends on memmap which will not be setup fully until
page_alloc_init_late() is done. Use early_pfn_to_nid() instead of
pfn_to_nid() so that page extension could be still used early even
though CONFIG_ DEFERRED_STRUCT_PAGE_INIT is enabled and catch early page
allocation call sites.
Suggested by Joonsoo Kim [1], this fix basically undoes the change
introduced by commit b8f1a75d61 ("mm: call page_ext_init() after all
struct pages are initialized") and fixes the same problem with a better
approach.
[1] http://lkml.kernel.org/r/CAAmzW4OUmyPwQjvd7QUfc6W1Aic__TyAuH80MLRZNMxKy0-wPQ@mail.gmail.com
Link: http://lkml.kernel.org/r/1464198689-23458-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the current process is exiting, we don't invoke oom killer, instead
we give it access to memory reserves and try to reap its mm in case
nobody is going to use it. There's a mistake in the code performing
this check - we just ignore any process of the same thread group no
matter if it is exiting or not - see try_oom_reaper. Fix it.
Link: http://lkml.kernel.org/r/1464087628-7318-1-git-send-email-vdavydov@virtuozzo.com
Fixes: 3ef22dfff2 ("oom, oom_reaper: try to reap tasks which skip regular OOM killer path")Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- We use a bit in an exceptional radix tree entry as a lock bit and use it
similarly to how page lock is used for normal faults. This fixes races
between hole instantiation and read faults of the same index.
- Filesystem DAX PMD faults are disabled, and will be re-enabled when PMD
locking is implemented.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXRKwLAAoJEJ/BjXdf9fLB+BkP/3HBm05KlAKDklvnBIPFDMUK
hA7g2K6vuvaEDZXZQ1ioc1Ajf1sCpVip7shXJsojZqwWmRz0/4nneF7ytluW9AjS
dBX+0qCgKGH1fnwyGFF+MN7fuj7kGrSDz34lG0OObRN6/oKiVNb2svXiYKkT6J6C
AgsWlWRUpMy9jrn1u/FduMjDhk92Z3ojarexuicr0i8NUlBClCIrdCEmUMi4orSB
DuiIjestLOc7+mERBUwrXkzoh9v8Z0FpIgnDLWwpeEkAvJwWkGe5eXrBJwF+hEbi
RYfTrOYc7bBQLo22LRb8pdighjrx3OW9EpNCfEmLDOjM3cYBbMK/d2i/ww52H6IK
Mw6iS5rXdGgJtQIGL8N96HLFk+cDyZ8J8xNUCwbYYBJqgpMzxzVkL3vTm72tyFnl
InWhih+miCMbBPytQSRd6+1wZG2piJTv6SsFTd5K1OaiRmJhBJZG47t2QTBRBu7Y
5A4FGPtlraV+iDJvD6VLO1Tp8twxdLluOJ2BwdGeiKXiGh6LP+FGGFF3aFa5N4Ro
xSslCTX7Q1G66zXQwD4+IMWLwS1FDNymPkUSsF6RQo6qfAnl9SrmYTc4xJ4QXy92
sUdrWEz2OBTfxKNqbGyc/KrXKZT3RnEkJNft8snB2h6WTCdOPaNYs/yETUwiwkSc
CXpuQFrxm69QYwNsqVu1
=Pkd0
-----END PGP SIGNATURE-----
Merge tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull DAX locking updates from Ross Zwisler:
"Filesystem DAX locking for 4.7
- We use a bit in an exceptional radix tree entry as a lock bit and
use it similarly to how page lock is used for normal faults. This
fixes races between hole instantiation and read faults of the same
index.
- Filesystem DAX PMD faults are disabled, and will be re-enabled when
PMD locking is implemented"
* tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: Remove i_mmap_lock protection
dax: Use radix tree entry lock to protect cow faults
dax: New fault locking
dax: Allow DAX code to replace exceptional entries
dax: Define DAX lock bit for radix tree exceptional entry
dax: Make huge page handling depend of CONFIG_BROKEN
dax: Fix condition for filling of PMD holes
Some updates to commit d34f615720 ("mm/zsmalloc: don't fail if can't
create debugfs info"):
- add pr_warn to all stat failure cases
- do not prevent module loading on stat failure
Link: http://lkml.kernel.org/r/1463671123-5479-1-git-send-email-ddstreet@ieee.org
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Reviewed-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_out_of_memory() is returning "true" if it finds a TIF_MEMDIE
task after an eligible task was found, "false" if it found a TIF_MEMDIE
task before an eligible task is found.
