Right now there is no convenient way to check if a process is being
coredumped at the moment.
It might be necessary to recognize such state to prevent killing the
process and getting a broken coredump. Writing a large core might take
significant time, and the process is unresponsive during it, so it might
be killed by timeout, if another process is monitoring and
killing/restarting hanging tasks.
We're getting a significant number of corrupted coredump files on
machines in our fleet, just because processes are being killed by
timeout in the middle of the core writing process.
We do have a process health check, and some agent is responsible for
restarting processes which are not responding for health check requests.
Writing a large coredump to the disk can easily exceed the reasonable
timeout (especially on an overloaded machine).
This flag will allow the agent to distinguish processes which are being
coredumped, extend the timeout for them, and let them produce a full
coredump file.
To provide an ability to detect if a process is in the state of being
coredumped, we can expose a boolean CoreDumping flag in
/proc/pid/status.
Example:
$ cat core.sh
#!/bin/sh
echo "|/usr/bin/sleep 10" > /proc/sys/kernel/core_pattern
sleep 1000 &
PID=$!
cat /proc/$PID/status | grep CoreDumping
kill -ABRT $PID
sleep 1
cat /proc/$PID/status | grep CoreDumping
$ ./core.sh
CoreDumping: 0
CoreDumping: 1
[guro@fb.com: document CoreDumping flag in /proc/<pid>/status]
Link: http://lkml.kernel.org/r/20170928135357.GA8470@castle.DHCP.thefacebook.com
Link: http://lkml.kernel.org/r/20170920230634.31572-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may be
required to satisfy a write fault to also be flushed ("on disk") before
the kernel returns to userspace from the fault handler. Effectively
every write-fault that dirties metadata completes an fsync() before
returning from the fault handler. The new MAP_SHARED_VALIDATE mapping
type guarantees that the MAP_SYNC flag is validated as supported by the
filesystem's ->mmap() file operation.
* Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This
enables interoperability with environments that only implement the
standardized methods.
* Add support for the ACPI 6.2 NVDIMM media error injection methods.
* Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch
last shutdown status, firmware update, SMART error injection, and
SMART alarm threshold control.
* Cleanup physical address information disclosures to be root-only.
* Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
* Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
957ac8c421 dax: fix PMD faults on zero-length files
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
a39e596baa xfs: support for synchronous DAX faults
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
7b565c9f96 xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaDfvcAAoJEB7SkWpmfYgCk7sP/2qJhBH+VTTdg2osDnhAdAhI
co/AGEmsHFlUCMBb/Ek7UnMAmhBYiJU2q4ywPsNFBpusXpMlqNy5Iwo7k4/wQHE/
SJcIM0g4zg0ViFuUhwV+C2T0R5UzFR8JLd9EYWj/YS6aJpurtotm5l4UStaM0Hzo
AhxSXJLrBDuqCpbOxbctfiGEmdRL7aRfBEAARTNRKBn/iXxJUcYHlp62rtXQS+t4
I6LC/URCWTNTTMGmzW6TRsgSD9WMfd19xKcGzN3qL6ee0KFccxN4ctFqHA/sFGOh
iYLeR0XJUjJxyp+PkWGteXPVZL0Kj3bD/lSTG+Co5bm/ra8a/sh3TSFfgFyoBZD1
EqMN8Ryf80hGp3FabeH2Iw2SviYPZpHSWgjddjxLD0RA6OmpzINc+Wm8eqApjMME
sbZDTOijiab4QMQ0XamF4GuDHyQtawv5Y/w2Ehhl1tmiqW+5tKhsKqxkQt+/V3Yt
RTVSRe2Pkway66b+cD64IdQ6L2tyonPnmi5IzgkKOhlOEGomy+4/U2Jt2bMbhzq6
ymszKmXp2XI8P06wU8sHrIUeXO5I9qoKn/fZA73Eb8aIzgJe3tBE/5+Ab7RG6HB9
1OVfcMWoXU1gNgNktTs63X1Lsg4aW9kt/K4fPHHcqUcaliEJpJTlAbg9GLF2buoW
nQ+0fTRgMRihE3ZA0Fs3
=h2vZ
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and dax updates from Dan Williams:
"Save for a few late fixes, all of these commits have shipped in -next
releases since before the merge window opened, and 0day has given a
build success notification.
The ext4 touches came from Jan, and the xfs touches have Darrick's
reviewed-by. An xfstest for the MAP_SYNC feature has been through
a few round of reviews and is on track to be merged.
- Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may
be required to satisfy a write fault to also be flushed ("on disk")
before the kernel returns to userspace from the fault handler.
Effectively every write-fault that dirties metadata completes an
fsync() before returning from the fault handler. The new
MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag
is validated as supported by the filesystem's ->mmap() file
operation.
- Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods.
This enables interoperability with environments that only implement
the standardized methods.
- Add support for the ACPI 6.2 NVDIMM media error injection methods.
- Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for
latch last shutdown status, firmware update, SMART error injection,
and SMART alarm threshold control.
- Cleanup physical address information disclosures to be root-only.
- Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
- Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
- 957ac8c421 ("dax: fix PMD faults on zero-length files"):
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
- a39e596baa ("xfs: support for synchronous DAX faults") and
7b565c9f96 ("xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()")
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>"
* tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (49 commits)
acpi, nfit: add 'Enable Latch System Shutdown Status' command support
dax: fix general protection fault in dax_alloc_inode
dax: fix PMD faults on zero-length files
dax: stop requiring a live device for dax_flush()
brd: remove dax support
dax: quiet bdev_dax_supported()
fs, dax: unify IOMAP_F_DIRTY read vs write handling policy in the dax core
tools/testing/nvdimm: unit test clear-error commands
acpi, nfit: validate commands against the device type
tools/testing/nvdimm: stricter bounds checking for error injection commands
xfs: support for synchronous DAX faults
xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
ext4: Support for synchronous DAX faults
ext4: Simplify error handling in ext4_dax_huge_fault()
dax: Implement dax_finish_sync_fault()
dax, iomap: Add support for synchronous faults
mm: Define MAP_SYNC and VM_SYNC flags
dax: Allow tuning whether dax_insert_mapping_entry() dirties entry
dax: Allow dax_iomap_fault() to return pfn
dax: Fix comment describing dax_iomap_fault()
...
Currently, we account page tables separately for each page table level,
but that's redundant -- we only make use of total memory allocated to
page tables for oom_badness calculation. We also provide the
information to userspace, but it has dubious value there too.
This patch switches page table accounting to single counter.
mm->pgtables_bytes is now used to account all page table levels. We use
bytes, because page table size for different levels of page table tree
may be different.
The change has user-visible effect: we don't have VmPMD and VmPUD
reported in /proc/[pid]/status. Not sure if anybody uses them. (As
alternative, we can always report 0 kB for them.)
OOM-killer report is also slightly changed: we now report pgtables_bytes
instead of nr_ptes, nr_pmd, nr_puds.
Apart from reducing number of counters per-mm, the benefit is that we
now calculate oom_badness() more correctly for machines which have
different size of page tables depending on level or where page tables
are less than a page in size.
The only downside can be debuggability because we do not know which page
table level could leak. But I do not remember many bugs that would be
caught by separate counters so I wouldn't lose sleep over this.
[akpm@linux-foundation.org: fix mm/huge_memory.c]
Link: http://lkml.kernel.org/r/20171006100651.44742-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
[kirill.shutemov@linux.intel.com: fix build]
Link: http://lkml.kernel.org/r/20171016150113.ikfxy3e7zzfvsr4w@black.fi.intel.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's add wrappers for ->nr_ptes with the same interface as for nr_pmd
and nr_pud.
The patch also makes nr_ptes accounting dependent onto CONFIG_MMU. Page
table accounting doesn't make sense if you don't have page tables.
It's preparation for consolidation of page-table counters in mm_struct.
Link: http://lkml.kernel.org/r/20171006100651.44742-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On a machine with 5-level paging support a process can allocate
significant amount of memory and stay unnoticed by oom-killer and memory
cgroup. The trick is to allocate a lot of PUD page tables. We don't
account PUD page tables, only PMD and PTE.
We already addressed the same issue for PMD page tables, see commit
dc6c9a35b6 ("mm: account pmd page tables to the process").
Introduction of 5-level paging brings the same issue for PUD page
tables.
The patch expands accounting to PUD level.
[kirill.shutemov@linux.intel.com: s/pmd_t/pud_t/]
Link: http://lkml.kernel.org/r/20171004074305.x35eh5u7ybbt5kar@black.fi.intel.com
[heiko.carstens@de.ibm.com: s390/mm: fix pud table accounting]
Link: http://lkml.kernel.org/r/20171103090551.18231-1-heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20171002080427.3320-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is the big tty/serial driver pull request for 4.15-rc1.
Lots of serial driver updates in here, some small vt cleanups, and a
raft of SPDX and license boilerplate cleanups, messing up the diffstat a
bit.
Nothing major, with no realy functional changes except better hardware
support for some platforms.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWgnD+w8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynAmgCfSSr/9qiCE0vfP5eVYjddzxfWyZ4AoMbKORZC
5x2KVW0Btrbs3WmnD7ZU
=PSea
-----END PGP SIGNATURE-----
Merge tag 'tty-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial updates from Greg KH:
"Here is the big tty/serial driver pull request for 4.15-rc1.
Lots of serial driver updates in here, some small vt cleanups, and a
raft of SPDX and license boilerplate cleanups, messing up the diffstat
a bit.
Nothing major, with no realy functional changes except better hardware
support for some platforms.
All of these have been in linux-next for a while with no reported
issues"
* tag 'tty-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (110 commits)
tty: ehv_bytechan: fix spelling mistake
tty: serial: meson: allow baud-rates lower than 9600
serial: 8250_fintek: Fix crash with baud rate B0
serial: 8250_fintek: Disable delays for ports != 0
serial: 8250_fintek: Return -EINVAL on invalid configuration
tty: Remove redundant license text
tty: serdev: Remove redundant license text
tty: hvc: Remove redundant license text
tty: serial: Remove redundant license text
tty: add SPDX identifiers to all remaining files in drivers/tty/
tty: serial: jsm: remove redundant pointer ts
tty: serial: jsm: add space before the open parenthesis '('
tty: serial: jsm: fix coding style
tty: serial: jsm: delete space between function name and '('
tty: serial: jsm: add blank line after declarations
tty: serial: jsm: change the type of local variable
tty: serial: imx: remove dead code imx_dma_rxint
tty: serial: imx: disable ageing timer interrupt if dma in use
serial: 8250: fix potential deadlock in rs485-mode
serial: m32r_sio: Drop redundant .data assignment
...
