This adds block mappings using direct pointers which are stored in the
i_bmap array of inode.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds declarations and functions of NILFS2 B-tree.
Two variants are integrated in the NILFS2 B-tree. The B-tree for the most
files points to the child nodes or data blocks with virtual block
addresses, whereas the B-tree of the DAT uses actual block addresses.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds structures and operations for the block mapping (bmap for
short). NILFS2 uses direct mappings for short files or B-tree based
mappings for longer files.
Every on-disk data block is held with inodes and managed through this
block mapping. The nilfs_bmap structure and a set of functions here
provide this capability to the NILFS2 inode.
[penberg@cs.helsinki.fi: remove a bunch of bmap wrapper macros]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the following common structures of the NILFS2 file system.
* nilfs_inode_info structure:
gives on-memory inode.
* nilfs_sb_info structure:
keeps per-mount state and a special inode for the ifile.
This structure is attached to the super_block structure.
* the_nilfs structure:
keeps shared state and locks among a read/write mount and snapshot
mounts. This keeps special inodes for the sufile, cpfile, dat, and
another dat inode used during GC (gcdat). This also has a hash table
of dummy inodes to cache disk blocks during GC (gcinodes).
* nilfs_transaction_info structure:
keeps per task state while nilfs is writing logs or doing indivisible
inode or namespace operations. This structure is used to identify
context during log making and store nest level of the lock which
ensures atomicity of file system operations.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make romfs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mqueuefs filesystem will use this helper as well. Proc's main get_sb
could also be made to use it, but that will require a bit more rework.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently, it's argued that what proc/pid/maps shows is ugly when a 32bit
binary runs on 64bit host.
/proc/pid/maps outputs vma's pgoff member but vma->pgoff is of no use
information is the vma is for ANON. With this patch, /proc/pid/maps shows
just 0 if no file backing store.
[akpm@linux-foundation.org: coding-style fixes]
[kamezawa.hiroyu@jp.fujitsu.com: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mike Waychison <mikew@google.com>
Reported-by: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If ramfs mount fails, s_fs_info will be freed twice in ramfs_fill_super()
and ramfs_kill_sb(), leading to kernel oops.
Consolidate and beautify the code.
Make sure s_fs_info and s_root are in known good states.
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to an apparent typo, commit a67d18f89f
(NFS: load the rpc/rdma transport module automatically) lead to the
'proto=' mount option doing a double free, while Opt_mountproto leaks a
string.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes the defautl ext3 data ordering mode (when no explicit
ordering is set) configurable, so as to allow people to default to
'data=writeback' and get the resulting latency improvements.
This is a non-issue if a filesystem has been explicitly set to some
ordering (with 'tune2fs').
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.infradead.org/mtd-2.6: (53 commits)
[MTD] struct device - replace bus_id with dev_name(), dev_set_name()
[MTD] [NOR] Fixup for Numonyx M29W128 chips
[MTD] mtdpart: Make ecc_stats more realistic.
powerpc/85xx: TQM8548: Update DTS file for multi-chip support
powerpc: NAND: FSL UPM: document new bindings
[MTD] [NAND] FSL-UPM: Add wait flags to support board/chip specific delays
[MTD] [NAND] FSL-UPM: add multi chip support
[MTD] [NOR] Add device parent info to physmap_of
[MTD] [NAND] Add support for NAND on the Socrates board
[MTD] [NAND] Add support for 4KiB pages.
[MTD] sysfs support should not depend on CONFIG_PROC_FS
[MTD] [NAND] Add parent info for CAFÉ controller
[MTD] support driver model updates
[MTD] driver model updates (part 2)
[MTD] driver model updates
[MTD] [NAND] move gen_nand's probe function to .devinit.text
[MTD] [MAPS] move sa1100 flash's probe function to .devinit.text
[MTD] fix use after free in register_mtd_blktrans
[MTD] [MAPS] Drop now unused sharpsl-flash map
[MTD] ofpart: Check name property to determine partition nodes.
...
Manually fix trivial conflict in drivers/mtd/maps/Makefile
* 'kmemtrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
kmemtrace: trace kfree() calls with NULL or zero-length objects
kmemtrace: small cleanups
kmemtrace: restore original tracing data binary format, improve ABI
kmemtrace: kmemtrace_alloc() must fill type_id
kmemtrace: use tracepoints
kmemtrace, rcu: don't include unnecessary headers, allow kmemtrace w/ tracepoints
kmemtrace, rcu: fix rcupreempt.c data structure dependencies
kmemtrace, rcu: fix rcu_tree_trace.c data structure dependencies
kmemtrace, rcu: fix linux/rcutree.h and linux/rcuclassic.h dependencies
kmemtrace, mm: fix slab.h dependency problem in mm/failslab.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_unlzma.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_bunzip2.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_inflate.c
kmemtrace, squashfs: fix slab.h dependency problem in squasfs
kmemtrace, befs: fix slab.h dependency problem
kmemtrace, security: fix linux/key.h header file dependencies
kmemtrace, fs: fix linux/fdtable.h header file dependencies
kmemtrace, fs: uninline simple_transaction_set()
kmemtrace, fs, security: move alloc_secdata() and free_secdata() to linux/security.h
* 'for-2.6.30' of git://linux-nfs.org/~bfields/linux: (81 commits)
nfsd41: define nfsd4_set_statp as noop for !CONFIG_NFSD_V4
nfsd41: define NFSD_DRC_SIZE_SHIFT in set_max_drc
nfsd41: Documentation/filesystems/nfs41-server.txt
nfsd41: CREATE_EXCLUSIVE4_1
nfsd41: SUPPATTR_EXCLCREAT attribute
nfsd41: support for 3-word long attribute bitmask
nfsd: dynamically skip encoded fattr bitmap in _nfsd4_verify
nfsd41: pass writable attrs mask to nfsd4_decode_fattr
nfsd41: provide support for minor version 1 at rpc level
nfsd41: control nfsv4.1 svc via /proc/fs/nfsd/versions
nfsd41: add OPEN4_SHARE_ACCESS_WANT nfs4_stateid bmap
nfsd41: access_valid
nfsd41: clientid handling
nfsd41: check encode size for sessions maxresponse cached
nfsd41: stateid handling
nfsd: pass nfsd4_compound_state* to nfs4_preprocess_{state,seq}id_op
nfsd41: destroy_session operation
nfsd41: non-page DRC for solo sequence responses
nfsd41: Add a create session replay cache
nfsd41: create_session operation
...
The only thing we need to do now when we get an ENOSPC condition during delayed
allocation reservation is flush all the other inodes with delalloc blocks on
them and retry without EOF preallocation. Remove the unneeded mess that is
xfs_flush_space() and just call xfs_flush_inodes() directly from
xfs_iomap_write_delay().
Also, change the location of the retry label to avoid trying to do EOF
preallocation because we don't want to do that at ENOSPC. This enables us to
remove the BMAPI_SYNC flag as it is no longer used.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If we are creating lots of small files, we can fail to get
a reservation for inode create earlier than we should due to
EOF preallocation done during delayed allocation reservation.
Hence on the first reservation ENOSPC failure flush all the
delayed allocation blocks out of the system and retry.
This fixes the last commonly triggered spurious ENOSPC issue
that has been reported.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
xfs_flush_inodes() currently uses a magic timeout to wait for
some inodes to be flushed before returning. This isn't
really reliable but used to be the best that could be done
due to deadlock potential of waiting for the entire flush.
Now the inode flush is safe to execute while we hold page
and inode locks, we can wait for all the inodes to flush
synchronously. Convert the wait mechanism to a completion
to do this efficiently. This should remove all remaining
spurious ENOSPC errors from the delayed allocation reservation
path.
This is extracted almost line for line from a larger patch
from Mikulas Patocka.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When we are writing to a single file and hit ENOSPC, we trigger a background
flush of the inode and try again. Because we hold page locks and the iolock,
the flush won't proceed until after we release these locks. This occurs once
we've given up and ENOSPC has been reported. Hence if this one is the only
dirty inode in the system, we'll get an ENOSPC prematurely.
To fix this, remove the async flush from the allocation routines and move
it to the top of the write path where we can do a synchronous flush
and retry the write again. Only retry once as a second ENOSPC indicates
that we really are ENOSPC.
This avoids a page cache deadlock when trying to do this flush synchronously
in the allocation layer that was identified by Mikulas Patocka.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently xfs_device_flush calls sync_blockdev() which is
a no-op for XFS as all it's metadata is held in a different
address to the one sync_blockdev() works on.
Call xfs_sync_inodes() instead to flush all the delayed
allocation blocks out. To do this as efficiently as possible,
do it via two passes - one to do an async flush of all the
dirty blocks and a second to wait for all the IO to complete.
This requires some modification to the xfs-sync_inodes_ag()
flush code to do efficiently.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When trying to reserve log space, we find the amount of space
we need, then go to sleep waiting for space. When we are
woken, we try to push the tail of the log forward to make
sure we have space available.
Unfortunately, this means that if there is not space available, and
everyone who needs space goes to sleep there is no-one left to push
the tail of the log to make space available. Once we have a thread
waiting for space to become available, the others queue up behind
it in a FIFO, and none of them push the tail of the log.
This can result in everyone going to sleep in xlog_grant_log_space()
if the first sleeper races with the last I/O that moves the tail
of the log forward. With no further I/O tomove the tail of the log,
there is nothing to wake the sleepers and hence all transactions
just stop.
Fix this by making sure the xfsaild will create enough space for the
transaction that is about to sleep by moving the push target far
enough forwards to ensure that that the curent proceeees will have
enough space available when it is woken. That is, we push the
AIL before we go to sleep.
Because we've inserted the log ticket into the queue before we've
pushed and gone to sleep, subsequent transactions will wait behind
this one. Hence we are guaranteed to have space available when we
are woken.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Unwritten extent conversion can recurse back into the filesystem due
to memory allocation. Memory reclaim requires I/O completions to be
processed to allow the callers to make progress. If the I/O
completion workqueue thread is doing the recursion, then we have a
deadlock situation.
Move unwritten extent completion into it's own workqueue so it
doesn't block I/O completions for normal delayed allocation or
overwrite data.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If we fail to initialise the VFS inode in inode_init_always(),
it will call ->delete_inode internally resulting in the inode being
freed. Hence we need to delay the call to inode_init_always()
until after the XFS inode is sufficient set up to handle a
call to ->delete_inode, and then if that fails do not touch
the inode again at all as it has been freed.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If the large log sector size feature bit is set in the
superblock by accident (say disk corruption), the then
fields that are now considered valid are not checked on
production kernels. The checks are present as ASSERT
statements so cause a panic on a debug kernel.
Change this so that the fields are validity checked if
the feature bit is set and abort the log mount if the
fields do not contain valid values.
Reported-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Fixes the following compiler error:
fs/nfsd/nfssvc.c: In function 'set_max_drc':
fs/nfsd/nfssvc.c:240: error: 'NFSD_DRC_SIZE_SHIFT' undeclared
CONFIG_NFSD_V4 is not set
Reported-by: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
We should now have the logic in place to handle this properly
without regressing on the write performance, so re-enable
the sync writes.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By default, CFQ will anticipate more IO from a given io context if the
previously completed IO was sync. This used to be fine, since the only
sync IO was reads and O_DIRECT writes. But with more "normal" sync writes
being used now, we don't want to anticipate for those.
Add a bio/request flag that informs the IO scheduler that this is a sync
request that we should not idle for. Introduce WRITE_ODIRECT specifically
for O_DIRECT writes, and make sure that the other sync writes set this
flag.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When you are going to be submitting several sync writes, we want to
give the IO scheduler a chance to merge some of them. Instead of
using the implicitly unplugging WRITE_SYNC variant, use WRITE_SYNC_PLUG
and rely on sync_buffer() doing the unplug when someone does a
wait_on_buffer()/lock_buffer().
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When you are going to be submitting several sync writes, we want to
give the IO scheduler a chance to merge some of them. Instead of
using the implicitly unplugging WRITE_SYNC variant, use WRITE_SYNC_PLUG
and rely on sync_buffer() doing the unplug when someone does a
wait_on_buffer()/lock_buffer().
