2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 08:04:45 +08:00
Commit Graph

24 Commits

Author SHA1 Message Date
Tom Rini
323f54ed0f numa: Mark __node_set() as __always_inline
It is posible for some compilers to decide that __node_set() does
not need to be made turned into an inline function.  When the
compiler does this on an __init function calling it on
__initdata we get a section mismatch warning now.  Use
__always_inline to ensure that we will be inlined.

Reported-by: Paul Bolle <pebolle@tiscali.nl>
Cc: Jianpeng Ma <majianpeng@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Tom Rini <trini@ti.com>
Link: http://lkml.kernel.org/r/1374776770-32361-1-git-send-email-trini@ti.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-07-25 21:54:01 +02:00
Lai Jiangshan
20b2f52b73 numa: add CONFIG_MOVABLE_NODE for movable-dedicated node
We need a node which only contains movable memory.  This feature is very
important for node hotplug.  If a node has normal/highmem, the memory may
be used by the kernel and can't be offlined.  If the node only contains
movable memory, we can offline the memory and the node.

All are prepared, we can actually introduce N_MEMORY.
add CONFIG_MOVABLE_NODE make we can use it for movable-dedicated node

[akpm@linux-foundation.org: fix Kconfig text]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 17:38:34 -08:00
Lai Jiangshan
8219fc48ad mm: node_states: introduce N_MEMORY
We have N_NORMAL_MEMORY for standing for the nodes that have normal memory
with zone_type <= ZONE_NORMAL.

And we have N_HIGH_MEMORY for standing for the nodes that have normal or
high memory.

But we don't have any word to stand for the nodes that have *any* memory.

And we have N_CPU but without N_MEMORY.

Current code reuse the N_HIGH_MEMORY for this purpose because any node
which has memory must have high memory or normal memory currently.

A)	But this reusing is bad for *readability*. Because the name
	N_HIGH_MEMORY just stands for high or normal:

A.example 1)
	mem_cgroup_nr_lru_pages():
		for_each_node_state(nid, N_HIGH_MEMORY)

	The user will be confused(why this function just counts for high or
	normal memory node? does it counts for ZONE_MOVABLE's lru pages?)
	until someone else tell them N_HIGH_MEMORY is reused to stand for
	nodes that have any memory.

A.cont) If we introduce N_MEMORY, we can reduce this confusing
	AND make the code more clearly:

A.example 2) mm/page_cgroup.c use N_HIGH_MEMORY twice:

	One is in page_cgroup_init(void):
		for_each_node_state(nid, N_HIGH_MEMORY) {

	It means if the node have memory, we will allocate page_cgroup map for
	the node. We should use N_MEMORY instead here to gaim more clearly.

	The second using is in alloc_page_cgroup():
		if (node_state(nid, N_HIGH_MEMORY))
			addr = vzalloc_node(size, nid);

	It means if the node has high or normal memory that can be allocated
	from kernel. We should keep N_HIGH_MEMORY here, and it will be better
	if the "any memory" semantic of N_HIGH_MEMORY is removed.

B)	This reusing is out-dated if we introduce MOVABLE-dedicated node.
	The MOVABLE-dedicated node should not appear in
	node_stats[N_HIGH_MEMORY] nor node_stats[N_NORMAL_MEMORY],
	because MOVABLE-dedicated node has no high or normal memory.

	In x86_64, N_HIGH_MEMORY=N_NORMAL_MEMORY, if a MOVABLE-dedicated node
	is in node_stats[N_HIGH_MEMORY], it is also means it is in
	node_stats[N_NORMAL_MEMORY], it causes SLUB wrong.

	The slub uses
		for_each_node_state(nid, N_NORMAL_MEMORY)
	and creates kmem_cache_node for MOVABLE-dedicated node and cause problem.

In one word, we need a N_MEMORY.  We just intrude it as an alias to
N_HIGH_MEMORY and fix all im-proper usages of N_HIGH_MEMORY in late
patches.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 17:38:32 -08:00
Michal Hocko
778d3b0ff0 cpusets: randomize node rotor used in cpuset_mem_spread_node()
[ This patch has already been accepted as commit 0ac0c0d0f8 but later
  reverted (commit 35926ff5fb) because it itroduced arch specific
  __node_random which was defined only for x86 code so it broke other
  archs.  This is a followup without any arch specific code.  Other than
  that there are no functional changes.]

Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems).  Part of the reason is
that the rotor (in cpuset_mem_spread_node()) used to assign nodes starts
at node 0 for newly created tasks.

This patch changes the rotor to be initialized to a random node number
of the cpuset.