This difference confuses memory_max_write() which checks the return
value of mem_cgroup_out_of_memory(). Since memory_max_write() wants to
continue looping, mem_cgroup_out_of_memory() should return "true" in
this case.
This patch sets a dummy pointer in order to return "true".
Link: http://lkml.kernel.org/r/1463753327-5170-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per the suggestion from Michal Hocko [1], DEFERRED_STRUCT_PAGE_INIT
requires some ordering wrt other initialization operations, e.g.
page_ext_init has to happen after the whole memmap is initialized
properly.
For SPARSEMEM this requires to wait for page_alloc_init_late. Other
memory models (e.g. flatmem) might have different initialization
layouts (page_ext_init_flatmem). Currently DEFERRED_STRUCT_PAGE_INIT
depends on MEMORY_HOTPLUG which in turn
depends on SPARSEMEM || X86_64_ACPI_NUMA
depends on ARCH_ENABLE_MEMORY_HOTPLUG
and X86_64_ACPI_NUMA depends on NUMA which in turn disable FLATMEM
memory model:
config ARCH_FLATMEM_ENABLE
def_bool y
depends on X86_32 && !NUMA
so FLATMEM is ruled out via dependency maze. Be explicit and disable
FLATMEM for DEFERRED_STRUCT_PAGE_INIT so that we do not reintroduce
subtle initialization bugs
[1] http://lkml.kernel.org/r/20160523073157.GD2278@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1464027356-32282-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For non-atomic allocations, pcpu_alloc() can try to extend the area
map synchronously after dropping pcpu_lock; however, the extension
wasn't synchronized against chunk destruction and the chunk might get
freed while extension is in progress.
This patch fixes the bug by putting most of non-atomic allocations
under pcpu_alloc_mutex to synchronize against pcpu_balance_work which
is responsible for async chunk management including destruction.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: stable@vger.kernel.org # v3.18+
Fixes: 1a4d76076c ("percpu: implement asynchronous chunk population")
Atomic allocations can trigger async map extensions which is serviced
by chunk->map_extend_work. pcpu_balance_work which is responsible for
destroying idle chunks wasn't synchronizing properly against
chunk->map_extend_work and may end up freeing the chunk while the work
item is still in flight.
This patch fixes the bug by rolling async map extension operations
into pcpu_balance_work.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: stable@vger.kernel.org # v3.18+
Fixes: 9c824b6a17 ("percpu: make sure chunk->map array has available space")
Merge yet more updates from Andrew Morton:
- Oleg's "wait/ptrace: assume __WALL if the child is traced". It's a
kernel-based workaround for existing userspace issues.
- A few hotfixes
- befs cleanups
- nilfs2 updates
- sys_wait() changes
- kexec updates
- kdump
- scripts/gdb updates
- the last of the MM queue
- a few other misc things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (84 commits)
kgdb: depends on VT
drm/amdgpu: make amdgpu_mn_get wait for mmap_sem killable
drm/radeon: make radeon_mn_get wait for mmap_sem killable
drm/i915: make i915_gem_mmap_ioctl wait for mmap_sem killable
uprobes: wait for mmap_sem for write killable
prctl: make PR_SET_THP_DISABLE wait for mmap_sem killable
exec: make exec path waiting for mmap_sem killable
aio: make aio_setup_ring killable
coredump: make coredump_wait wait for mmap_sem for write killable
vdso: make arch_setup_additional_pages wait for mmap_sem for write killable
ipc, shm: make shmem attach/detach wait for mmap_sem killable
mm, fork: make dup_mmap wait for mmap_sem for write killable
mm, proc: make clear_refs killable
mm: make vm_brk killable
mm, elf: handle vm_brk error
mm, aout: handle vm_brk failures
mm: make vm_munmap killable
mm: make vm_mmap killable
mm: make mmap_sem for write waits killable for mm syscalls
MAINTAINERS: add co-maintainer for scripts/gdb
...
Now that all the callers handle vm_brk failure we can change it wait for
mmap_sem killable to help oom_reaper to not get blocked just because
vm_brk gets blocked behind mmap_sem readers.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Almost all current users of vm_munmap are ignoring the return value and
so they do not handle potential error. This means that some VMAs might
stay behind. This patch doesn't try to solve those potential problems.
Quite contrary it adds a new failure mode by using down_write_killable
in vm_munmap. This should be safer than other failure modes, though,
because the process is guaranteed to die as soon as it leaves the kernel
and exit_mmap will clean the whole address space.