Pull scheduler updates from Ingo Molnar:
"The main updates in this cycle were:
- Group balancing enhancements and cleanups (Brendan Jackman)
- Move CPU isolation related functionality into its separate
kernel/sched/isolation.c file, with related 'housekeeping_*()'
namespace and nomenclature et al. (Frederic Weisbecker)
- Improve the interactive/cpu-intense fairness calculation (Josef
Bacik)
- Improve the PELT code and related cleanups (Peter Zijlstra)
- Improve the logic of pick_next_task_fair() (Uladzislau Rezki)
- Improve the RT IPI based balancing logic (Steven Rostedt)
- Various micro-optimizations:
- better !CONFIG_SCHED_DEBUG optimizations (Patrick Bellasi)
- better idle loop (Cheng Jian)
- ... plus misc fixes, cleanups and updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds
sched/sysctl: Fix attributes of some extern declarations
sched/isolation: Document isolcpus= boot parameter flags, mark it deprecated
sched/isolation: Add basic isolcpus flags
sched/isolation: Move isolcpus= handling to the housekeeping code
sched/isolation: Handle the nohz_full= parameter
sched/isolation: Introduce housekeeping flags
sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL
sched/isolation: Rename is_housekeeping_cpu() to housekeeping_cpu()
sched/isolation: Use its own static key
sched/isolation: Make the housekeeping cpumask private
sched/isolation: Provide a dynamic off-case to housekeeping_any_cpu()
sched/isolation, watchdog: Use housekeeping_cpumask() instead of ad-hoc version
sched/isolation: Move housekeeping related code to its own file
sched/idle: Micro-optimize the idle loop
sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK
x86/tsc: Append the 'tsc=' description for the 'tsc=unstable' boot parameter
sched/rt: Simplify the IPI based RT balancing logic
block/ioprio: Use a helper to check for RT prio
sched/rt: Add a helper to test for a RT task
...
When the pagetable is walked in the implementation of /proc/<pid>/pagemap,
pmd_soft_dirty() is used for both the PMD huge page map and the PMD
migration entries. That is wrong, pmd_swp_soft_dirty() should be used
for the PMD migration entries instead because the different page table
entry flag is used.
As a result, /proc/pid/pagemap may report incorrect soft dirty information
for PMD migration entries.
Link: http://lkml.kernel.org/r/20171017081818.31795-1-ying.huang@intel.com
Fixes: 84c3fc4e9c ("mm: thp: check pmd migration entry in common path")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Daniel Colascione <dancol@google.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Define new MAP_SYNC flag and corresponding VMA VM_SYNC flag. As the
MAP_SYNC flag is not part of LEGACY_MAP_MASK, currently it will be
refused by all MAP_SHARED_VALIDATE map attempts and silently ignored for
everything else.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Steve requested better names for the new task-state helper functions.
So introduce the concept of task-state index for the printing and
rename __get_task_state() to task_state_index() and
__task_state_to_char() to task_index_to_char().
Requested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170929115016.pzlqc7ss3ccystyg@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently TASK_PARKED is masqueraded as TASK_INTERRUPTIBLE, give it
its own print state because it will not in fact get woken by regular
wakeups and is a long-term state.
This requires moving TASK_PARKED into the TASK_REPORT mask, and since
that latter needs to be a contiguous bitmask, we need to shuffle the
bits around a bit.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Markus reported that kthreads that idle using TASK_IDLE instead of
TASK_INTERRUPTIBLE are reported in as TASK_UNINTERRUPTIBLE and things
like htop mark those red.
This is undesirable, so add an explicit state for TASK_IDLE.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently get_task_state() and task_state_to_char() report different
states, create a number of common helpers and unify the reported state
space.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 0a1eb2d474 ("fs/proc: Stop reporting eip and esp in
/proc/PID/stat") stopped reporting eip/esp because it is
racy and dangerous for executing tasks. The comment adds:
As far as I know, there are no use programs that make any
material use of these fields, so just get rid of them.
However, existing userspace core-dump-handler applications (for
example, minicoredumper) are using these fields since they
provide an excellent cross-platform interface to these valuable
pointers. So that commit introduced a user space visible
regression.
Partially revert the change and make the readout possible for
tasks with the proper permissions and only if the target task
has the PF_DUMPCORE flag set.
Fixes: 0a1eb2d474 ("fs/proc: Stop reporting eip and esp in> /proc/PID/stat")
Reported-by: Marco Felsch <marco.felsch@preh.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Tycho Andersen <tycho.andersen@canonical.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: stable@vger.kernel.org
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linux API <linux-api@vger.kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/87poatfwg6.fsf@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
GFP_TEMPORARY was introduced by commit e12ba74d8f ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE. It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation. As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag. How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.
The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory. So
this is rather misleading and hard to evaluate for any benefits.
I have checked some random users and none of them has added the flag
with a specific justification. I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring. This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.
I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse. Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL. Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.
I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.
This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic. It
seems to be a heuristic without any measured advantage for most (if not
all) its current users. The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers. So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.