[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
[mhocko@suse.cz: Make it arch independent]
[akpm@linux-foundation.org: fix CONFIG_NUMA=y, MAX_NUMNODES>1 build]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Menage <menage@google.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 16:49:43 -07:00
Linus Torvalds
35926ff5fb Revert "cpusets: randomize node rotor used in cpuset_mem_spread_node()"
This reverts commit 0ac0c0d0f8, which
caused cross-architecture build problems for all the wrong reasons.
IA64 already added its own version of __node_random(), but the fact is,
there is nothing architectural about the function, and the original
commit was just badly done. Revert it, since no fix is forthcoming.

Requested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-30 09:00:03 -07:00
Jack Steiner
0ac0c0d0f8 cpusets: randomize node rotor used in cpuset_mem_spread_node()
Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems).  Part of the reason is that
the rotor (in cpuset_mem_spread_node()) used to assign nodes starts at
node 0 for newly created tasks.

This patch changes the rotor to be initialized to a random node number of
the cpuset.

[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:44 -07:00
Miao Xie
7baab93f92 nodemask: fix the declaration of NODEMASK_ALLOC()
we can't declarate two variable at the same scope by NODEMASK_ALLOC().

This patch fixes it.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-12 15:52:38 -08:00
H Hartley Sweeten
72c3368856 nodemask.h: remove macro any_online_node
The macro any_online_node() is prone to producing sparse warnings due to
the local symbol 'node'.  Since all the in-tree users are really
requesting the first online node (the mask argument is either
NODE_MASK_ALL or node_online_map) just use the first_online_node macro and
remove the any_online_node macro since there are no users.

Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Milton Miller <miltonm@bga.com>
Cc: Nathan Fontenot <nfont@austin.ibm.com>
Cc: Geoff Levand <geoffrey.levand@am.sony.com>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: J. Bruce Fields <bfields@fieldses.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Benny Halevy <bhalevy@panasas.com>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ricardo Labiaga <Ricardo.Labiaga@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:31 -08:00
David Rientjes
bad44b5be8 mm: add gfp flags for NODEMASK_ALLOC slab allocations
Objects passed to NODEMASK_ALLOC() are relatively small in size and are
backed by slab caches that are not of large order, traditionally never
greater than PAGE_ALLOC_COSTLY_ORDER.

Thus, using GFP_KERNEL for these allocations on large machines when
CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in
the allocation attempt, each time invoking both direct reclaim or the oom
killer.

This is of particular interest when using NODEMASK_ALLOC() from a
mempolicy context (either directly in mm/mempolicy.c or the mempolicy
constrained hugetlb allocations) since the oom killer always kills current
when allocations are constrained by mempolicies.  So for all present use
cases in the kernel, current would end up being oom killed when direct
reclaim fails.  That would allow the NODEMASK_ALLOC() to succeed but
current would have sacrificed itself upon returning.

This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on
CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations.
All current use cases either directly from hugetlb code or indirectly via
NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom
killer when the slab allocator needs to allocate additional pages.

The side-effect of this change is that all current use cases of either
NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling
when the allocation fails (never for CONFIG_NODES_SHIFT <= 8).  All
current use cases were audited and do have appropriate error handling at
this time.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:13 -08:00
Lee Schermerhorn
c1e6c8d074 hugetlb: factor init_nodemask_of_node()
Factor init_nodemask_of_node() out of the nodemask_of_node() macro.

This will be used to populate the huge pages "nodes_allowed" nodemask for
a single node when basing nodes_allowed on a preferred/local mempolicy or
when a persistent huge page pool page count is modified via a per node
sysfs attribute.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:12 -08:00
David Rientjes
4e7b8a6cef nodemask: make NODEMASK_ALLOC more general
This is a series of patches to provide control over the location of the
allocation and freeing of persistent huge pages on a NUMA platform.
Please consider for merging into mmotm.

This series uses two mechanisms to constrain the nodes from which
persistent huge pages are allocated: 1) the task NUMA mempolicy of the
task modifying a new sysctl "nr_hugepages_mempolicy", based on a
suggestion by Mel Gorman; and 2) a subset of the hugepages hstate sysfs
attributes have been added [in V4] to each node system device under:

	/sys/devices/node/node[0-9]*/hugepages

The per node attibutes allow direct assignment of a huge page count on a
specific node, regardless of the task's mempolicy or cpuset constraints.

This patch:

NODEMASK_ALLOC(x, m) assumes x is a type of struct, which is unnecessary.
It's perfectly reasonable to use this macro to allocate a nodemask_t,
which is anonymous, either dynamically or on the stack depending on
NODES_SHIFT.

Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:12 -08:00
KAMEZAWA Hiroyuki
4bfc44958e mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware
At first, init_task's mems_allowed is initialized as this.
 init_task->mems_allowed == node_state[N_POSSIBLE]

And cpuset's top_cpuset mask is initialized as this
 top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY]

Before 2.6.29:
policy's mems_allowed is initialized as this.

  1. update tasks->mems_allowed by its cpuset->mems_allowed.
  2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask)

Updating task's mems_allowed in reference to top_cpuset's one.
cpuset's mems_allowed is aware of N_HIGH_MEMORY, always.