This will help in the OOM conditions when the oom victim might be stuck
waiting for the mmap_sem for write which in turn can block oom_reaper
which relies on the mmap_sem for read to make a forward progress and
reclaim the address space of the victim.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All the callers of vm_mmap seem to check for the failure already and
bail out in one way or another on the error which means that we can
change it to use killable version of vm_mmap_pgoff and return -EINTR if
the current task gets killed while waiting for mmap_sem. This also
means that vm_mmap_pgoff can be killable by default and drop the
additional parameter.
This will help in the OOM conditions when the oom victim might be stuck
waiting for the mmap_sem for write which in turn can block oom_reaper
which relies on the mmap_sem for read to make a forward progress and
reclaim the address space of the victim.
Please note that load_elf_binary is ignoring vm_mmap error for
current->personality & MMAP_PAGE_ZERO case but that shouldn't be a
problem because the address is not used anywhere and we never return to
the userspace if we got killed.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a follow up work for oom_reaper [1]. As the async OOM killing
depends on oom_sem for read we would really appreciate if a holder for
write didn't stood in the way. This patchset is changing many of
down_write calls to be killable to help those cases when the writer is
blocked and waiting for readers to release the lock and so help
__oom_reap_task to process the oom victim.
Most of the patches are really trivial because the lock is help from a
shallow syscall paths where we can return EINTR trivially and allow the
current task to die (note that EINTR will never get to the userspace as
the task has fatal signal pending). Others seem to be easy as well as
the callers are already handling fatal errors and bail and return to
userspace which should be sufficient to handle the failure gracefully.
I am not familiar with all those code paths so a deeper review is really
appreciated.
As this work is touching more areas which are not directly connected I
have tried to keep the CC list as small as possible and people who I
believed would be familiar are CCed only to the specific patches (all
should have received the cover though).
This patchset is based on linux-next and it depends on
down_write_killable for rw_semaphores which got merged into tip
locking/rwsem branch and it is merged into this next tree. I guess it
would be easiest to route these patches via mmotm because of the
dependency on the tip tree but if respective maintainers prefer other
way I have no objections.
I haven't covered all the mmap_write(mm->mmap_sem) instances here
$ git grep "down_write(.*\<mmap_sem\>)" next/master | wc -l
98
$ git grep "down_write(.*\<mmap_sem\>)" | wc -l
62
I have tried to cover those which should be relatively easy to review in
this series because this alone should be a nice improvement. Other
places can be changed on top.
[0] http://lkml.kernel.org/r/1456752417-9626-1-git-send-email-mhocko@kernel.org
[1] http://lkml.kernel.org/r/1452094975-551-1-git-send-email-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1456750705-7141-1-git-send-email-mhocko@kernel.org
This patch (of 18):
This is the first step in making mmap_sem write waiters killable. It
focuses on the trivial ones which are taking the lock early after
entering the syscall and they are not changing state before.
Therefore it is very easy to change them to use down_write_killable and
immediately return with -EINTR. This will allow the waiter to pass away
without blocking the mmap_sem which might be required to make a forward
progress. E.g. the oom reaper will need the lock for reading to
dismantle the OOM victim address space.
The only tricky function in this patch is vm_mmap_pgoff which has many
call sites via vm_mmap. To reduce the risk keep vm_mmap with the
original non-killable semantic for now.
vm_munmap callers do not bother checking the return value so open code
it into the munmap syscall path for now for simplicity.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_oom may be invoked multiple times while a process is handling
a page fault, in which case current->memcg_in_oom will be overwritten
leaking the previously taken css reference.
Link: http://lkml.kernel.org/r/1464019330-7579-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull drm updates from Dave Airlie:
"Here's the main drm pull request for 4.7, it's been a busy one, and
I've been a bit more distracted in real life this merge window. Lots
more ARM drivers, not sure if it'll ever end. I think I've at least
one more coming the next merge window.
But changes are all over the place, support for AMD Polaris GPUs is in
here, some missing GM108 support for nouveau (found in some Lenovos),
a bunch of MST and skylake fixes.
I've also noticed a few fixes from Arnd in my inbox, that I'll try and
get in asap, but I didn't think they should hold this up.