[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In NOMMU configurations, we get a warning about a variable that has become
unused:
fs/proc/task_nommu.c: In function 'nommu_vma_show':
fs/proc/task_nommu.c:148:28: error: unused variable 'priv' [-Werror=unused-variable]
Link: http://lkml.kernel.org/r/20170911200231.3171415-1-arnd@arndb.de
Fixes: 1240ea0dc3 ("fs, proc: remove priv argument from is_stack")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
... such that we can avoid the tree walks to get the node with the
smallest key. Semantically the same, as the previously used rb_first(),
but O(1). The main overhead is the extra footprint for the cached rb_node
pointer, which should not matter for procfs.
Link: http://lkml.kernel.org/r/20170719014603.19029-14-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If there are large numbers of hugepages to iterate while reading
/proc/pid/smaps, the page walk never does cond_resched(). On archs
without split pmd locks, there can be significant and observable
contention on mm->page_table_lock which cause lengthy delays without
rescheduling.
Always reschedule in smaps_pte_range() if necessary since the pagewalk
iteration can be expensive.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708211405520.131071@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b18cb64ead ("fs/proc: Stop trying to report thread stacks")
removed the priv parameter user in is_stack so the argument is
redundant. Drop it.
[arnd@arndb.de: remove unused variable]
Link: http://lkml.kernel.org/r/20170801120150.1520051-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170728075833.7241-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Platform with advance system bus (like CAPI or CCIX) allow device memory
to be accessible from CPU in a cache coherent fashion. Add a new type of
ZONE_DEVICE to represent such memory. The use case are the same as for
the un-addressable device memory but without all the corners cases.
Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
HMM (heterogeneous memory management) need struct page to support
migration from system main memory to device memory. Reasons for HMM and
migration to device memory is explained with HMM core patch.
This patch deals with device memory that is un-addressable memory (ie CPU
can not access it). Hence we do not want those struct page to be manage
like regular memory. That is why we extend ZONE_DEVICE to support
different types of memory.
A persistent memory type is define for existing user of ZONE_DEVICE and a
new device un-addressable type is added for the un-addressable memory
type. There is a clear separation between what is expected from each
memory type and existing user of ZONE_DEVICE are un-affected by new
requirement and new use of the un-addressable type. All specific code
path are protect with test against the memory type.
Because memory is un-addressable we use a new special swap type for when a
page is migrated to device memory (this reduces the number of maximum swap
file).
The main two additions beside memory type to ZONE_DEVICE is two callbacks.
First one, page_free() is call whenever page refcount reach 1 (which
means the page is free as ZONE_DEVICE page never reach a refcount of 0).
This allow device driver to manage its memory and associated struct page.
The second callback page_fault() happens when there is a CPU access to an
address that is back by a device page (which are un-addressable by the
CPU). This callback is responsible to migrate the page back to system
main memory. Device driver can not block migration back to system memory,
HMM make sure that such page can not be pin into device memory.
If device is in some error condition and can not migrate memory back then
a CPU page fault to device memory should end with SIGBUS.
[arnd@arndb.de: fix warning]
Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Soft dirty bit is designed to keep tracked over page migration. This
patch makes it work in the same manner for thp migration too.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When THP migration is being used, memory management code needs to handle
pmd migration entries properly. This patch uses !pmd_present() or
is_swap_pmd() (depending on whether pmd_none() needs separate code or
not) to check pmd migration entries at the places where a pmd entry is
present.
Since pmd-related code uses split_huge_page(), split_huge_pmd(),
pmd_trans_huge(), pmd_trans_unstable(), or
pmd_none_or_trans_huge_or_clear_bad(), this patch:
1. adds pmd migration entry split code in split_huge_pmd(),
2. takes care of pmd migration entries whenever pmd_trans_huge() is present,
3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware.
Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable()
is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change
them.
Until this commit, a pmd entry should be:
1. pointing to a pte page,
2. is_swap_pmd(),
3. pmd_trans_huge(),
4. pmd_devmap(), or
5. pmd_none().
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty
in the child process after fork. This differs from MADV_DONTFORK in one
important way.
If a child process accesses memory that was MADV_WIPEONFORK, it will get
zeroes. The address ranges are still valid, they are just empty.
If a child process accesses memory that was MADV_DONTFORK, it will get a
segmentation fault, since those address ranges are no longer valid in
the child after fork.
Since MADV_DONTFORK also seems to be used to allow very large programs
to fork in systems with strict memory overcommit restrictions, changing
the semantics of MADV_DONTFORK might break existing programs.
MADV_WIPEONFORK only works on private, anonymous VMAs.
The use case is libraries that store or cache information, and want to
know that they need to regenerate it in the child process after fork.
Examples of this would be:
- systemd/pulseaudio API checks (fail after fork) (replacing a getpid
check, which is too slow without a PID cache)
- PKCS#11 API reinitialization check (mandated by specification)
- glibc's upcoming PRNG (reseed after fork)
- OpenSSL PRNG (reseed after fork)
The security benefits of a forking server having a re-inialized PRNG in
every child process are pretty obvious. However, due to libraries
having all kinds of internal state, and programs getting compiled with
many different versions of each library, it is unreasonable to expect
calling programs to re-initialize everything manually after fork.
A further complication is the proliferation of clone flags, programs
bypassing glibc's functions to call clone directly, and programs calling
unshare, causing the glibc pthread_atfork hook to not get called.
It would be better to have the kernel take care of this automatically.
The patch also adds MADV_KEEPONFORK, to undo the effects of a prior
MADV_WIPEONFORK.