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Then it can submit all the buffers without unplugging for each one.
We will kick off the pending IO if we come across a new address space.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'tracing-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (413 commits)
tracing, net: fix net tree and tracing tree merge interaction
tracing, powerpc: fix powerpc tree and tracing tree interaction
ring-buffer: do not remove reader page from list on ring buffer free
function-graph: allow unregistering twice
trace: make argument 'mem' of trace_seq_putmem() const
tracing: add missing 'extern' keywords to trace_output.h
tracing: provide trace_seq_reserve()
blktrace: print out BLK_TN_MESSAGE properly
blktrace: extract duplidate code
blktrace: fix memory leak when freeing struct blk_io_trace
blktrace: fix blk_probes_ref chaos
blktrace: make classic output more classic
blktrace: fix off-by-one bug
blktrace: fix the original blktrace
blktrace: fix a race when creating blk_tree_root in debugfs
blktrace: fix timestamp in binary output
tracing, Text Edit Lock: cleanup
tracing: filter fix for TRACE_EVENT_FORMAT events
ftrace: Using FTRACE_WARN_ON() to check "freed record" in ftrace_release()
x86: kretprobe-booster interrupt emulation code fix
...
Fix up trivial conflicts in
arch/parisc/include/asm/ftrace.h
include/linux/memory.h
kernel/extable.c
kernel/module.c
Commit fe2c8191 introduced a regression on big-endian system, because
the checks to make sure block references in non-extent inodes are
valid failed to use le32_to_cpu().
Reported-by: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Thiemo Nagel <thiemo.nagel@ph.tum.de>
Tested-by: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
Instead of always splitting the file offset into 32-bit 'high' and 'low'
parts, just split them into the largest natural word-size - which in C
terms is 'unsigned long'.
This allows 64-bit architectures to avoid the unnecessary 32-bit
shifting and masking for native format (while the compat interfaces will
obviously always have to do it).
This also changes the order of 'high' and 'low' to be "low first". Why?
Because when we have it like this, the 64-bit system calls now don't use
the "pos_high" argument at all, and it makes more sense for the native
system call to simply match the user-mode prototype.
This results in a much more natural calling convention, and allows the
compiler to generate much more straightforward code. On x86-64, we now
generate
testq %rcx, %rcx # pos_l
js .L122 #,
movq %rcx, -48(%rbp) # pos_l, pos
from the C source
loff_t pos = pos_from_hilo(pos_h, pos_l);
...
if (pos < 0)
return -EINVAL;
and the 'pos_h' register isn't even touched. It used to generate code
like
mov %r8d, %r8d # pos_low, pos_low
salq $32, %rcx #, tmp71
movq %r8, %rax # pos_low, pos.386
orq %rcx, %rax # tmp71, pos.386
js .L122 #,
movq %rax, -48(%rbp) # pos.386, pos
which isn't _that_ horrible, but it does show how the natural word size
is just a more sensible interface (same arguments will hold in the user
level glibc wrapper function, of course, so the kernel side is just half
of the equation!)
Note: in all cases the user code wrapper can again be the same. You can
just do
#define HALF_BITS (sizeof(unsigned long)*4)
__syscall(PWRITEV, fd, iov, count, offset, (offset >> HALF_BITS) >> HALF_BITS);
or something like that. That way the user mode wrapper will also be
nicely passing in a zero (it won't actually have to do the shifts, the
compiler will understand what is going on) for the last argument.
And that is a good idea, even if nobody will necessarily ever care: if
we ever do move to a 128-bit lloff_t, this particular system call might
be left alone. Of course, that will be the least of our worries if we
really ever need to care, so this may not be worth really caring about.
[ Fixed for lost 'loff_t' cast noticed by Andrew Morton ]
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ralf Baechle <ralf@linux-mips.org>>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement the CREATE_EXCLUSIVE4_1 open mode conforming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26
This mode allows the client to atomically create a file
if it doesn't exist while setting some of its attributes.
It must be implemented if the server supports persistent
reply cache and/or pnfs.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Also, use client minorversion to generate supported attrs
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
_nfsd4_verify currently skips 3 words from the encoded buffer begining.
With support for 3-word attr bitmaps in nfsd41, nfsd4_encode_fattr
may encode 1, 2, or 3 words, and not always 2 as it used to be, hence
we need to find out where to skip using the encoded bitmap length.
Note: This patch may be applied over pre-nfsd41 nfsd.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Support enabling and disabling nfsv4.1 via /proc/fs/nfsd/versions
by writing the strings "+4.1" or "-4.1" correspondingly.
Use user mode nfs-utils (rpc.nfsd option) to enable.
This will allow us to get rid of CONFIG_NFSD_V4_1
[nfsd41: disable support for minorversion by default]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Separate the access bits from the want bits and enable __set_bit to
work correctly with st_access_bmap.
Signed-off-by: Andy Adamson<andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
For nfs41, the open share flags are used also for
delegation "wants" and "signals". Check that they are valid.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Extract the clientid from sessionid to set the op_clientid on open.
Verify that the clid for other stateful ops is zero for minorversion != 0
Do all other checks for stateful ops without sessions.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Andy Adamson <andros@netapp.com>
[fixed whitespace indent]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41 remove sl_session from nfsd4_open]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Calculate the space the compound response has taken after encoding the current
operation.
pad: add on 8 bytes for the next operation's op_code and status so that
there is room to cache a failure on the next operation.
Compare this length to the session se_fmaxresp_cached and return
nfserr_rep_too_big_to_cache if the length is too large.
Our se_fmaxresp_cached will always be a multiple of PAGE_SIZE, and so
will be at least a page and will therefore hold the xdr_buf head.
Signed-off-by: Andy Adamson <andros@netapp.com>
[nfsd41: non-page DRC for solo sequence responses]
[fixed nfsd4_check_drc_limit cosmetics]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use cstate session in nfsd4_check_drc_limit]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
When sessions are used, stateful operation sequenceid and stateid handling
are not used. When sessions are used, on the first open set the seqid to 1,
mark state confirmed and skip seqid processing.
When sessionas are used the stateid generation number is ignored when it is zero
whereas without sessions bad_stateid or stale stateid is returned.
Add flags to propagate session use to all stateful ops and down to
check_stateid_generation.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Andy Adamson <andros@netapp.com>
[nfsd4_has_session should return a boolean, not u32]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: pass nfsd4_compoundres * to nfsd4_process_open1]
[nfsd41: calculate HAS_SESSION in nfs4_preprocess_stateid_op]
[nfsd41: calculate HAS_SESSION in nfs4_preprocess_seqid_op]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Currently we only use cstate->current_fh,
will also be used by nfsd41 code.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Implement the destory_session operation confoming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26
[use sessionid_lock spin lock]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
A session inactivity time compound (lease renewal) or a compound where the
sequence operation has sa_cachethis set to FALSE do not require any pages
to be held in the v4.1 DRC. This is because struct nfsd4_slot is already
caching the session information.
Add logic to the nfs41 server to not cache response pages for solo sequence
responses.
Return nfserr_replay_uncached_rep on the operation following the sequence
operation when sa_cachethis is FALSE.
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use cstate session in nfsd4_replay_cache_entry]
[nfsd41: rename nfsd4_no_page_in_cache]
[nfsd41 rename nfsd4_enc_no_page_replay]
[nfsd41 nfsd4_is_solo_sequence]
[nfsd41 change nfsd4_not_cached return]
Signed-off-by: Andy Adamson <andros@netapp.com>
[changed return type to bool]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41 drop parens in nfsd4_is_solo_sequence call]
Signed-off-by: Andy Adamson <andros@netapp.com>
[changed "== 0" to "!"]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Replace the nfs4_client cl_seqid field with a single struct nfs41_slot used
for the create session replay cache.
The CREATE_SESSION slot sets the sl_session pointer to NULL. Otherwise, the
slot and it's replay cache are used just like the session slots.
Fix unconfirmed create_session replay response by initializing the
create_session slot sequence id to 0.
A future patch will set the CREATE_SESSION cache when a SEQUENCE operation
preceeds the CREATE_SESSION operation. This compound is currently only cached
in the session slot table.
Signed-off-by: Andy Adamson<andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: revert portion of nfsd4_set_cache_entry]
Signed-off-by: Andy Adamson <andros@netpp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Implement the create_session operation confoming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26
Look up the client id (generated by the server on exchange_id,
given by the client on create_session).
If neither a confirmed or unconfirmed client is found
then the client id is stale
If a confirmed cilent is found (i.e. we already received
create_session for it) then compare the sequence id
to determine if it's a replay or possibly a mis-ordered rpc.
If the seqid is in order, update the confirmed client seqid
and procedd with updating the session parameters.
If an unconfirmed client_id is found then verify the creds
and seqid. If both match move the client id to confirmed state
and proceed with processing the create_session.
Currently, we do not support persistent sessions, and RDMA.
alloc_init_session generates a new sessionid and creates
a session structure.
NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for
the counting of DRC pages using the hard limits set in struct srv_serv.
A note on NFSD_PAGES_PER_SLOT:
Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be
cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT *
PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a
small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf
pages. So, the hard limit calculation use of pages by a session is
underestimated by the number of cached operations using the xdr_buf pages.
Yet another patch caches no pages for the solo sequence operation, or any
compound where cache_this is False. So the hard limit calculation use of
pages by a session is overestimated by the number of these operations in the
cache.
TODO: improve resource pre-allocation and negotiate session
parameters accordingly. Respect and possibly adjust
backchannel attributes.
Signed-off-by: Marc Eshel <eshel@almaden.ibm.com>
Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com>
[nfsd41: remove headerpadsz from channel attributes]
Our client and server only support a headerpadsz of 0.
[nfsd41: use DRC limits in fore channel init]
[nfsd41: do not change CREATE_SESSION back channel attrs]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[use sessionid_lock spin lock]
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41 remove sl_session from alloc_init_session]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[simplify nfsd4_encode_create_session error handling]
[nfsd41: fix comment style in init_forechannel_attrs]
[nfsd41: allocate struct nfsd4_session and slot table in one piece]
[nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Signed-off-by: Andy Adamson<andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Replay a request in nfsd4_sequence.
Add a minorversion to struct nfsd4_compound_state.
Pass the current slot to nfs4svc_encode_compound res via struct
nfsd4_compoundres to set an NFSv4.1 DRC entry.
Signed-off-by: Andy Adamson<andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use cstate session in nfs4svc_encode_compoundres]
[nfsd41 replace nfsd4_set_cache_entry]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Use no more than 1/128th of the number of free pages at nfsd startup for the
v4.1 DRC.
This is an arbitrary default which should probably end up under the control
of an administrator.
Signed-off-by: Andy Adamson <andros@netapp.com>
[moved added fields in struct svc_serv under CONFIG_NFSD_V4_1]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[fix set_max_drc calculation of sv_drc_max_pages]
[moved NFSD_DRC_SIZE_SHIFT's declaration up in header file]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Cache all the result pages, including the rpc header in rq_respages[0],
for a request in the slot table cache entry.
Cache the statp pointer from nfsd_dispatch which points into rq_respages[0]
just past the rpc header. When setting a cache entry, calculate and save the
length of the nfs data minus the rpc header for rq_respages[0].
When replaying a cache entry, replace the cached rpc header with the
replayed request rpc result header, unless there is not enough room in the
cached results first page. In that case, use the cached rpc header.
The sessions fore channel maxresponse size cached is set to NFSD_PAGES_PER_SLOT
* PAGE_SIZE. For compounds we are cacheing with operations such as READDIR
that use the xdr_buf->pages to hold data, we choose to cache the extra page of
data rather than copying data from xdr_buf->pages into the xdr_buf->head page.