New drivers:
- Hisilicon kirin display driver
- Mediatek MT8173 display driver
- ARC PGU - bitstreamer on Synopsys ARC SDP boards
- Allwinner A13 initial RGB output driver
- Analogix driver for DisplayPort IP found in exynos and rockchip
DRM Core:
- UAPI headers fixes and C++ safety
- DRM connector reference counting
- DisplayID mode parsing for Dell 5K monitors
- Removal of struct_mutex from drivers
- Connector registration cleanups
- MST robustness fixes
- MAINTAINERS updates
- Lockless GEM object freeing
- Generic fbdev deferred IO support
panel:
- Support for a bunch of new panels
i915:
- VBT refactoring
- PLL computation cleanups
- DSI support for BXT
- Color manager support
- More atomic patches
- GEM improvements
- GuC fw loading fixes
- DP detection fixes
- SKL GPU hang fixes
- Lots of BXT fixes
radeon/amdgpu:
- Initial Polaris support
- GPUVM/Scheduler/Clock/Power improvements
- ASYNC pageflip support
- New mesa feature support
nouveau:
- GM108 support
- Power sensor support improvements
- GR init + ucode fixes.
- Use GPU provided topology information
vmwgfx:
- Add host messaging support
gma500:
- Some cleanups and fixes
atmel:
- Bridge support
- Async atomic commit support
fsl-dcu:
- Timing controller for LCD support
- Pixel clock polarity support
rcar-du:
- Misc fixes
exynos:
- Pipeline clock support
- Exynoss4533 SoC support
- HW trigger mode support
- export HDMI_PHY clock
- DECON5433 fixes
- Use generic prime functions
- use DMA mapping APIs
rockchip:
- Lots of little fixes
vc4:
- Render node support
- Gamma ramp support
- DPI output support
msm:
- Mostly cleanups and fixes
- Conversion to generic struct fence
etnaviv:
- Fix for prime buffer handling
- Allow hangcheck to be coalesced with other wakeups
tegra:
- Gamme table size fix"
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (1050 commits)
drm/edid: add displayid detailed 1 timings to the modelist. (v1.1)
drm/edid: move displayid validation to it's own function.
drm/displayid: Iterate over all DisplayID blocks
drm/edid: move displayid tiled block parsing into separate function.
drm: Nuke ->vblank_disable_allowed
drm/vmwgfx: Report vmwgfx version to vmware.log
drm/vmwgfx: Add VMWare host messaging capability
drm/vmwgfx: Kill some lockdep warnings
drm/nouveau/gr/gf100-: fix race condition in fecs/gpccs ucode
drm/nouveau/core: recognise GM108 chipsets
drm/nouveau/gr/gm107-: fix touching non-existent ppcs in attrib cb setup
drm/nouveau/gr/gk104-: share implementation of ppc exception init
drm/nouveau/gr/gk104-: move rop_active_fbps init to nonctx
drm/nouveau/bios/pll: check BIT table version before trying to parse it
drm/nouveau/bios/pll: prevent oops when limits table can't be parsed
drm/nouveau/volt/gk104: round up in gk104_volt_set
drm/nouveau/fb/gm200: setup mmu debug buffer registers at init()
drm/nouveau/fb/gk20a,gm20b: setup mmu debug buffer registers at init()
drm/nouveau/fb/gf100-: allocate mmu debug buffers
drm/nouveau/fb: allow chipset-specific actions for oneinit()
...
1/ Device DAX for persistent memory:
Device DAX is the device-centric analogue of Filesystem DAX
(CONFIG_FS_DAX). It allows memory ranges to be allocated and mapped
without need of an intervening file system. Device DAX is strict,
precise and predictable. Specifically this interface:
a) Guarantees fault granularity with respect to a given page size
(pte, pmd, or pud) set at configuration time.
b) Enforces deterministic behavior by being strict about what fault
scenarios are supported.
Persistent memory is the first target, but the mechanism is also
targeted for exclusive allocations of performance/feature differentiated
memory ranges.
2/ Support for the HPE DSM (device specific method) command formats.
This enables management of these first generation devices until a
unified DSM specification materializes.
3/ Further ACPI 6.1 compliance with support for the common dimm
identifier format.