This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:
https://man.openbsd.org/minherit.2
[akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines]
Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Florian Weimer <fweimer@redhat.com>
Reported-by: Colm MacCártaigh <colm@allcosts.net>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Drewry <wad@chromium.org>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/pid/smaps_rollup is a new proc file that improves the performance
of user programs that determine aggregate memory statistics (e.g., total
PSS) of a process.
Android regularly "samples" the memory usage of various processes in
order to balance its memory pool sizes. This sampling process involves
opening /proc/pid/smaps and summing certain fields. For very large
processes, sampling memory use this way can take several hundred
milliseconds, due mostly to the overhead of the seq_printf calls in
task_mmu.c.
smaps_rollup improves the situation. It contains most of the fields of
/proc/pid/smaps, but instead of a set of fields for each VMA,
smaps_rollup instead contains one synthetic smaps-format entry
representing the whole process. In the single smaps_rollup synthetic
entry, each field is the summation of the corresponding field in all of
the real-smaps VMAs. Using a common format for smaps_rollup and smaps
allows userspace parsers to repurpose parsers meant for use with
non-rollup smaps for smaps_rollup, and it allows userspace to switch
between smaps_rollup and smaps at runtime (say, based on the
availability of smaps_rollup in a given kernel) with minimal fuss.
By using smaps_rollup instead of smaps, a caller can avoid the
significant overhead of formatting, reading, and parsing each of a large
process's potentially very numerous memory mappings. For sampling
system_server's PSS in Android, we measured a 12x speedup, representing
a savings of several hundred milliseconds.
One alternative to a new per-process proc file would have been including
PSS information in /proc/pid/status. We considered this option but
thought that PSS would be too expensive (by a few orders of magnitude)
to collect relative to what's already emitted as part of
/proc/pid/status, and slowing every user of /proc/pid/status for the
sake of readers that happen to want PSS feels wrong.
The code itself works by reusing the existing VMA-walking framework we
use for regular smaps generation and keeping the mem_size_stats
structure around between VMA walks instead of using a fresh one for each
VMA. In this way, summation happens automatically. We let seq_file
walk over the VMAs just as it does for regular smaps and just emit
nothing to the seq_file until we hit the last VMA.
Benchmarks:
using smaps:
iterations:1000 pid:1163 pss:220023808
0m29.46s real 0m08.28s user 0m20.98s system
using smaps_rollup:
iterations:1000 pid:1163 pss:220702720
0m04.39s real 0m00.03s user 0m04.31s system
We're using the PSS samples we collect asynchronously for
system-management tasks like fine-tuning oom_adj_score, memory use
tracking for debugging, application-level memory-use attribution, and
deciding whether we want to kill large processes during system idle
maintenance windows. Android has been using PSS for these purposes for
a long time; as the average process VMA count has increased and and
devices become more efficiency-conscious, PSS-collection inefficiency
has started to matter more. IMHO, it'd be a lot safer to optimize the
existing PSS-collection model, which has been fine-tuned over the years,
instead of changing the memory tracking approach entirely to work around
smaps-generation inefficiency.
Tim said:
: There are two main reasons why Android gathers PSS information:
:
: 1. Android devices can show the user the amount of memory used per
: application via the settings app. This is a less important use case.
:
: 2. We log PSS to help identify leaks in applications. We have found
: an enormous number of bugs (in the Android platform, in Google's own
: apps, and in third-party applications) using this data.
:
: To do this, system_server (the main process in Android userspace) will
: sample the PSS of a process three seconds after it changes state (for
: example, app is launched and becomes the foreground application) and about
: every ten minutes after that. The net result is that PSS collection is
: regularly running on at least one process in the system (usually a few
: times a minute while the screen is on, less when screen is off due to
: suspend). PSS of a process is an incredibly useful stat to track, and we
: aren't going to get rid of it. We've looked at some very hacky approaches
: using RSS ("take the RSS of the target process, subtract the RSS of the
: zygote process that is the parent of all Android apps") to reduce the
: accounting time, but it regularly overestimated the memory used by 20+
: percent. Accordingly, I don't think that there's a good alternative to
: using PSS.
:
: We started looking into PSS collection performance after we noticed random
: frequency spikes while a phone's screen was off; occasionally, one of the
: CPU clusters would ramp to a high frequency because there was 200-300ms of
: constant CPU work from a single thread in the main Android userspace
: process. The work causing the spike (which is reasonable governor
: behavior given the amount of CPU time needed) was always PSS collection.
: As a result, Android is burning more power than we should be on PSS
: collection.
:
: The other issue (and why I'm less sure about improving smaps as a
: long-term solution) is that the number of VMAs per process has increased
: significantly from release to release. After trying to figure out why we
: were seeing these 200-300ms PSS collection times on Android O but had not
: noticed it in previous versions, we found that the number of VMAs in the
: main system process increased by 50% from Android N to Android O (from
: ~1800 to ~2700) and varying increases in every userspace process. Android
: M to N also had an increase in the number of VMAs, although not as much.
: I'm not sure why this is increasing so much over time, but thinking about
: ASLR and ways to make ASLR better, I expect that this will continue to
: increase going forward. I would not be surprised if we hit 5000 VMAs on
: the main Android process (system_server) by 2020.
:
: If we assume that the number of VMAs is going to increase over time, then
: doing anything we can do to reduce the overhead of each VMA during PSS
: collection seems like the right way to go, and that means outputting an
: aggregate statistic (to avoid whatever overhead there is per line in
: writing smaps and in reading each line from userspace).