[nfsd41: limit cache to maxresponsesize_cached]
[nfsd41: mv nfsd4_set_statp under CONFIG_NFSD_V4_1]
[nfsd41: rename nfsd4_move_pages]
[nfsd41: rename page_no variable]
[nfsd41: rename nfsd4_set_cache_entry]
[nfsd41: fix nfsd41_copy_replay_data comment]
[nfsd41: add to nfsd4_set_cache_entry]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Signed-off-by: Andy Adamson<andros@netapp.com>
[nfsd41: do not verify nfserr_sequence_pos for minorversion 0]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Implement the sequence operation conforming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26
Check for stale clientid (as derived from the sessionid).
Enforce slotid range and exactly-once semantics using
the slotid and seqid.
If everything went well renew the client lease and
mark the slot INPROGRESS.
Add a struct nfsd4_slot pointer to struct nfsd4_compound_state.
To be used for sessions DRC replay.
[nfsd41: rename sequence catchthis to cachethis]
Signed-off-by: Andy Adamson<andros@netapp.com>
[pulled some code to set cstate->slot from "nfsd DRC logic"]
[use sessionid_lock spin lock]
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd: add a struct nfsd4_slot pointer to struct nfsd4_compound_state]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: add nfsd4_session pointer to nfsd4_compound_state]
[nfsd41: set cstate session]
[nfsd41: use cstate session in nfsd4_sequence]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[simplify nfsd4_encode_sequence error handling]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
We need to distinguish between client names provided by NFSv4.0 clients
SETCLIENTID and those provided by NFSv4.1 via EXCHANGE_ID when looking
up the clientid by string.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Andy Adamson <andros@netapp.com>
[nfsd41: use boolean values for use_exchange_id argument]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: simplify match_clientid_establishment logic]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Implement the exchange_id operation confoming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28
Based on the client provided name, hash a client id.
If a confirmed one is found, compare the op's creds and
verifier. If the creds match and the verifier is different
then expire the old client (client re-incarnated), otherwise,
if both match, assume it's a replay and ignore it.
If an unconfirmed client is found, then copy the new creds
and verifer if need update, otherwise assume replay.
The client is moved to a confirmed state on create_session.
In the nfs41 branch set the exchange_id flags to
EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER
(pNFS is not supported, Referrals are supported,
Migration is not.).
Address various scenarios from section 18.35 of the spec:
1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set
EXCHGID4_FLAG_CONFIRMED_R as appropriate.
2. Return error codes per 18.35.4 scenarios.
3. Update client records or generate new client ids depending on
scenario.
Note: 18.35.4 case 3 probably still needs revisiting. The handling
seems not quite right.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Andy Adamosn <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use utsname for major_id (and copy to server_scope)]
[nfsd41: fix handling of various exchange id scenarios]
Signed-off-by: Mike Sager <sager@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A]
[simplify nfsd4_encode_exchange_id error handling]
[nfsd41: embed an xdr_netobj in nfsd4_exchange_id]
[nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Define nfsd41_dec_ops vector and add it to nfsd4_minorversion for
minorversion 1.
Note: nfsd4_enc_ops vector is shared for v4.0 and v4.1
since we don't need to filter out obsolete ops as this is
done in the decoding phase.
exchange_id, create_session, destroy_session, and sequence ops are
implemented as stubs returning nfserr_opnotsupp at this stage.
[was nfsd41: xdr stubs]
[get rid of CONFIG_NFSD_V4_1]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Simple sessionid hashing using its monotonically increasing sequence number.
Locking considerations:
sessionid_hashtbl access is controlled by the sessionid_lock spin lock.
It must be taken for insert, delete, and lookup.
nfsd4_sequence looks up the session id and if the session is found,
it calls nfsd4_get_session (still under the sessionid_lock).
nfsd4_destroy_session calls nfsd4_put_session after unhashing
it, so when the session's kref reaches zero it's going to get freed.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[we don't use a prime for sessionid hash table size]
[use sessionid_lock spin lock]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
This patch provides basic data structures representing the nfs41
sessions and slots, plus helpers for keeping a reference count
on the session and freeing it.
Note that our server only support a headerpadsz of 0 and
it ignores backchannel attributes at the moment.
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: remove headerpadsz from channel attributes]
[nfsd41: embed nfsd4_channel in nfsd4_session]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41 remove sl_session from nfsd4_slot]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
On an NFSv4.1 server cache miss that causes an upcall, NFS4ERR_DELAY will be
returned. It is up to the NFSv4.1 client to resend only the operations that
have not been processed.
Initialize rq_usedeferral to 1 in svc_process(). It sill be turned off in
nfsd4_proc_compound() only when NFSv4.1 Sessions are used.
Note: this isn't an adequate solution on its own. It's acceptable as a way
to get some minimal 4.1 up and working, but we're going to have to find a
way to avoid returning DELAY in all common cases before 4.1 can really be
considered ready.
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: reverse rq_nodeferral negative logic]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[sunrpc: initialize rq_usedeferral]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (28 commits)
trivial: Update my email address
trivial: NULL noise: drivers/mtd/tests/mtd_*test.c
trivial: NULL noise: drivers/media/dvb/frontends/drx397xD_fw.h
trivial: Fix misspelling of "Celsius".
trivial: remove unused variable 'path' in alloc_file()
trivial: fix a pdlfush -> pdflush typo in comment
trivial: jbd header comment typo fix for JBD_PARANOID_IOFAIL
trivial: wusb: Storage class should be before const qualifier
trivial: drivers/char/bsr.c: Storage class should be before const qualifier
trivial: h8300: Storage class should be before const qualifier
trivial: fix where cgroup documentation is not correctly referred to
trivial: Give the right path in Documentation example
trivial: MTD: remove EOL from MODULE_DESCRIPTION
trivial: Fix typo in bio_split()'s documentation
trivial: PWM: fix of #endif comment
trivial: fix typos/grammar errors in Kconfig texts
trivial: Fix misspelling of firmware
trivial: cgroups: documentation typo and spelling corrections
trivial: Update contact info for Jochen Hein
trivial: fix typo "resgister" -> "register"
...
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: BUG to BUG_ON changes
Btrfs: remove dead code
Btrfs: remove dead code
Btrfs: fix typos in comments
Btrfs: remove unused ftrace include
Btrfs: fix __ucmpdi2 compile bug on 32 bit builds
Btrfs: free inode struct when btrfs_new_inode fails
Btrfs: fix race in worker_loop
Btrfs: add flushoncommit mount option
Btrfs: notreelog mount option
Btrfs: introduce btrfs_show_options
Btrfs: rework allocation clustering
Btrfs: Optimize locking in btrfs_next_leaf()
Btrfs: break up btrfs_search_slot into smaller pieces
Btrfs: kill the pinned_mutex
Btrfs: kill the block group alloc mutex
Btrfs: clean up find_free_extent
Btrfs: free space cache cleanups
Btrfs: unplug in the async bio submission threads
Btrfs: keep processing bios for a given bdev if our proc is batching
During recovery, a node recovers orphans in it's slot and the dead node(s). But
if the dead nodes were holding orphans in offline slots, they will be left
unrecovered.
If the dead node is the last one to die and is holding orphans in other slots
and is the first one to mount, then it only recovers it's own slot, which
leaves orphans in offline slots.
This patch queues complete_recovery to clean orphans for all offline slots
during mount and node recovery.
Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
A page can have multiple buffers and even if a page is not uptodate, some buffers
can be uptodate on pagesize != blocksize environment.
This aops checks that all buffers which correspond to a part of a file
that we want to read are uptodate. If so, we do not have to issue actual
read IO to HDD even if a page is not uptodate because the portion we
want to read are uptodate.
"block_is_partially_uptodate" function is already used by ext2/3/4.
With the following patch random read/write mixed workloads or random read after
random write workloads can be optimized and we can get performance improvement.
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
For nfs exporting, ocfs2_get_dentry() returns the dentry for fh.
ocfs2_get_dentry() may read from disk when the inode is not in memory,
without any cross cluster lock. this leads to the file system loading a
stale inode.
This patch fixes above problem.
Solution is that in case of inode is not in memory, we get the cluster
lock(PR) of alloc inode where the inode in question is allocated from (this
causes node on which deletion is done sync the alloc inode) before reading
out the inode itsself. then we check the bitmap in the group (the inode in
question allcated from) to see if the bit is clear. if it's clear then it's
stale. if the bit is set, we then check generation as the existing code
does.
We have to read out the inode in question from disk first to know its alloc
slot and allot bit. And if its not stale we read it out using ocfs2_iget().
The second read should then be from cache.
And also we have to add a per superblock nfs_sync_lock to cover the lock for
alloc inode and that for inode in question. this is because ocfs2_get_dentry()
and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked
in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so
that mutliple ocfs2_delete_inode() can run concurrently in normal case.
[mfasheh@suse.com: build warning fixes and comment cleanups]
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The debugfs file, mle_state, now prints the number of largest number of mles
in one hash link.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch attempts to fix a fine race between purging and migration.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch removes struct dlm_lock_name and adds the entries directly
to struct dlm_master_list_entry. Under the new scheme, both mles that
are backed by a lockres or not, will have the name populated in mle->mname.
This allows us to get rid of code that was figuring out the location of
the mle name.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch shows the number of lockres' and mles in the debugfs file, dlm_state.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch inlines dlm_set_lockres_owner() and dlm_change_lockres_owner().
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch replaces the lockres counts that tracked the number number of
locally and remotely mastered lockres' with a current and total count. The
total count is the number of lockres' that have been created since the dlm
domain was created.
The number of locally and remotely mastered counts can be computed using
the locking_state output.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The lifetime of a mle is limited to the duration of the lockres mastery
process. While typically this lifetime is fairly short, we have noticed
the number of mles explode under certain circumstances. This patch tracks
the number of each different types of mles and should help us determine
how best to speed up the mastery process.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The previous patch explicitly did not indent dlm_cleanup_master_list()
so as to make the patch readable. This patch properly indents the
function.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
With this patch, the mles are stored in a hash and not a simple list.
This should improve the mle lookup time when the number of outstanding
masteries is large.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch adds code to create and destroy the dlm->master_hash.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch refactors dlm_clean_master_list() so as to make it
easier to convert the mle list to a hash.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
For master mle, the name it stored in the attached lockres in struct qstr.
For block and migration mle, the name is stored inline in struct dlm_lock_name.
This patch attempts to make struct dlm_lock_name look like a struct qstr. While
we could use struct qstr, we don't because we want to avoid having to malloc
and free the lockname string as the mle's lifetime is fairly short.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch encapsulates adding and removing of the mle from the
dlm->master_list. This patch is part of the series of patches that
converts the mle list to a mle hash.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In ocfs2, the block group search looks for the "emptiest" group
to allocate from. So if the allocator has many equally(or almost
equally) empty groups, new block group will tend to get spread
out amongst them.
So we add osb_inode_alloc_group in ocfs2_super to record the last
used inode allocation group.
For more details, please see
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/InodeAllocationStrategy.
I have done some basic test and the results are a ten times improvement on
some cold-cache stat workloads.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Inode groups used to be allocated from local alloc file,
but since we want all inodes to be contiguous enough, we
will try to allocate them directly from global_bitmap.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In ocfs2, the inode block search looks for the "emptiest" inode
group to allocate from. So if an inode alloc file has many equally
(or almost equally) empty groups, new inodes will tend to get
spread out amongst them, which in turn can put them all over the
disk. This is undesirable because directory operations on conceptually
"nearby" inodes force a large number of seeks.
So we add ip_last_used_group in core directory inodes which records
the last used allocation group. Another field named ip_last_used_slot
is also added in case inode stealing happens. When claiming new inode,
we passed in directory's inode so that the allocation can use this
information.
For more details, please see
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/InodeAllocationStrategy.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
ocfs2_dx_dir_rebalance() is passed the block offset of a dx leaf which needs
rebalancing. Since we rebalance an entire cluster at a time however, this
function needs to calculate the beginning of that cluster, in blocks. The
calculation was wrong, which would result in a read of non-leaf blocks. Fix
the calculation by adding ocfs2_block_to_cluster_start() which is a more
straight-forward way of determining this.