4/ Various fixes and cleanups across the subsystem.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXQhdeAAoJEB7SkWpmfYgCYP8P/RAgHkroL5lUKKU45TQUBKcY
diC9POeNSccme4tIRIQCGQUZ7+7mKM5ECv2ulF4xYOHvFBCcd/8OF6xKAXs48r3v
oguYhvX1YvIkBc9FUfBQbR1IsCOJ7uWp/UYiYCIQEXS5tS9Jv545j3ASqDt9xWoV
TWlceZn3yWSbASiV9qZ2eXhEkk75pg4yara++rsm2/7rs/TTXn5EIjBs+57BtAo+
6utI4fTy0CQvBYwVzam3m7y9dt2Z2jWXL4hgmT7pkvJ7HDoctVly0P9+bknJPUAo
g+NugKgTGeiqH5GYp5CTZ9KvL91sDF4q00pfinITVdFl0E3VE293cIHlAzSQBm5/
w58xxaRV958ZvpH7EaBmYQG82QDi/eFNqeHqVGn0xAM6MlaqO7avUMQp2lRPYMCJ
u1z/NloR5yo+sffHxsn5Luiq9KqOf6zk33PuxEkKbN74OayCSPn/SeVCO7rQR0B6
yPMJTTcTiCLnId1kOWAPaEmuK2U3BW/+ogg7hKgeCQSysuy5n6Ok5a2vEx/gJRAm
v9yF68RmIWumpHr+QB0TmB8mVbD5SY+xWTm3CqJb9MipuFIOF7AVsPyTgucBvE7s
v+i5F6MDO6tcVfiDT4AiZEt6D2TM5RbtckkUEX3ZTD6j7CGuR5D8bH0HNRrghrYk
KT1lAk6tjWBOGAHc5Ji7
=Y3Xv
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"The bulk of this update was stabilized before the merge window and
appeared in -next. The "device dax" implementation was revised this
week in response to review feedback, and to address failures detected
by the recently expanded ndctl unit test suite.
Not included in this pull request are two dax topic branches (dax
error handling, and dax radix-tree locking). These topics were
deferred to get a few more days of -next integration testing, and to
coordinate a branch baseline with Ted and the ext4 tree. Vishal and
Ross will send the error handling and locking topics respectively in
the next few days.
This branch has received a positive build result from the kbuild robot
across 226 configs.
Summary:
- Device DAX for persistent memory: Device DAX is the device-centric
analogue of Filesystem DAX (CONFIG_FS_DAX). It allows memory
ranges to be allocated and mapped without need of an intervening
file system. Device DAX is strict, precise and predictable.
Specifically this interface:
a) Guarantees fault granularity with respect to a given page size
(pte, pmd, or pud) set at configuration time.
b) Enforces deterministic behavior by being strict about what
fault scenarios are supported.
Persistent memory is the first target, but the mechanism is also
targeted for exclusive allocations of performance/feature
differentiated memory ranges.
- Support for the HPE DSM (device specific method) command formats.
This enables management of these first generation devices until a
unified DSM specification materializes.
- Further ACPI 6.1 compliance with support for the common dimm
identifier format.
- Various fixes and cleanups across the subsystem"
* tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (40 commits)
libnvdimm, dax: fix deletion
libnvdimm, dax: fix alignment validation
libnvdimm, dax: autodetect support
libnvdimm: release ida resources
Revert "block: enable dax for raw block devices"
/dev/dax, core: file operations and dax-mmap
/dev/dax, pmem: direct access to persistent memory
libnvdimm: stop requiring a driver ->remove() method
libnvdimm, dax: record the specified alignment of a dax-device instance
libnvdimm, dax: reserve space to store labels for device-dax
libnvdimm, dax: introduce device-dax infrastructure
nfit: add sysfs dimm 'family' and 'dsm_mask' attributes
tools/testing/nvdimm: ND_CMD_CALL support
nfit: disable vendor specific commands
nfit: export subsystem ids as attributes
nfit: fix format interface code byte order per ACPI6.1
nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanism
nfit, libnvdimm: clarify "commands" vs "_DSMs"
libnvdimm: increase max envelope size for ioctl
acpi/nfit: Add sysfs "id" for NVDIMM ID
...
I'm looking at trying to possibly merge the 32-bit and 64-bit versions
of the x86 uaccess.h implementation, but first this needs to be cleaned
up.
For example, the 32-bit version of "__copy_from_user_inatomic()" is
mostly the special cases for the constant size, and it's actually almost
never relevant. Most users aren't actually using a constant size
anyway, and the few cases that do small constant copies are better off
just using __get_user() instead.
So get rid of the unnecessary complexity.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "Device DAX" core enables dax mappings of performance / feature
differentiated memory. An open mapping or file handle keeps the backing
struct device live, but new mappings are only possible while the device
is enabled. Faults are handled under rcu_read_lock to synchronize
with the enabled state of the device.
Similar to the filesystem-dax case the backing memory may optionally
have struct page entries. However, unlike fs-dax there is no support
for private mappings, or mappings that are not backed by media (see
use of zero-page in fs-dax).