Link: http://lkml.kernel.org/r/20170812022148.178293-1-dancol@google.com
Signed-off-by: Daniel Colascione <dancol@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sonny Rao <sonnyrao@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
global_page_state is error prone as a recent bug report pointed out [1].
It only returns proper values for zone based counters as the enum it
gets suggests. We already have global_node_page_state so let's rename
global_page_state to global_zone_page_state to be more explicit here.
All existing users seems to be correct:
$ git grep "global_page_state(NR_" | sed 's@.*(\(NR_[A-Z_]*\)).*@\1@' | sort | uniq -c
2 NR_BOUNCE
2 NR_FREE_CMA_PAGES
11 NR_FREE_PAGES
1 NR_KERNEL_STACK_KB
1 NR_MLOCK
2 NR_PAGETABLE
This patch shouldn't introduce any functional change.
[1] http://lkml.kernel.org/r/201707260628.v6Q6SmaS030814@www262.sakura.ne.jp
Link: http://lkml.kernel.org/r/20170801134256.5400-2-hannes@cmpxchg.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is the big char/misc driver update for 4.14-rc1.
Lots of different stuff in here, it's been an active development cycle
for some reason. Highlights are:
- updated binder driver, this brings binder up to date with what
shipped in the Android O release, plus some more changes that
happened since then that are in the Android development trees.
- coresight updates and fixes
- mux driver file renames to be a bit "nicer"
- intel_th driver updates
- normal set of hyper-v updates and changes
- small fpga subsystem and driver updates
- lots of const code changes all over the driver trees
- extcon driver updates
- fmc driver subsystem upadates
- w1 subsystem minor reworks and new features and drivers added
- spmi driver updates
Plus a smattering of other minor driver updates and fixes.
All of these have been in linux-next with no reported issues for a
while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWa1+Ew8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yl26wCgquufNylfhxr65NbJrovduJYzRnUAniCivXg8
bePIh/JI5WxWoHK+wEbY
=hYWx
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the big char/misc driver update for 4.14-rc1.
Lots of different stuff in here, it's been an active development cycle
for some reason. Highlights are:
- updated binder driver, this brings binder up to date with what
shipped in the Android O release, plus some more changes that
happened since then that are in the Android development trees.
- coresight updates and fixes
- mux driver file renames to be a bit "nicer"
- intel_th driver updates
- normal set of hyper-v updates and changes
- small fpga subsystem and driver updates
- lots of const code changes all over the driver trees
- extcon driver updates
- fmc driver subsystem upadates
- w1 subsystem minor reworks and new features and drivers added
- spmi driver updates
Plus a smattering of other minor driver updates and fixes.
All of these have been in linux-next with no reported issues for a
while"
* tag 'char-misc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (244 commits)
ANDROID: binder: don't queue async transactions to thread.
ANDROID: binder: don't enqueue death notifications to thread todo.
ANDROID: binder: Don't BUG_ON(!spin_is_locked()).
ANDROID: binder: Add BINDER_GET_NODE_DEBUG_INFO ioctl
ANDROID: binder: push new transactions to waiting threads.
ANDROID: binder: remove proc waitqueue
android: binder: Add page usage in binder stats
android: binder: fixup crash introduced by moving buffer hdr
drivers: w1: add hwmon temp support for w1_therm
drivers: w1: refactor w1_slave_show to make the temp reading functionality separate
drivers: w1: add hwmon support structures
eeprom: idt_89hpesx: Support both ACPI and OF probing
mcb: Fix an error handling path in 'chameleon_parse_cells()'
MCB: add support for SC31 to mcb-lpc
mux: make device_type const
char: virtio: constify attribute_group structures.
Documentation/ABI: document the nvmem sysfs files
lkdtm: fix spelling mistake: "incremeted" -> "incremented"
perf: cs-etm: Fix ETMv4 CONFIGR entry in perf.data file
nvmem: include linux/err.h from header
...
Nadav reported KSM can corrupt the user data by the TLB batching
race[1]. That means data user written can be lost.
Quote from Nadav Amit:
"For this race we need 4 CPUs:
CPU0: Caches a writable and dirty PTE entry, and uses the stale value
for write later.
CPU1: Runs madvise_free on the range that includes the PTE. It would
clear the dirty-bit. It batches TLB flushes.
CPU2: Writes 4 to /proc/PID/clear_refs , clearing the PTEs soft-dirty.
We care about the fact that it clears the PTE write-bit, and of
course, batches TLB flushes.
CPU3: Runs KSM. Our purpose is to pass the following test in
write_protect_page():
if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
(pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)))
Since it will avoid TLB flush. And we want to do it while the PTE is
stale. Later, and before replacing the page, we would be able to
change the page.
Note that all the operations the CPU1-3 perform canhappen in parallel
since they only acquire mmap_sem for read.
We start with two identical pages. Everything below regards the same
page/PTE.
CPU0 CPU1 CPU2 CPU3
---- ---- ---- ----
Write the same
value on page
[cache PTE as
dirty in TLB]
MADV_FREE
pte_mkclean()
4 > clear_refs
pte_wrprotect()
write_protect_page()
[ success, no flush ]
pages_indentical()
[ ok ]
Write to page
different value
[Ok, using stale
PTE]
replace_page()
Later, CPU1, CPU2 and CPU3 would flush the TLB, but that is too late.