Reported-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
ocfs2_empty_dir() is far more expensive than checking link count. Since both
need to be checked at the same time, we can improve performance by checking
link count first.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Since the disk format is finalized, we can set this feature bit in the
supported mask.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <Joel.Becker@oracle.com>
This little bit of extra accounting speeds up ocfs2_empty_dir()
dramatically by allowing us to short-circuit the full directory scan.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Since we've now got a directory format capable of handling a large number of
entries, we can increase the maximum link count supported. This only gets
increased if the directory indexing feature is turned on.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
The only operation which doesn't get faster with directory indexing is
insert, which still has to walk the entire unindexed directory portion to
find a free block. This patch provides an improvement in directory insert
performance by maintaining a singly linked list of directory leaf blocks
which have space for additional dirents.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Allow us to store a small number of directory index records in the
ocfs2_dx_root_block. This saves us a disk read on small to medium sized
directories (less than about 250 entries). The inline root is automatically
turned into a root block with extents if the directory size increases beyond
it's capacity.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
This patch makes use of Ocfs2's flexible btree code to add an additional
tree to directory inodes. The new tree stores an array of small,
fixed-length records in each leaf block. Each record stores a hash value,
and pointer to a block in the traditional (unindexed) directory tree where a
dirent with the given name hash resides. Lookup exclusively uses this tree
to find dirents, thus providing us with constant time name lookups.
Some of the hashing code was copied from ext3. Unfortunately, it has lots of
unfixed checkpatch errors. I left that as-is so that tracking changes would
be easier.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Many directory manipulation calls pass around a tuple of dirent, and it's
containing buffer_head. Dir indexing has a bit more state, but instead of
adding yet more arguments to functions, we introduce 'struct
ocfs2_dir_lookup_result'. In this patch, it simply holds the same tuple, but
future patches will add more state.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
This patch removes the debugfs file local_alloc_stats as that information
is now included in the fs_state debugfs file.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch creates a per mount debugfs file, fs_state, which exposes
information like, cluster stack in use, states of the downconvert, recovery
and commit threads, number of journal txns, some allocation stats, list of
all slots, etc.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Move the definition of struct recovery_map from journal.c to journal.h. This
is preparation for the next patch.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch creates a debugfs file, o2hb/livesnodes, which exposes the
aggregate list of heartbeating node across all heartbeat regions.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* 'ext3-latency-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext3: Add replace-on-rename hueristics for data=writeback mode
ext3: Add replace-on-truncate hueristics for data=writeback mode
ext3: Use WRITE_SYNC for commits which are caused by fsync()
block_write_full_page: Use synchronous writes for WBC_SYNC_ALL writebacks
* git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-fscache: (41 commits)
NFS: Add mount options to enable local caching on NFS
NFS: Display local caching state
NFS: Store pages from an NFS inode into a local cache
NFS: Read pages from FS-Cache into an NFS inode
NFS: nfs_readpage_async() needs to be accessible as a fallback for local caching
NFS: Add read context retention for FS-Cache to call back with
NFS: FS-Cache page management
NFS: Add some new I/O counters for FS-Cache doing things for NFS
NFS: Invalidate FsCache page flags when cache removed
NFS: Use local disk inode cache
NFS: Define and create inode-level cache objects
NFS: Define and create superblock-level objects
NFS: Define and create server-level objects
NFS: Register NFS for caching and retrieve the top-level index
NFS: Permit local filesystem caching to be enabled for NFS
NFS: Add FS-Cache option bit and debug bit
NFS: Add comment banners to some NFS functions
FS-Cache: Make kAFS use FS-Cache
CacheFiles: A cache that backs onto a mounted filesystem
CacheFiles: Export things for CacheFiles
...
* 'for-linus' of git://oss.sgi.com/xfs/xfs: (61 commits)
Revert "xfs: increase the maximum number of supported ACL entries"
xfs: cleanup uuid handling
xfs: remove m_attroffset
xfs: fix various typos
xfs: pagecache usage optimization
xfs: remove m_litino
xfs: kill ino64 mount option
xfs: kill mutex_t typedef
xfs: increase the maximum number of supported ACL entries
xfs: factor out code to find the longest free extent in the AG
xfs: kill VN_BAD
xfs: kill vn_atime_* helpers.
xfs: cleanup xlog_bread
xfs: cleanup xlog_recover_do_trans
xfs: remove another leftover of the old inode log item format
xfs: cleanup log unmount handling
Fix xfs debug build breakage by pushing xfs_error.h after
xfs: include header files for prototypes
xfs: make symbols static
xfs: move declaration to header file
...
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-udf-2.6:
udf: Don't write integrity descriptor too often
udf: Try anchor in block 256 first
udf: Some type fixes and cleanups
udf: use hardware sector size
udf: fix novrs mount option
udf: Fix oops when invalid character in filename occurs
udf: return f_fsid for statfs(2)
udf: Add checks to not underflow sector_t
udf: fix default mode and dmode options handling
udf: fix sparse warnings:
udf: unsigned last[i] cannot be less than 0
udf: implement mode and dmode mounting options
udf: reduce stack usage of udf_get_filename
udf: reduce stack usage of udf_load_pvoldesc
Fix the udf code not to pass structs on stack where possible.
Remove struct typedefs from fs/udf/ecma_167.h et al.
* 'for-linus' of git://neil.brown.name/md: (53 commits)
md/raid5 revise rules for when to update metadata during reshape
md/raid5: minor code cleanups in make_request.
md: remove CONFIG_MD_RAID_RESHAPE config option.
md/raid5: be more careful about write ordering when reshaping.
md: don't display meaningless values in sysfs files resync_start and sync_speed
md/raid5: allow layout and chunksize to be changed on active array.
md/raid5: reshape using largest of old and new chunk size
md/raid5: prepare for allowing reshape to change layout
md/raid5: prepare for allowing reshape to change chunksize.
md/raid5: clearly differentiate 'before' and 'after' stripes during reshape.
Documentation/md.txt update
md: allow number of drives in raid5 to be reduced
md/raid5: change reshape-progress measurement to cope with reshaping backwards.
md: add explicit method to signal the end of a reshape.
md/raid5: enhance raid5_size to work correctly with negative delta_disks
md/raid5: drop qd_idx from r6_state
md/raid6: move raid6 data processing to raid6_pq.ko
md: raid5 run(): Fix max_degraded for raid level 4.
md: 'array_size' sysfs attribute
md: centralize ->array_sectors modifications
...
Add NFS mount options to allow the local caching support to be enabled.
The attached patch makes it possible for the NFS filesystem to be told to make
use of the network filesystem local caching service (FS-Cache).
To be able to use this, a recent nfsutils package is required.
There are three variant NFS mount options that can be added to a mount command
to control caching for a mount. Only the last one specified takes effect:
(*) Adding "fsc" will request caching.
(*) Adding "fsc=<string>" will request caching and also specify a uniquifier.
(*) Adding "nofsc" will disable caching.
For example:
mount warthog:/ /a -o fsc
The cache of a particular superblock (NFS FSID) will be shared between all
mounts of that volume, provided they have the same connection parameters and
are not marked 'nosharecache'.
Where it is otherwise impossible to distinguish superblocks because all the
parameters are identical, but the 'nosharecache' option is supplied, a
uniquifying string must be supplied, else only the first mount will be
permitted to use the cache.
If there's a key collision, then the second mount will disable caching and give
a warning into the kernel log.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Display the local caching state in /proc/fs/nfsfs/volumes.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Store pages from an NFS inode into the cache data storage object associated
with that inode.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Read pages from an FS-Cache data storage object representing an inode into an
NFS inode.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
nfs_readpage_async() needs to be non-static so that it can be used as a
fallback for the local on-disk caching should an EIO crop up when reading the
cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add read context retention so that FS-Cache can call back into NFS when a read
operation on the cache fails EIO rather than reading data. This permits NFS to
then fetch the data from the server instead using the appropriate security
context.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
FS-Cache page management for NFS. This includes hooking the releasing and
invalidation of pages marked with PG_fscache (aka PG_private_2) and waiting for
completion of the write-to-cache flag (PG_fscache_write aka PG_owner_priv_2).
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add some new NFS I/O counters for FS-Cache doing things for NFS. A new line is
emitted into /proc/pid/mountstats if caching is enabled that looks like:
fsc: <rok> <rfl> <wok> <wfl> <unc>
Where <rok> is the number of pages read successfully from the cache, <rfl> is
the number of failed page reads against the cache, <wok> is the number of
successful page writes to the cache, <wfl> is the number of failed page writes
to the cache, and <unc> is the number of NFS pages that have been disconnected
from the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Invalidate the FsCache page flags on the pages belonging to an inode when the
cache backing that NFS inode is removed.
This allows a live cache to be withdrawn.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Bind data storage objects in the local cache to NFS inodes.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Define and create inode-level cache data storage objects (as managed by
nfs_inode structs).
Each inode-level object is created in a superblock-level index object and is
itself a data storage object into which pages from the inode are stored.
The inode object key is the NFS file handle for the inode.
The inode object is given coherency data to carry in the auxiliary data
permitted by the cache. This is a sequence made up of:
(1) i_mtime from the NFS inode.
(2) i_ctime from the NFS inode.
(3) i_size from the NFS inode.
(4) change_attr from the NFSv4 attribute data.
As the cache is a persistent cache, the auxiliary data is checked when a new
NFS in-memory inode is set up that matches an already existing data storage
object in the cache. If the coherency data is the same, the on-disk object is
retained and used; if not, it is scrapped and a new one created.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Define and create superblock-level cache index objects (as managed by
nfs_server structs).
Each superblock object is created in a server level index object and is itself
an index into which inode-level objects are inserted.
Ideally there would be one superblock-level object per server, and the former
would be folded into the latter; however, since the "nosharecache" option
exists this isn't possible.
The superblock object key is a sequence consisting of:
(1) Certain superblock s_flags.
(2) Various connection parameters that serve to distinguish superblocks for
sget().
(3) The volume FSID.
(4) The security flavour.
(5) The uniquifier length.
(6) The uniquifier text. This is normally an empty string, unless the fsc=xyz
mount option was used to explicitly specify a uniquifier.
The key blob is of variable length, depending on the length of (6).
The superblock object is given no coherency data to carry in the auxiliary data
permitted by the cache. It is assumed that the superblock is always coherent.
This patch also adds uniquification handling such that two otherwise identical
superblocks, at least one of which is marked "nosharecache", won't end up
trying to share the on-disk cache. It will be possible to manually provide a
uniquifier through a mount option with a later patch to avoid the error
otherwise produced.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Define and create server-level cache index objects (as managed by nfs_client
structs).
Each server object is created in the NFS top-level index object and is itself
an index into which superblock-level objects are inserted.
Ideally there would be one superblock-level object per server, and the former
would be folded into the latter; however, since the "nosharecache" option
exists this isn't possible.
The server object key is a sequence consisting of:
(1) NFS version
(2) Server address family (eg: AF_INET or AF_INET6)
(3) Server port.
(4) Server IP address.
The key blob is of variable length, depending on the length of (4).
The server object is given no coherency data to carry in the auxiliary data
permitted by the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Register NFS for caching and retrieve the top-level cache index object cookie.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Permit local filesystem caching to be enabled for NFS in the kernel
configuration.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add comment banners to some NFS functions so that they can be modified by the
NFS fscache patches for further information.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
The attached patch makes the kAFS filesystem in fs/afs/ use FS-Cache, and
through it any attached caches. The kAFS filesystem will use caching
automatically if it's available.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add an FS-Cache cache-backend that permits a mounted filesystem to be used as a
backing store for the cache.
CacheFiles uses a userspace daemon to do some of the cache management - such as
reaping stale nodes and culling. This is called cachefilesd and lives in
/sbin. The source for the daemon can be downloaded from:
http://people.redhat.com/~dhowells/cachefs/cachefilesd.c
And an example configuration from:
http://people.redhat.com/~dhowells/cachefs/cachefilesd.conf
The filesystem and data integrity of the cache are only as good as those of the
filesystem providing the backing services. Note that CacheFiles does not
attempt to journal anything since the journalling interfaces of the various
filesystems are very specific in nature.
CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
to communication with the daemon. Only one thing may have this open at once,
and whilst it is open, a cache is at least partially in existence. The daemon
opens this and sends commands down it to control the cache.
CacheFiles is currently limited to a single cache.
CacheFiles attempts to maintain at least a certain percentage of free space on
the filesystem, shrinking the cache by culling the objects it contains to make
space if necessary - see the "Cache Culling" section. This means it can be
placed on the same medium as a live set of data, and will expand to make use of
spare space and automatically contract when the set of data requires more
space.
============
REQUIREMENTS
============
The use of CacheFiles and its daemon requires the following features to be
available in the system and in the cache filesystem:
- dnotify.
- extended attributes (xattrs).
- openat() and friends.
- bmap() support on files in the filesystem (FIBMAP ioctl).
- The use of bmap() to detect a partial page at the end of the file.
It is strongly recommended that the "dir_index" option is enabled on Ext3
filesystems being used as a cache.
=============
CONFIGURATION
=============
The cache is configured by a script in /etc/cachefilesd.conf. These commands
set up cache ready for use. The following script commands are available:
(*) brun <N>%
(*) bcull <N>%
(*) bstop <N>%
(*) frun <N>%
(*) fcull <N>%
(*) fstop <N>%
Configure the culling limits. Optional. See the section on culling
The defaults are 7% (run), 5% (cull) and 1% (stop) respectively.
The commands beginning with a 'b' are file space (block) limits, those
beginning with an 'f' are file count limits.
(*) dir <path>
Specify the directory containing the root of the cache. Mandatory.
(*) tag <name>
Specify a tag to FS-Cache to use in distinguishing multiple caches.
Optional. The default is "CacheFiles".
(*) debug <mask>
Specify a numeric bitmask to control debugging in the kernel module.
Optional. The default is zero (all off). The following values can be
OR'd into the mask to collect various information:
1 Turn on trace of function entry (_enter() macros)
2 Turn on trace of function exit (_leave() macros)
4 Turn on trace of internal debug points (_debug())
This mask can also be set through sysfs, eg:
echo 5 >/sys/modules/cachefiles/parameters/debug
==================
STARTING THE CACHE
==================
The cache is started by running the daemon. The daemon opens the cache device,
configures the cache and tells it to begin caching. At that point the cache
binds to fscache and the cache becomes live.
The daemon is run as follows:
/sbin/cachefilesd [-d]* [-s] [-n] [-f <configfile>]
The flags are:
(*) -d
Increase the debugging level. This can be specified multiple times and
is cumulative with itself.
(*) -s
Send messages to stderr instead of syslog.
(*) -n
Don't daemonise and go into background.
(*) -f <configfile>
Use an alternative configuration file rather than the default one.
===============
THINGS TO AVOID
===============
Do not mount other things within the cache as this will cause problems. The
kernel module contains its own very cut-down path walking facility that ignores
mountpoints, but the daemon can't avoid them.
Do not create, rename or unlink files and directories in the cache whilst the
cache is active, as this may cause the state to become uncertain.
Renaming files in the cache might make objects appear to be other objects (the
filename is part of the lookup key).
Do not change or remove the extended attributes attached to cache files by the
cache as this will cause the cache state management to get confused.
Do not create files or directories in the cache, lest the cache get confused or
serve incorrect data.
Do not chmod files in the cache. The module creates things with minimal
permissions to prevent random users being able to access them directly.
=============
CACHE CULLING
=============
The cache may need culling occasionally to make space. This involves
discarding objects from the cache that have been used less recently than
anything else. Culling is based on the access time of data objects. Empty
directories are culled if not in use.
Cache culling is done on the basis of the percentage of blocks and the
percentage of files available in the underlying filesystem. There are six
"limits":
(*) brun
(*) frun
If the amount of free space and the number of available files in the cache
rises above both these limits, then culling is turned off.
(*) bcull
(*) fcull
If the amount of available space or the number of available files in the
cache falls below either of these limits, then culling is started.
(*) bstop
(*) fstop
If the amount of available space or the number of available files in the
cache falls below either of these limits, then no further allocation of
disk space or files is permitted until culling has raised things above
these limits again.
These must be configured thusly:
0 <= bstop < bcull < brun < 100
0 <= fstop < fcull < frun < 100
Note that these are percentages of available space and available files, and do
_not_ appear as 100 minus the percentage displayed by the "df" program.
The userspace daemon scans the cache to build up a table of cullable objects.
These are then culled in least recently used order. A new scan of the cache is
started as soon as space is made in the table. Objects will be skipped if
their atimes have changed or if the kernel module says it is still using them.
===============
CACHE STRUCTURE
===============
The CacheFiles module will create two directories in the directory it was
given:
(*) cache/
(*) graveyard/
The active cache objects all reside in the first directory. The CacheFiles
kernel module moves any retired or culled objects that it can't simply unlink
to the graveyard from which the daemon will actually delete them.
The daemon uses dnotify to monitor the graveyard directory, and will delete
anything that appears therein.
The module represents index objects as directories with the filename "I..." or
"J...". Note that the "cache/" directory is itself a special index.
Data objects are represented as files if they have no children, or directories
if they do. Their filenames all begin "D..." or "E...". If represented as a
directory, data objects will have a file in the directory called "data" that
actually holds the data.
Special objects are similar to data objects, except their filenames begin
"S..." or "T...".
If an object has children, then it will be represented as a directory.
Immediately in the representative directory are a collection of directories
named for hash values of the child object keys with an '@' prepended. Into
this directory, if possible, will be placed the representations of the child
objects:
INDEX INDEX INDEX DATA FILES
========= ========== ================================= ================
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry
If the key is so long that it exceeds NAME_MAX with the decorations added on to
it, then it will be cut into pieces, the first few of which will be used to
make a nest of directories, and the last one of which will be the objects
inside the last directory. The names of the intermediate directories will have
'+' prepended:
J1223/@23/+xy...z/+kl...m/Epqr
Note that keys are raw data, and not only may they exceed NAME_MAX in size,
they may also contain things like '/' and NUL characters, and so they may not
be suitable for turning directly into a filename.
To handle this, CacheFiles will use a suitably printable filename directly and
"base-64" encode ones that aren't directly suitable. The two versions of
object filenames indicate the encoding:
OBJECT TYPE PRINTABLE ENCODED
=============== =============== ===============
Index "I..." "J..."
Data "D..." "E..."
Special "S..." "T..."
Intermediate directories are always "@" or "+" as appropriate.
Each object in the cache has an extended attribute label that holds the object
type ID (required to distinguish special objects) and the auxiliary data from
the netfs. The latter is used to detect stale objects in the cache and update
or retire them.
Note that CacheFiles will erase from the cache any file it doesn't recognise or
any file of an incorrect type (such as a FIFO file or a device file).
==========================
SECURITY MODEL AND SELINUX
==========================
CacheFiles is implemented to deal properly with the LSM security features of
the Linux kernel and the SELinux facility.
One of the problems that CacheFiles faces is that it is generally acting on
behalf of a process, and running in that process's context, and that includes a
security context that is not appropriate for accessing the cache - either
because the files in the cache are inaccessible to that process, or because if
the process creates a file in the cache, that file may be inaccessible to other
processes.
The way CacheFiles works is to temporarily change the security context (fsuid,
fsgid and actor security label) that the process acts as - without changing the
security context of the process when it the target of an operation performed by
some other process (so signalling and suchlike still work correctly).
When the CacheFiles module is asked to bind to its cache, it:
(1) Finds the security label attached to the root cache directory and uses
that as the security label with which it will create files. By default,
this is:
cachefiles_var_t
(2) Finds the security label of the process which issued the bind request
(presumed to be the cachefilesd daemon), which by default will be:
cachefilesd_t
and asks LSM to supply a security ID as which it should act given the
daemon's label. By default, this will be:
cachefiles_kernel_t
SELinux transitions the daemon's security ID to the module's security ID
based on a rule of this form in the policy.
type_transition <daemon's-ID> kernel_t : process <module's-ID>;
For instance:
type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t;
The module's security ID gives it permission to create, move and remove files
and directories in the cache, to find and access directories and files in the
cache, to set and access extended attributes on cache objects, and to read and
write files in the cache.
The daemon's security ID gives it only a very restricted set of permissions: it
may scan directories, stat files and erase files and directories. It may
not read or write files in the cache, and so it is precluded from accessing the
data cached therein; nor is it permitted to create new files in the cache.
There are policy source files available in:
http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2
and later versions. In that tarball, see the files:
cachefilesd.te
cachefilesd.fc
cachefilesd.if
They are built and installed directly by the RPM.
If a non-RPM based system is being used, then copy the above files to their own
directory and run:
make -f /usr/share/selinux/devel/Makefile
semodule -i cachefilesd.pp
You will need checkpolicy and selinux-policy-devel installed prior to the
build.
By default, the cache is located in /var/fscache, but if it is desirable that
it should be elsewhere, than either the above policy files must be altered, or
an auxiliary policy must be installed to label the alternate location of the
cache.
For instructions on how to add an auxiliary policy to enable the cache to be
located elsewhere when SELinux is in enforcing mode, please see:
/usr/share/doc/cachefilesd-*/move-cache.txt
When the cachefilesd rpm is installed; alternatively, the document can be found
in the sources.
==================
A NOTE ON SECURITY
==================
CacheFiles makes use of the split security in the task_struct. It allocates
its own task_security structure, and redirects current->act_as to point to it
when it acts on behalf of another process, in that process's context.
The reason it does this is that it calls vfs_mkdir() and suchlike rather than
bypassing security and calling inode ops directly. Therefore the VFS and LSM
may deny the CacheFiles access to the cache data because under some
circumstances the caching code is running in the security context of whatever
process issued the original syscall on the netfs.
Furthermore, should CacheFiles create a file or directory, the security
parameters with that object is created (UID, GID, security label) would be
derived from that process that issued the system call, thus potentially
preventing other processes from accessing the cache - including CacheFiles's
cache management daemon (cachefilesd).
What is required is to temporarily override the security of the process that
issued the system call. We can't, however, just do an in-place change of the
security data as that affects the process as an object, not just as a subject.
This means it may lose signals or ptrace events for example, and affects what
the process looks like in /proc.
So CacheFiles makes use of a logical split in the security between the
objective security (task->sec) and the subjective security (task->act_as). The
objective security holds the intrinsic security properties of a process and is
never overridden. This is what appears in /proc, and is what is used when a
process is the target of an operation by some other process (SIGKILL for
example).
The subjective security holds the active security properties of a process, and
may be overridden. This is not seen externally, and is used whan a process
acts upon another object, for example SIGKILLing another process or opening a
file.
LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request
for CacheFiles to run in a context of a specific security label, or to create
files and directories with another security label.
This documentation is added by the patch to:
Documentation/filesystems/caching/cachefiles.txt
Signed-Off-By: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Export a number of functions for CacheFiles's use.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement the data I/O part of the FS-Cache netfs API. The documentation and
API header file were added in a previous patch.
This patch implements the following functions for the netfs to call:
(*) fscache_attr_changed().
Indicate that the object has changed its attributes. The only attribute
currently recorded is the file size. Only pages within the set file size
will be stored in the cache.
This operation is submitted for asynchronous processing, and will return
immediately. It will return -ENOMEM if an out of memory error is
encountered, -ENOBUFS if the object is not actually cached, or 0 if the
operation is successfully queued.
(*) fscache_read_or_alloc_page().
(*) fscache_read_or_alloc_pages().
Request data be fetched from the disk, and allocate internal metadata to
track the netfs pages and reserve disk space for unknown pages.
These operations perform semi-asynchronous data reads. Upon returning
they will indicate which pages they think can be retrieved from disk, and
will have set in progress attempts to retrieve those pages.
These will return, in order of preference, -ENOMEM on memory allocation
error, -ERESTARTSYS if a signal interrupted proceedings, -ENODATA if one
or more requested pages are not yet cached, -ENOBUFS if the object is not
actually cached or if there isn't space for future pages to be cached on
this object, or 0 if successful.