Mappings are always guaranteed to match the alignment of the dax_region.
If the dax_region is configured to have a 2MB alignment, all mappings
are guaranteed to be backed by a pmd entry. Contrast this determinism
with the fs-dax case where pmd mappings are opportunistic. If userspace
attempts to force a misaligned mapping, the driver will fail the mmap
attempt. See dax_dev_check_vma() for other scenarios that are rejected,
like MAP_PRIVATE mappings.
Cc: Hannes Reinecke <hare@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In addition to replacing the entry, we also clear all associated tags.
This is really a one-off special for page_cache_tree_delete() which had
far too much detailed knowledge about how the radix tree works.
For efficiency, factor node_tag_clear() out of radix_tree_tag_clear() It
can be used by radix_tree_delete_item() as well as
radix_tree_replace_clear_tags().
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've been receiving increasingly concerned notes from 0day about how
much my recent changes have been bloating the radix tree. Make it
happier by only including multiorder support if
CONFIG_TRANSPARENT_HUGEPAGES is set.
This is an independent Kconfig option, so other radix tree users can
also set it if they have a need.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the return type of zs_pool_stat_create() to void, and remove the
logic to abort pool creation if the stat debugfs dir/file could not be
created.
The debugfs stat file is for debugging/information only, and doesn't
affect operation of zsmalloc; there is no reason to abort creating the
pool if the stat file can't be created. This was seen with zswap, which
used the same name for all pool creations, which caused zsmalloc to fail
to create a second pool for zswap if CONFIG_ZSMALLOC_STAT was enabled.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a work_struct to struct zswap_pool, and change __zswap_pool_empty to
use the workqueue instead of using call_rcu().
When zswap destroys a pool no longer in use, it uses call_rcu() to
perform the destruction/freeing. Since that executes in softirq
context, it must not sleep. However, actually destroying the pool
involves freeing the per-cpu compressors (which requires locking the
cpu_add_remove_lock mutex) and freeing the zpool, for which the
implementation may sleep (e.g. zsmalloc calls kmem_cache_destroy, which
locks the slab_mutex). So if either mutex is currently taken, or any
other part of the compressor or zpool implementation sleeps, it will
result in a BUG().
It's not easy to reproduce this when changing zswap's params normally.
In testing with a loaded system, this does not fail:
$ cd /sys/module/zswap/parameters
$ echo lz4 > compressor ; echo zsmalloc > zpool
nor does this:
$ while true ; do
> echo lzo > compressor ; echo zbud > zpool
> sleep 1
> echo lz4 > compressor ; echo zsmalloc > zpool
> sleep 1
> done
although it's still possible either of those might fail, depending on
whether anything else besides zswap has locked the mutexes.
However, changing a parameter with no delay immediately causes the
schedule while atomic BUG:
$ while true ; do
> echo lzo > compressor ; echo lz4 > compressor
> done
This is essentially the same as Yu Zhao's proposed patch to zsmalloc,
but moved to zswap, to cover compressor and zpool freeing.
Fixes: f1c54846ee ("zswap: dynamic pool creation")
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Reported-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dan Streetman <dan.streetman@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pass GFP flags to zs_malloc() instead of using a fixed mask supplied to
zs_create_pool(), so we can be more flexible, but, more importantly, we
need this to switch zram to per-cpu compression streams -- zram will try
to allocate handle with preemption disabled in a fast path and switch to
a slow path (using different gfp mask) if the fast one has failed.
Apart from that, this also align zs_malloc() interface with zspool/zbud.
[sergey.senozhatsky@gmail.com: pass GFP flags to zs_malloc() instead of using a fixed mask]
Link: http://lkml.kernel.org/r/20160429150942.GA637@swordfish
Link: http://lkml.kernel.org/r/20160429150942.GA637@swordfish
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean up function parameter ordering to order higher data structure
first.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many BUG_ON in zsmalloc.c which is not recommened so change
them as alternatives.
Normal rule is as follows:
1. avoid BUG_ON if possible. Instead, use VM_BUG_ON or VM_BUG_ON_PAGE
2. use VM_BUG_ON_PAGE if we need to see struct page's fields
3. use those assertion in primitive functions so higher functions can
rely on the assertion in the primitive function.
4. Don't use assertion if following instruction can trigger Oops
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean up function parameter "struct page". Many functions of zsmalloc
expect that page paramter is "first_page" so use "first_page" rather
than "page" for code readability.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>