CPU0 already wrote on the page, but KSM ignored this write, and it got
lost"
In above scenario, MADV_FREE is fixed by changing TLB batching API
including [set|clear]_tlb_flush_pending. Remained thing is soft-dirty
part.
This patch changes soft-dirty uses TLB batching API instead of
flush_tlb_mm and KSM checks pending TLB flush by using
mm_tlb_flush_pending so that it will flush TLB to avoid data lost if
there are other parallel threads pending TLB flush.
[1] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com
Link: http://lkml.kernel.org/r/20170802000818.4760-8-namit@vmware.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Reported-by: Nadav Amit <namit@vmware.com>
Tested-by: Nadav Amit <namit@vmware.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As Tetsuo points out:
"Commit 385386cff4 ("mm: vmstat: move slab statistics from zone to
node counters") broke "Slab:" field of /proc/meminfo . It shows nearly
0kB"
In addition to /proc/meminfo, this problem also affects the slab
counters OOM/allocation failure info dumps, can cause early -ENOMEM from
overcommit protection, and miscalculate image size requirements during
suspend-to-disk.
This is because the patch in question switched the slab counters from
the zone level to the node level, but forgot to update the global
accessor functions to read the aggregate node data instead of the
aggregate zone data.
Use global_node_page_state() to access the global slab counters.
Fixes: 385386cff4 ("mm: vmstat: move slab statistics from zone to node counters")
Link: http://lkml.kernel.org/r/20170801134256.5400-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Stefan Agner <stefan@agner.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It appears as though the addition of the PID namespace did not update
the output code for /proc/*/sched, which resulted in it providing PIDs
that were not self-consistent with the /proc mount. This additionally
made it trivial to detect whether a process was inside &init_pid_ns from
userspace, making container detection trivial:
https://github.com/jessfraz/amicontained
This leads to situations such as:
% unshare -pmf
% mount -t proc proc /proc
% head -n1 /proc/1/sched
head (10047, #threads: 1)
Fix this by just using task_pid_nr_ns for the output of /proc/*/sched.
All of the other uses of task_pid_nr in kernel/sched/debug.c are from a
sysctl context and thus don't need to be namespaced.
Signed-off-by: Aleksa Sarai <asarai@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jess Frazelle <acidburn@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cyphar@cyphar.com
Link: http://lkml.kernel.org/r/20170806044141.5093-1-asarai@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
randstruct plugin, including the task_struct.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJZbRgGAAoJEIly9N/cbcAmk2AQAIL60aQ+9RIcFAXriFhnd7Z2
x9Jqi9JNc8NgPFXx8GhE4J4eTZ5PwcjgXBpNRWY/laBkRyoBHn24ku09YxrJjmHz
ZSUsP+/iO9lVeEfbmU9Tnk50afkfwx6bHXBwkiVGQWHtybNVUqA19JbqkHeg8ubx
myKLGeUv5PPCodRIcBDD0+HaAANcsqtgbDpgmWU8s+IXWwvWCE2p7PuBw7v3HHgH
qzlPDHYQCRDw+LWsSqPaHj+9mbRO18P/ydMoZHGH4Hl3YYNtty8ZbxnraI3A7zBL
6mLUVcZ+/l88DqHc5I05T8MmLU1yl2VRxi8/jpMAkg9wkvZ5iNAtlEKIWU6eqsvk
vaImNOkViLKlWKF+oUD1YdG16d8Segrc6m4MGdI021tb+LoGuUbkY7Tl4ee+3dl/
9FM+jPv95HjJnyfRNGidh2TKTa9KJkh6DYM9aUnktMFy3ca1h/LuszOiN0LTDiHt
k5xoFURk98XslJJyXM8FPwXCXiRivrXMZbg5ixNoS4aYSBLv7Cn1M6cPnSOs7UPh
FqdNPXLRZ+vabSxvEg5+41Ioe0SHqACQIfaSsV5BfF2rrRRdaAxK4h7DBcI6owV2
7ziBN1nBBq2onYGbARN6ApyCqLcchsKtQfiZ0iFsvW7ZawnkVOOObDTCgPl3tdkr
403YXzphQVzJtpT5eRV6
=ngAW
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull structure randomization updates from Kees Cook:
"Now that IPC and other changes have landed, enable manual markings for
randstruct plugin, including the task_struct.
This is the rest of what was staged in -next for the gcc-plugins, and
comes in three patches, largest first:
- mark "easy" structs with __randomize_layout
- mark task_struct with an optional anonymous struct to isolate the
__randomize_layout section
- mark structs to opt _out_ of automated marking (which will come
later)
And, FWIW, this continues to pass allmodconfig (normal and patched to
enable gcc-plugins) builds of x86_64, i386, arm64, arm, powerpc, and
s390 for me"
* tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
randstruct: opt-out externally exposed function pointer structs
task_struct: Allow randomized layout
randstruct: Mark various structs for randomization
Presently, the order of the block devices listed in /proc/devices is not
entirely sequential. If a block device has a major number greater than
BLKDEV_MAJOR_HASH_SIZE (255), it will be ordered as if its major were
module 255. For example, 511 appears after 1.
This patch cleans that up and prints each major number in the correct
order, regardless of where they are stored in the hash table.