In the case of the multipage function, the pages for which reads are set
in progress will be removed from the list and the page count decreased
appropriately.
If any read operations should fail, the completion function will be given
an error, and will also be passed contextual information to allow the
netfs to fall back to querying the server for the absent pages.
For each successful read, the page completion function will also be
called.
Any pages subsequently tracked by the cache will have PG_fscache set upon
them on return. fscache_uncache_page() must be called for such pages.
If supplied by the netfs, the mark_pages_cached() cookie op will be
invoked for any pages now tracked.
(*) fscache_alloc_page().
Allocate internal metadata to track a netfs page and reserve disk space.
This will return -ENOMEM on memory allocation error, -ERESTARTSYS on
signal, -ENOBUFS if the object isn't cached, or there isn't enough space
in the cache, or 0 if successful.
Any pages subsequently tracked by the cache will have PG_fscache set upon
them on return. fscache_uncache_page() must be called for such pages.
If supplied by the netfs, the mark_pages_cached() cookie op will be
invoked for any pages now tracked.
(*) fscache_write_page().
Request data be stored to disk. This may only be called on pages that
have been read or alloc'd by the above three functions and have not yet
been uncached.
This will return -ENOMEM on memory allocation error, -ERESTARTSYS on
signal, -ENOBUFS if the object isn't cached, or there isn't immediately
enough space in the cache, or 0 if successful.
On a successful return, this operation will have queued the page for
asynchronous writing to the cache. The page will be returned with
PG_fscache_write set until the write completes one way or another. The
caller will not be notified if the write fails due to an I/O error. If
that happens, the object will become available and all pending writes will
be aborted.
Note that the cache may batch up page writes, and so it may take a while
to get around to writing them out.
The caller must assume that until PG_fscache_write is cleared the page is
use by the cache. Any changes made to the page may be reflected on disk.
The page may even be under DMA.
(*) fscache_uncache_page().
Indicate that the cache should stop tracking a page previously read or
alloc'd from the cache. If the page was alloc'd only, but unwritten, it
will not appear on disk.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement the cookie management part of the FS-Cache netfs client API. The
documentation and API header file were added in a previous patch.
This patch implements the following three functions:
(1) fscache_acquire_cookie().
Acquire a cookie to represent an object to the netfs. If the object in
question is a non-index object, then that object and its parent indices
will be created on disk at this point if they don't already exist. Index
creation is deferred because an index may reside in multiple caches.
(2) fscache_relinquish_cookie().
Retire or release a cookie previously acquired. At this point, the
object on disk may be destroyed.
(3) fscache_update_cookie().
Update the in-cache representation of a cookie. This is used to update
the auxiliary data for coherency management purposes.
With this patch it is possible to have a netfs instruct a cache backend to
look up, validate and create metadata on disk and to destroy it again.
The ability to actually store and retrieve data in the objects so created is
added in later patches.
Note that these functions will never return an error. _All_ errors are
handled internally to FS-Cache.
The worst that can happen is that fscache_acquire_cookie() may return a NULL
pointer - which is considered a negative cookie pointer and can be passed back
to any function that takes a cookie without harm. A negative cookie pointer
merely suppresses caching at that level.
The stub in linux/fscache.h will detect inline the negative cookie pointer and
abort the operation as fast as possible. This means that the compiler doesn't
have to set up for a call in that case.
See the documentation in Documentation/filesystems/caching/netfs-api.txt for
more information.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement the cache object management state machine.
The following documentation is added to illuminate the working of this state
machine. It will also be added as:
Documentation/filesystems/caching/object.txt
====================================================
IN-KERNEL CACHE OBJECT REPRESENTATION AND MANAGEMENT
====================================================
==============
REPRESENTATION
==============
FS-Cache maintains an in-kernel representation of each object that a netfs is
currently interested in. Such objects are represented by the fscache_cookie
struct and are referred to as cookies.
FS-Cache also maintains a separate in-kernel representation of the objects that
a cache backend is currently actively caching. Such objects are represented by
the fscache_object struct. The cache backends allocate these upon request, and
are expected to embed them in their own representations. These are referred to
as objects.
There is a 1:N relationship between cookies and objects. A cookie may be
represented by multiple objects - an index may exist in more than one cache -
or even by no objects (it may not be cached).
Furthermore, both cookies and objects are hierarchical. The two hierarchies
correspond, but the cookies tree is a superset of the union of the object trees
of multiple caches:
NETFS INDEX TREE : CACHE 1 : CACHE 2
: :
: +-----------+ :
+----------->| IObject | :
+-----------+ | : +-----------+ :
| ICookie |-------+ : | :
+-----------+ | : | : +-----------+
| +------------------------------>| IObject |
| : | : +-----------+
| : V : |
| : +-----------+ : |
V +----------->| IObject | : |
+-----------+ | : +-----------+ : |
| ICookie |-------+ : | : V
+-----------+ | : | : +-----------+
| +------------------------------>| IObject |
+-----+-----+ : | : +-----------+
| | : | : |
V | : V : |
+-----------+ | : +-----------+ : |
| ICookie |------------------------->| IObject | : |
+-----------+ | : +-----------+ : |
| V : | : V
| +-----------+ : | : +-----------+
| | ICookie |-------------------------------->| IObject |
| +-----------+ : | : +-----------+
V | : V : |
+-----------+ | : +-----------+ : |
| DCookie |------------------------->| DObject | : |
+-----------+ | : +-----------+ : |
| : : |
+-------+-------+ : : |
| | : : |
V V : : V
+-----------+ +-----------+ : : +-----------+
| DCookie | | DCookie |------------------------>| DObject |
+-----------+ +-----------+ : : +-----------+
: :
In the above illustration, ICookie and IObject represent indices and DCookie
and DObject represent data storage objects. Indices may have representation in
multiple caches, but currently, non-index objects may not. Objects of any type
may also be entirely unrepresented.
As far as the netfs API goes, the netfs is only actually permitted to see
pointers to the cookies. The cookies themselves and any objects attached to
those cookies are hidden from it.
===============================
OBJECT MANAGEMENT STATE MACHINE
===============================
Within FS-Cache, each active object is managed by its own individual state
machine. The state for an object is kept in the fscache_object struct, in
object->state. A cookie may point to a set of objects that are in different
states.
Each state has an action associated with it that is invoked when the machine
wakes up in that state. There are four logical sets of states:
(1) Preparation: states that wait for the parent objects to become ready. The
representations are hierarchical, and it is expected that an object must
be created or accessed with respect to its parent object.
(2) Initialisation: states that perform lookups in the cache and validate
what's found and that create on disk any missing metadata.
(3) Normal running: states that allow netfs operations on objects to proceed
and that update the state of objects.
(4) Termination: states that detach objects from their netfs cookies, that
delete objects from disk, that handle disk and system errors and that free
up in-memory resources.
In most cases, transitioning between states is in response to signalled events.
When a state has finished processing, it will usually set the mask of events in
which it is interested (object->event_mask) and relinquish the worker thread.
Then when an event is raised (by calling fscache_raise_event()), if the event
is not masked, the object will be queued for processing (by calling
fscache_enqueue_object()).
PROVISION OF CPU TIME
---------------------
The work to be done by the various states is given CPU time by the threads of
the slow work facility (see Documentation/slow-work.txt). This is used in
preference to the workqueue facility because:
(1) Threads may be completely occupied for very long periods of time by a
particular work item. These state actions may be doing sequences of
synchronous, journalled disk accesses (lookup, mkdir, create, setxattr,
getxattr, truncate, unlink, rmdir, rename).
(2) Threads may do little actual work, but may rather spend a lot of time
sleeping on I/O. This means that single-threaded and 1-per-CPU-threaded
workqueues don't necessarily have the right numbers of threads.
LOCKING SIMPLIFICATION
----------------------
Because only one worker thread may be operating on any particular object's
state machine at once, this simplifies the locking, particularly with respect
to disconnecting the netfs's representation of a cache object (fscache_cookie)
from the cache backend's representation (fscache_object) - which may be
requested from either end.
=================
THE SET OF STATES
=================
The object state machine has a set of states that it can be in. There are
preparation states in which the object sets itself up and waits for its parent
object to transit to a state that allows access to its children:
(1) State FSCACHE_OBJECT_INIT.
Initialise the object and wait for the parent object to become active. In
the cache, it is expected that it will not be possible to look an object
up from the parent object, until that parent object itself has been looked
up.
There are initialisation states in which the object sets itself up and accesses
disk for the object metadata:
(2) State FSCACHE_OBJECT_LOOKING_UP.
Look up the object on disk, using the parent as a starting point.
FS-Cache expects the cache backend to probe the cache to see whether this
object is represented there, and if it is, to see if it's valid (coherency
management).
The cache should call fscache_object_lookup_negative() to indicate lookup
failure for whatever reason, and should call fscache_obtained_object() to
indicate success.
At the completion of lookup, FS-Cache will let the netfs go ahead with
read operations, no matter whether the file is yet cached. If not yet
cached, read operations will be immediately rejected with ENODATA until
the first known page is uncached - as to that point there can be no data
to be read out of the cache for that file that isn't currently also held
in the pagecache.
(3) State FSCACHE_OBJECT_CREATING.
Create an object on disk, using the parent as a starting point. This
happens if the lookup failed to find the object, or if the object's
coherency data indicated what's on disk is out of date. In this state,
FS-Cache expects the cache to create
The cache should call fscache_obtained_object() if creation completes
successfully, fscache_object_lookup_negative() otherwise.
At the completion of creation, FS-Cache will start processing write
operations the netfs has queued for an object. If creation failed, the
write ops will be transparently discarded, and nothing recorded in the
cache.
There are some normal running states in which the object spends its time
servicing netfs requests:
(4) State FSCACHE_OBJECT_AVAILABLE.
A transient state in which pending operations are started, child objects
are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary
lookup data is freed.
(5) State FSCACHE_OBJECT_ACTIVE.
The normal running state. In this state, requests the netfs makes will be
passed on to the cache.
(6) State FSCACHE_OBJECT_UPDATING.
The state machine comes here to update the object in the cache from the
netfs's records. This involves updating the auxiliary data that is used
to maintain coherency.
And there are terminal states in which an object cleans itself up, deallocates
memory and potentially deletes stuff from disk:
(7) State FSCACHE_OBJECT_LC_DYING.
The object comes here if it is dying because of a lookup or creation
error. This would be due to a disk error or system error of some sort.
Temporary data is cleaned up, and the parent is released.
(8) State FSCACHE_OBJECT_DYING.
The object comes here if it is dying due to an error, because its parent
cookie has been relinquished by the netfs or because the cache is being
withdrawn.
Any child objects waiting on this one are given CPU time so that they too
can destroy themselves. This object waits for all its children to go away
before advancing to the next state.
(9) State FSCACHE_OBJECT_ABORT_INIT.
The object comes to this state if it was waiting on its parent in
FSCACHE_OBJECT_INIT, but its parent died. The object will destroy itself
so that the parent may proceed from the FSCACHE_OBJECT_DYING state.
(10) State FSCACHE_OBJECT_RELEASING.
(11) State FSCACHE_OBJECT_RECYCLING.
The object comes to one of these two states when dying once it is rid of
all its children, if it is dying because the netfs relinquished its
cookie. In the first state, the cached data is expected to persist, and
in the second it will be deleted.
(12) State FSCACHE_OBJECT_WITHDRAWING.
The object transits to this state if the cache decides it wants to
withdraw the object from service, perhaps to make space, but also due to
error or just because the whole cache is being withdrawn.
(13) State FSCACHE_OBJECT_DEAD.
The object transits to this state when the in-memory object record is
ready to be deleted. The object processor shouldn't ever see an object in
this state.
THE SET OF EVENTS
-----------------
There are a number of events that can be raised to an object state machine:
(*) FSCACHE_OBJECT_EV_UPDATE
The netfs requested that an object be updated. The state machine will ask
the cache backend to update the object, and the cache backend will ask the
netfs for details of the change through its cookie definition ops.