In order to do this, we introduce BLKDEV_MAJOR_MAX as an artificial
limit (chosen to be 512). It will then print all devices in major
order number from 0 to the maximum.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Presently, the order of the char devices listed in /proc/devices is not
entirely sequential. If a char device has a major number greater than
CHRDEV_MAJOR_HASH_SIZE (255), it will be ordered as if its major were
module 255. For example, 511 appears after 1.
This patch cleans that up and prints each major number in the correct
order, regardless of where they are stored in the hash table.
In order to do this, we introduce CHRDEV_MAJOR_MAX as an artificial
limit (chosen to be 511). It will then print all devices in major
order number from 0 to the maximum.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
fail-nth interface is only created in /proc/self/task/<current-tid>/.
This change also adds it in /proc/<pid>/.
This makes shell based tool a bit simpler.
$ bash -c "builtin echo 100 > /proc/self/fail-nth && exec ls /"
Link: http://lkml.kernel.org/r/1491490561-10485-6-git-send-email-akinobu.mita@gmail.com
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The read interface for fail-nth looks a bit odd. Read from this file
returns "NYYYY..." or "YYYYY..." (this makes me surprise when cat this
file). Because there is no EOF condition. The first character
indicates current->fail_nth is zero or not, and then current->fail_nth
is reset to zero.
Just returning task->fail_nth value is more natural to understand.
Link: http://lkml.kernel.org/r/1491490561-10485-4-git-send-email-akinobu.mita@gmail.com
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The value written to fail-nth file is parsed as 0-based. Parsing as
one-based is more natural to understand and it enables to cancel the
previous setup by simply writing '0'.
This change also converts task->fail_nth from signed to unsigned int.
Link: http://lkml.kernel.org/r/1491490561-10485-3-git-send-email-akinobu.mita@gmail.com
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Automatically detect the number base to use when writing to fail-nth
file instead of always parsing as a decimal number.
Link: http://lkml.kernel.org/r/1491490561-10485-2-git-send-email-akinobu.mita@gmail.com
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge yet more updates from Andrew Morton:
- various misc things
- kexec updates
- sysctl core updates
- scripts/gdb udpates
- checkpoint-restart updates
- ipc updates
- kernel/watchdog updates
- Kees's "rough equivalent to the glibc _FORTIFY_SOURCE=1 feature"
- "stackprotector: ascii armor the stack canary"
- more MM bits
- checkpatch updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (96 commits)
writeback: rework wb_[dec|inc]_stat family of functions
ARM: samsung: usb-ohci: move inline before return type
video: fbdev: omap: move inline before return type
video: fbdev: intelfb: move inline before return type
USB: serial: safe_serial: move __inline__ before return type
drivers: tty: serial: move inline before return type
drivers: s390: move static and inline before return type
x86/efi: move asmlinkage before return type
sh: move inline before return type
MIPS: SMP: move asmlinkage before return type
m68k: coldfire: move inline before return type
ia64: sn: pci: move inline before type
ia64: move inline before return type
FRV: tlbflush: move asmlinkage before return type
CRIS: gpio: move inline before return type
ARM: HP Jornada 7XX: move inline before return type
ARM: KVM: move asmlinkage before type
checkpatch: improve the STORAGE_CLASS test
mm, migration: do not trigger OOM killer when migrating memory
drm/i915: use __GFP_RETRY_MAYFAIL
...
Pull sysctl fix from Eric Biederman:
"A rather embarassing and hard to hit bug was merged into 4.11-rc1.
Andrei Vagin tracked this bug now and after some staring at the code
I came up with a fix"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
proc: Fix proc_sys_prune_dcache to hold a sb reference
Add /proc/self/task/<current-tid>/fail-nth file that allows failing
0-th, 1-st, 2-nd and so on calls systematically.
Excerpt from the added documentation:
"Write to this file of integer N makes N-th call in the current task
fail (N is 0-based). Read from this file returns a single char 'Y' or
'N' that says if the fault setup with a previous write to this file
was injected or not, and disables the fault if it wasn't yet injected.
Note that this file enables all types of faults (slab, futex, etc).
This setting takes precedence over all other generic settings like
probability, interval, times, etc. But per-capability settings (e.g.
fail_futex/ignore-private) take precedence over it. This feature is
intended for systematic testing of faults in a single system call. See
an example below"
Why add a new setting:
1. Existing settings are global rather than per-task.
So parallel testing is not possible.
2. attr->interval is close but it depends on attr->count
which is non reset to 0, so interval does not work as expected.
3. Trying to model this with existing settings requires manipulations
of all of probability, interval, times, space, task-filter and
unexposed count and per-task make-it-fail files.
4. Existing settings are per-failure-type, and the set of failure
types is potentially expanding.
5. make-it-fail can't be changed by unprivileged user and aggressive
stress testing better be done from an unprivileged user.
Similarly, this would require opening the debugfs files to the
unprivileged user, as he would need to reopen at least times file
(not possible to pre-open before dropping privs).
The proposed interface solves all of the above (see the example).
We want to integrate this into syzkaller fuzzer. A prototype has found
10 bugs in kernel in first day of usage:
https://groups.google.com/forum/#!searchin/syzkaller/%22FAULT_INJECTION%22%7Csort:relevance
I've made the current interface work with all types of our sandboxes.
For setuid the secret sauce was prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) to
make /proc entries non-root owned. So I am fine with the current
version of the code.
[akpm@linux-foundation.org: fix build]
Link: http://lkml.kernel.org/r/20170328130128.101773-1-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>