(*) FSCACHE_OBJECT_EV_CLEARED
This is signalled in two circumstances:
(a) when an object's last child object is dropped and
(b) when the last operation outstanding on an object is completed.
This is used to proceed from the dying state.
(*) FSCACHE_OBJECT_EV_ERROR
This is signalled when an I/O error occurs during the processing of some
object.
(*) FSCACHE_OBJECT_EV_RELEASE
(*) FSCACHE_OBJECT_EV_RETIRE
These are signalled when the netfs relinquishes a cookie it was using.
The event selected depends on whether the netfs asks for the backing
object to be retired (deleted) or retained.
(*) FSCACHE_OBJECT_EV_WITHDRAW
This is signalled when the cache backend wants to withdraw an object.
This means that the object will have to be detached from the netfs's
cookie.
Because the withdrawing releasing/retiring events are all handled by the object
state machine, it doesn't matter if there's a collision with both ends trying
to sever the connection at the same time. The state machine can just pick
which one it wants to honour, and that effects the other.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add helpers for use with wait_on_bit().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add functions to register and unregister a network filesystem or other client
of the FS-Cache service. This allocates and releases the cookie representing
the top-level index for a netfs, and makes it available to the netfs.
If the FS-Cache facility is disabled, then the calls are optimised away at
compile time.
Note that whilst this patch may appear to work with FS-Cache enabled and a
netfs attempting to use it, it will leak the cookie it allocates for the netfs
as fscache_relinquish_cookie() is implemented in a later patch. This will
cause the slab code to emit a warning when the module is removed.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Provide a slab from which can be allocated the FS-Cache cookies that will be
presented to the netfs.
Also provide a slab constructor and a function to recursively discard a cookie
and its ancestor chain.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement the entry points by which a cache backend may initialise, add,
declare an error upon and withdraw a cache.
Further, an object is created in sysfs under which each cache added will get
an object created:
/sys/fs/fscache/<cachetag>/
All of this is described in Documentation/filesystems/caching/backend-api.txt
added by a previous patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement two features of FS-Cache:
(1) The ability to request and release cache tags - names by which a cache may
be known to a netfs, and thus selected for use.
(2) An internal function by which a cache is selected by consulting the netfs,
if the netfs wishes to be consulted.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add a description of the root index of the cache for later patches to make use
of.
The root index is owned by FS-Cache itself. When a netfs requests caching
facilities, FS-Cache will, if one doesn't already exist, create an entry in
the root index with the key being the name of the netfs ("AFS" for example),
and the auxiliary data holding the index structure version supplied by the
netfs:
FSDEF
|
+-----------+
| |
NFS AFS
[v=1] [v=1]
If an entry with the appropriate name does already exist, the version is
compared. If the version is different, the entire subtree from that entry
will be discarded and a new entry created.
The new entry will be an index, and a cookie referring to it will be passed to
the netfs. This is then the root handle by which the netfs accesses the
cache. It can create whatever objects it likes in that index, including
further indices.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Make FS-Cache create its /proc interface and present various statistical
information through it. Also provide the functions for updating this
information.
These features are enabled by:
CONFIG_FSCACHE_PROC
CONFIG_FSCACHE_STATS
CONFIG_FSCACHE_HISTOGRAM
The /proc directory for FS-Cache is also exported so that caching modules can
add their own statistics there too.
The FS-Cache module is loadable at this point, and the statistics files can be
examined by userspace:
cat /proc/fs/fscache/stats
cat /proc/fs/fscache/histogram
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add the main configuration option, allowing FS-Cache to be selected; the
module entry and exit functions and the debugging stuff used by these patches.
The two configuration options added are:
CONFIG_FSCACHE
CONFIG_FSCACHE_DEBUG
The first enables the facility, and the second makes the debugging statements
enableable through the "debug" module parameter. The value of this parameter
is a bitmask as described in:
Documentation/filesystems/caching/fscache.txt
The module can be loaded at this point, but all it will do at this point in
the patch series is to start up the slow work facility and shut it down again.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Recruit a page flag to aid in cache management. The following extra flag is
defined:
(1) PG_fscache (PG_private_2)
The marked page is backed by a local cache and is pinning resources in the
cache driver.
If PG_fscache is set, then things that checked for PG_private will now also
check for that. This includes things like truncation and page invalidation.
The function page_has_private() had been added to make the checks for both
PG_private and PG_private_2 at the same time.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Impact: cleanup
fs/squashfs/export.c depends on slab.h without including it:
CC fs/squashfs/export.o
fs/squashfs/export.c: In function ‘squashfs_read_inode_lookup_table’:
fs/squashfs/export.c:133: error: implicit declaration of function ‘kmalloc’
fs/squashfs/export.c:133: warning: assignment makes pointer from integer without a cast
fs/squashfs/export.c:143: error: implicit declaration of function ‘kfree’
make[1]: *** [fs/squashfs/export.o] Error 1
make: *** [fs/squashfs/] Error 2
It gets included implicitly currently - but this will not be the
case with upcoming kmemtrace changes.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
LKML-Reference: <1237884999.25315.41.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
fs/befs/debug.c depends on slab.h without including it. Upcoming
changes for kmemtrace would break the build:
CC fs/befs/debug.o
fs/befs/debug.c: In function ‘befs_error’:
fs/befs/debug.c:31: error: implicit declaration of function ‘kmalloc’
fs/befs/debug.c:31: warning: initialization makes pointer from integer without a cast
fs/befs/debug.c:42: error: implicit declaration of function ‘kfree’
fs/befs/debug.c: In function ‘befs_warning’:
fs/befs/debug.c:49: warning: initialization makes pointer from integer without a cast
fs/befs/debug.c: In function ‘befs_debug’:
fs/befs/debug.c:73: warning: assignment makes pointer from integer without a cast
make[1]: *** [fs/befs/debug.o] Error 1
make: *** [fs/befs/] Error 2
So add the dependency explicitly.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
LKML-Reference: <1237884230.25315.33.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
We want to remove percpu.h from rcupdate.h (for upcoming kmemtrace
changes), but this is not possible currently without breaking the
build because fs.h has an implicit include file depedency: it
uses PAGE_SIZE but does not include asm/page.h which defines it.
This problem gets masked in practice because most fs.h using sites
use rcupreempt.h (and other headers) which includes percpu.h which
brings in asm/page.h indirectly.
We cannot add asm/page.h to asm/fs.h because page.h is not an
exported header.
Move simple_transaction_set() to the other simple-transaction
file helpers in fs/libfs.c.
This removes the include file hell and also reduces
kernel size a bit.
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: paulmck@linux.vnet.ibm.com
LKML-Reference: <1237898630.25315.83.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In data=writeback mode, start an asynchronous flush when renaming a
file on top of an already-existing file. This lowers the probability
of data loss in the case of applications that attempt to replace a
file via using rename().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In data=writeback mode, start an asynchronous flush when closing a
file which had been previously truncated down to zero. This lowers
the probability of data loss in the case of applications that attempt
to replace a file using truncate.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
Remove two unneeded exports and make two symbols static in fs/mpage.c
Cleanup after commit 585d3bc06f
Trim includes of fdtable.h
Don't crap into descriptor table in binfmt_som
Trim includes in binfmt_elf
Don't mess with descriptor table in load_elf_binary()
Get rid of indirect include of fs_struct.h
New helper - current_umask()
check_unsafe_exec() doesn't care about signal handlers sharing
New locking/refcounting for fs_struct
Take fs_struct handling to new file (fs/fs_struct.c)
Get rid of bumping fs_struct refcount in pivot_root(2)
Kill unsharing fs_struct in __set_personality()
Make ufs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sysv file system return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make squashfs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Phillip Lougher <phillip@lougher.demon.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make reiserfs3 return f_fsid info for statfs(2). By Andreas' suggestion,
this patch populates a persistent f_fsid between boots/mounts with help of
on-disk uuid record.
Randy Dunlap reported a compiling error from v2 patch like:
fs/built-in.o: In function `reiserfs_statfs':
super.c:(.text+0x7332b): undefined reference to `crc32_le'
super.c:(.text+0x7333f): undefined reference to `crc32_le'
Also he provided helpful solution to fix this error. The modification of v3
patch is based on Randy's suggestion, add 'select CRC32' in fs/reiserfs/Kconfig.
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make qnx4 file system return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Acked-by: Anders Larsen <al@alarsen.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make omfs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Acked-by: Bob Copeland <me@bobcopeland.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make minix file system return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make isofs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Jan Kara <jack@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make hpfs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make hfsplus return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make hfs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make fat return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Acked-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make efs return f_fsid info for statfs(2), and do a little variable
renaming in efs_statfs().
Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make cramfs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make befs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Sergey S. Kostyliov <rathamahata@php4.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make affs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently many file systems in Linux kernel do not return f_fsid in statfs
info, the value is set as 0 in vfs layer. Anyway, in some conditions,
f_fsid from statfs(2) is useful, especially being used as (f_fsid, ino)
pair to uniquely identify a file.
Basic idea of the patches is generating a unique fs ID by
huge_encode_dev(sb->s_bdev->bd_dev) during file system mounting life time
(no endian consistent issue). sb is a point of struct super_block of
current mounted file system being accessed by statfs(2).
This patch:
Make adfs return f_fsid info for statfs(2), and do a little variable
renaming in adfs_statfs().
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: "Sergey S. Kostyliov" <rathamahata@php4.ru>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Bob Copeland <me@bobcopeland.com>
Cc: Anders Larsen <al@alarsen.net>
Cc: Phillip Lougher <phillip@lougher.demon.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Cc: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <adilger@sun.com>
Cc: Jamie Lokier <jamie@shareable.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds preadv and pwritev system calls. These syscalls are a
pretty straightforward combination of pread and readv (same for write).
They are quite useful for doing vectored I/O in threaded applications.
Using lseek+readv instead opens race windows you'll have to plug with
locking.
Other systems have such system calls too, for example NetBSD, check
here: http://www.daemon-systems.org/man/preadv.2.html
The application-visible interface provided by glibc should look like
this to be compatible to the existing implementations in the *BSD family:
ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset);
ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset);
This prototype has one problem though: On 32bit archs is the (64bit)
offset argument unaligned, which the syscall ABI of several archs doesn't
allow to do. At least s390 needs a wrapper in glibc to handle this. As
we'll need a wrappers in glibc anyway I've decided to push problem to
glibc entriely and use a syscall prototype which works without
arch-specific wrappers inside the kernel: The offset argument is
explicitly splitted into two 32bit values.
The patch sports the actual system call implementation and the windup in
the x86 system call tables. Other archs follow as separate patches.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <linux-api@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Factor out some code from compat_sys_writev() which can be shared with the
upcoming compat_sys_pwritev().
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <linux-api@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Decompression errors can arise due to corruption of compressed blocks on
flash or in memory. This patch propagates errors detected during
decompression back to the block layer.
Signed-off-by: David VomLehn <dvomlehn@cisco.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hppfs_read_file() may return (ssize_t) -ENOMEM, or -EFAULT. When stored
in size_t 'count', these errors will not be noticed, a large value will be
added to *ppos.
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sometimes block_write_begin() can map buffers in a page but later we
fail to copy data into those buffers (because the source page has been
paged out in the mean time). We then end up with !uptodate mapped
buffers. To add a bit more to the confusion, block_write_end() does
not commit any data (and thus does not any mark buffers as uptodate) if
we didn't succeed with copying all the data.
Commit f4fc66a894 (ext3: convert to new
aops) missed these cases and thus we were inserting non-uptodate
buffers to transaction's list which confuses JBD code and it reports IO
errors, aborts a transaction and generally makes users afraid about
their data ;-P.
This patch fixes the problem by reorganizing ext3_..._write_end() code
to first call block_write_end() to mark buffers with valid data
uptodate and after that we file only uptodate buffers to transaction's
lists.
We also fix a problem where we could leave blocks allocated beyond i_size
(i_disksize in fact) because of failed write. We now add inode to orphan
list when write fails (to be safe in case we crash) and then truncate blocks
beyond i_size in a separate transaction.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ext3_iget() returns -ESTALE if invoked on a deleted inode, in order to
report errors to NFS properly. However, in ext[234]_lookup(), this
-ESTALE can be propagated to userspace if the filesystem is corrupted such
that a directory entry references a deleted inode. This leads to a
misleading error message - "Stale NFS file handle" - and confusion on the
part of the admin.
The bug can be easily reproduced by creating a new filesystem, making a
link to an unused inode using debugfs, then mounting and attempting to ls
-l said link.
This patch thus changes ext3_lookup to return -EIO if it receives -ESTALE
from ext3_iget(), as ext3 does for other filesystem metadata corruption;
and also invokes the appropriate ext*_error functions when this case is
detected.
Signed-off-by: Bryan Donlan <bdonlan@gmail.com>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use unsigned instead of int for the parameter which carries a blocksize.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On 32-bit system with CONFIG_LBD getblk can fail because provided block
number is too big. Make JBD gracefully handle that.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: <dmaciejak@fortinet.com>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reformat ext3/ioctl.c to make it look more like ext4/ioctl.c and remove
the BKL around ext3_ioctl().
Signed-off-by: Cyrus Massoumi <cyrusm@gmx.net>
Cc: <linux-ext4@vger.kernel.org>
Acked-by: Jan Kara <jack@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check bh->b_blocknr only if BH_Mapped is set.
akpm: I doubt if b_blocknr is ever uninitialised here, but it could
conceivably cause a problem if we're doing a lookup for block zero.
Signed-off-by: Nikanth Karthikesan <knikanth@suse.de>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dirtied_when value on an inode is supposed to represent the first time
that an inode has one of its pages dirtied. This value is in units of
jiffies. It's used in several places in the writeback code to determine
when to write out an inode.
The problem is that these checks assume that dirtied_when is updated
periodically. If an inode is continuously being used for I/O it can be
persistently marked as dirty and will continue to age. Once the time
compared to is greater than or equal to half the maximum of the jiffies
type, the logic of the time_*() macros inverts and the opposite of what is
needed is returned. On 32-bit architectures that's just under 25 days
(assuming HZ == 1000).
As the least-recently dirtied inode, it'll end up being the first one that
pdflush will try to write out. sync_sb_inodes does this check:
/* Was this inode dirtied after sync_sb_inodes was called? */
if (time_after(inode->dirtied_when, start))
break;
...but now dirtied_when appears to be in the future. sync_sb_inodes bails
out without attempting to write any dirty inodes. When this occurs,
pdflush will stop writing out inodes for this superblock. Nothing can
unwedge it until jiffies moves out of the problematic window.
This patch fixes this problem by changing the checks against dirtied_when
to also check whether it appears to be in the future. If it does, then we
consider the value to be far in the past.
This should shrink the problematic window of time to such a small period
(30s) as not to matter.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Ian Kent <raven@themaw.net>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
clear_inode() will switch inode state from I_FREEING to I_CLEAR, and do so
_outside_ of inode_lock. So any I_FREEING testing is incomplete without a
coupled testing of I_CLEAR.
So add I_CLEAR tests to drop_pagecache_sb(), generic_sync_sb_inodes() and
add_dquot_ref().
Masayoshi MIZUMA discovered the bug in drop_pagecache_sb() and Jan Kara
reminds fixing the other two cases.
Masayoshi MIZUMA has a nice panic flow:
=====================================================================
[process A] | [process B]
| |
| prune_icache() | drop_pagecache()
| spin_lock(&inode_lock) | drop_pagecache_sb()
| inode->i_state |= I_FREEING; | |
| spin_unlock(&inode_lock) | V
| | | spin_lock(&inode_lock)
| V | |
| dispose_list() | |
| list_del() | |
| clear_inode() | |
| inode->i_state = I_CLEAR | |
| | | V
| | | if (inode->i_state & (I_FREEING|I_WILL_FREE))
| | | continue; <==== NOT MATCH
| | |
| | | (DANGER from here on! Accessing disposing inode!)
| | |
| | | __iget()
| | | list_move() <===== PANIC on poisoned list !!
V V |
(time)
=====================================================================
Reported-by: Masayoshi MIZUMA <m.mizuma@jp.fujitsu.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a number of issues with the per-MM VMA patch:
(1) Make mmap_pages_allocated an atomic_long_t, just in case this is used on
a NOMMU system with more than 2G pages. Makes no difference on a 32-bit
system.
(2) Report vma->vm_pgoff * PAGE_SIZE as a 64-bit value, not a 32-bit value,
lest it overflow.
(3) Move the allocation of the vm_area_struct slab back for fork.c.
(4) Use KMEM_CACHE() for both vm_area_struct and vm_region slabs.
(5) Use BUG_ON() rather than if () BUG().
(6) Make the default validate_nommu_regions() a static inline rather than a
#define.
(7) Make free_page_series()'s objection to pages with a refcount != 1 more
informative.
(8) Adjust the __put_nommu_region() banner comment to indicate that the
semaphore must be held for writing.
(9) Limit the number of warnings about munmaps of non-mmapped regions.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Greg Ungerer <gerg@snapgear.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove an unneeded return statement and conditional
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We get this on 32 builds:
fs/built-in.o: In function `extent_fiemap':
(.text+0x1019f2): undefined reference to `__ucmpdi2'
Happens because of a switch statement with a 64 bit argument.
Convert this to an if statement to fix this.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_new_inode doesn't call iput to free the inode
when it fails.
Signed-off-by: Shen Feng <shen@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Need to check kthread_should_stop after schedule_timeout() before calling
schedule(). This causes threads to sleep with potentially no one to wake them
up causing mount(2) to hang in btrfs_stop_workers waiting for threads to stop.
Signed-off-by: Amit Gud <gud@ksu.edu>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The 'flushoncommit' mount option forces any data dirtied by a write in a
prior transaction to commit as part of the current commit. This makes
the committed state a fully consistent view of the file system from the
application's perspective (i.e., it includes all completed file system
operations). This was previously the behavior only when a snapshot is
created.
This is used by Ceph to ensure that completed writes make it to the
platter along with the metadata operations they are bound to (by
BTRFS_IOC_TRANS_{START,END}).
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Add a 'notreelog' mount option to disable the tree log (used by fsync,
O_SYNC writes). This is much slower, but the tree logging produces
inconsistent views into the FS for ceph.
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs options can change at times other than mount, yet /proc/mounts shows the
options string used when the fs was mounted (an example would be when btrfs
determines that barriers aren't useful and turns them off.) This patch
instead outputs the actual options in use by btrfs.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Because btrfs is copy-on-write, we end up picking new locations for
blocks very often. This makes it fairly difficult to maintain perfect
read patterns over time, but we can at least do some optimizations
for writes.
This is done today by remembering the last place we allocated and
trying to find a free space hole big enough to hold more than just one
allocation. The end result is that we tend to write sequentially to
the drive.
This happens all the time for metadata and it happens for data
when mounted -o ssd. But, the way we record it is fairly racey
and it tends to fragment the free space over time because we are trying
to allocate fairly large areas at once.
This commit gets rid of the races by adding a free space cluster object
with dedicated locking to make sure that only one process at a time
is out replacing the cluster.
The free space fragmentation is somewhat solved by allowing a cluster
to be comprised of smaller free space extents. This part definitely
adds some CPU time to the cluster allocations, but it allows the allocator
to consume the small holes left behind by cow.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_next_leaf was using blocking locks when it could have been using
faster spinning ones instead. This adds a few extra checks around
the pieces that block and switches over to spinning locks.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch removes the pinned_mutex. The extent io map has an internal tree
lock that protects the tree itself, and since we only copy the extent io map
when we are committing the transaction we don't need it there. We also don't
need it when caching the block group since searching through the tree is also
protected by the internal map spin lock.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This patch removes the block group alloc mutex used to protect the free space
tree for allocations and replaces it with a spin lock which is used only to
protect the free space rb tree. This means we only take the lock when we are
directly manipulating the tree, which makes us a touch faster with
multi-threaded workloads.
This patch also gets rid of btrfs_find_free_space and replaces it with
btrfs_find_space_for_alloc, which takes the number of bytes you want to
allocate, and empty_size, which is used to indicate how much free space should
be at the end of the allocation.
It will return an offset for the allocator to use. If we don't end up using it
we _must_ call btrfs_add_free_space to put it back. This is the tradeoff to
kill the alloc_mutex, since we need to make sure nobody else comes along and
takes our space.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
I've replaced the strange looping constructs with a list_for_each_entry on
space_info->block_groups. If we have a hint we just jump into the loop with
the block group and start looking for space. If we don't find anything we
start at the beginning and start looking. We never come out of the loop with a
ref on the block_group _unless_ we found space to use, then we drop it after we
set the trans block_group.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This patch cleans up the free space cache code a bit. It better documents the
idiosyncrasies of tree_search_offset and makes the code make a bit more sense.
I took out the info allocation at the start of __btrfs_add_free_space and put it
where it makes more sense. This was left over cruft from when alloc_mutex
existed. Also all of the re-searches we do to make sure we inserted properly.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Btrfs pages being written get set to writeback, and then may go through
a number of steps before they hit the block layer. This includes compression,
checksumming and async bio submission.
The end result is that someone who writes a page and then does
wait_on_page_writeback is likely to unplug the queue before the bio they
cared about got there.
We could fix this by marking bios sync, or by doing more frequent unplugs,
but this commit just changes the async bio submission code to unplug
after it has processed all the bios for a device. The async bio submission
does a fair job of collection bios, so this shouldn't be a huge problem
for reducing merging at the elevator.
For streaming O_DIRECT writes on a 5 drive array, it boosts performance
from 386MB/s to 460MB/s.
Thanks to Hisashi Hifumi for helping with this work.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs uses async helper threads to submit write bios so the checksumming
helper threads don't block on the disk.
The submit bio threads may process bios for more than one block device,
so when they find one device congested they try to move on to other
devices instead of blocking in get_request_wait for one device.
This does a pretty good job of keeping multiple devices busy, but the
congested flag has a number of problems. A congested device may still
give you a request, and other procs that aren't backing off the congested
device may starve you out.
This commit uses the io_context stored in current to decide if our process
has been made a batching process by the block layer. If so, it keeps
sending IO down for at least one batch. This helps make sure we do
a good amount of work each time we visit a bdev, and avoids large IO
stalls in multi-device workloads.
It's also very ugly. A better solution is in the works with Jens Axboe.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Allow MAP_PRIVATE mmaps of "direct_io" files. This is necessary for
execute support.
MAP_SHARED mappings require some sort of coherency between the
underlying file and the mapping. With "direct_io" it is difficult to
provide this, so for the moment just disallow shared (read-write and
read-only) mappings altogether.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Allow the kernel read and write on "direct_io" files. This is
necessary for nfs export and execute support.
The implementation is simple: if an access from the kernel is
detected, don't perform get_user_pages(), just use the kernel address
provided by the requester to copy from/to the userspace filesystem.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
We update information in logical volume integrity descriptor after each
allocation (as LVID contains free space, number of directories and files on
disk etc.). If the filesystem is on some phase change media, this leads to its
quick degradation as such media is able to handle only 10000 overwrites or so.
We solve the problem by writing new information into LVID only on umount,
remount-ro and sync. This solves the problem at the price of longer media
inconsistency (previously media became consistent after pdflush flushed dirty
LVID buffer) but that should be acceptable.
Report by and patch written in cooperation with
Rich Coe <Richard.Coe@med.ge.com>.
Signed-off-by: Jan Kara <jack@suse.cz>
Anchor block can be located at several places on the medium. Two of the
locations are relative to media end which is problematic to detect. Also
some drives report some block as last but are not able to read it or any
block nearby before it. So let's first try block 256 and if it is all fine,
don't look at other possible locations of anchor blocks to avoid IO errors.
This change required a larger reorganization of code but the new code is
hopefully more readable and definitely shorter.
Signed-off-by: Jan Kara <jack@suse.cz>