In 2.6.30: After commit 58568d2a82
("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed
is initialized as this.

  1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask)

Here, if task is in top_cpuset, task->mems_allowed is not updated from
init's one.  Assume user excutes command as #numactrl --interleave=all
,....

  policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK)

Then, policy's mems_allowd can includes a possible node, which has no pgdat.

MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this
directly.

  NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL

Then, what's we need is making policy->mems_allowed be aware of
N_HIGH_MEMORY.  This patch does that.  But to do so, extra nodemask will
be on statck.  Because I know cpumask has a new interface of
CPUMASK_ALLOC(), I added it to node.

This patch stands on old behavior.  But I feel this fix itself is just a
Band-Aid.  But to do fundametal fix, we have to take care of memory
hotplug and it takes time.  (task->mems_allowd should be N_HIGH_MEMORY, I
think.)

mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask
should be includes only online nodes.

In old behavior, this is guaranteed by frequent reference to cpuset's
code.  Now, most of them are removed and mempolicy has to check it by
itself.

To do check, a few nodemask_t will be used for calculating nodemask.  But,
size of nodemask_t can be big and it's not good to allocate them on stack.

Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area.
NODEMASK_ALLOC/FREE shoudl be there.

[akpm@linux-foundation.org: cleanups & tweaks]
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Paul Menage <menage@google.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: David Rientjes <rientjes@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 10:39:55 -07:00
Christoph Lameter
62bc62a873 page allocator: use a pre-calculated value instead of num_online_nodes() in fast paths
num_online_nodes() is called in a number of places but most often by the
page allocator when deciding whether the zonelist needs to be filtered
based on cpusets or the zonelist cache.  This is actually a heavy function
and touches a number of cache lines.

This patch stores the number of online nodes at boot time and updates the
value when nodes get onlined and offlined.  The value is then used in a
number of important paths in place of num_online_nodes().

[rientjes@google.com: do not override definition of node_set_online() with macro]
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:35 -07:00
Paul Jackson
7ea931c9fc mempolicy: add bitmap_onto() and bitmap_fold() operations
The following adds two more bitmap operators, bitmap_onto() and bitmap_fold(),
with the usual cpumask and nodemask wrappers.

The bitmap_onto() operator computes one bitmap relative to another.  If the
n-th bit in the origin mask is set, then the m-th bit of the destination mask
will be set, where m is the position of the n-th set bit in the relative mask.

The bitmap_fold() operator folds a bitmap into a second that has bit m set iff
the input bitmap has some bit n set, where m == n mod sz, for the specified sz
value.

There are two substantive changes between this patch and its
predecessor bitmap_relative:
 1) Renamed bitmap_relative() to be bitmap_onto().
 2) Added bitmap_fold().

The essential motivation for bitmap_onto() is to provide a mechanism for
converting a cpuset-relative CPU or Node mask to an absolute mask.  Cpuset
relative masks are written as if the current task were in a cpuset whose CPUs
or Nodes were just the consecutive ones numbered 0..N-1, for some N.  The
bitmap_onto() operator is provided in anticipation of adding support for the
first such cpuset relative mask, by the mbind() and set_mempolicy() system
calls, using a planned flag of MPOL_F_RELATIVE_NODES.  These bitmap operators
(and their nodemask wrappers, in particular) will be used in code that
converts the user specified cpuset relative memory policy to a specific system
node numbered policy, given the current mems_allowed of the tasks cpuset.

Such cpuset relative mempolicies will address two deficiencies
of the existing interface between cpusets and mempolicies:
 1) A task cannot at present reliably establish a cpuset
    relative mempolicy because there is an essential race
    condition, in that the tasks cpuset may be changed in
    between the time the task can query its cpuset placement,
    and the time the task can issue the applicable mbind or
    set_memplicy system call.
 2) A task cannot at present establish what cpuset relative
    mempolicy it would like to have, if it is in a smaller
    cpuset than it might have mempolicy preferences for,
    because the existing interface only allows specifying
    mempolicies for nodes currently allowed by the cpuset.

Cpuset relative mempolicies are useful for tasks that don't distinguish
particularly between one CPU or Node and another, but only between how many of
each are allowed, and the proper placement of threads and memory pages on the
various CPUs and Nodes available.

The motivation for the added bitmap_fold() can be seen in the following
example.

Let's say an application has specified some mempolicies that presume 16 memory
nodes, including say a mempolicy that specified MPOL_F_RELATIVE_NODES (cpuset
relative) nodes 12-15.  Then lets say that application is crammed into a
cpuset that only has 8 memory nodes, 0-7.  If one just uses bitmap_onto(),
this mempolicy, mapped to that cpuset, would ignore the requested relative
nodes above 7, leaving it empty of nodes.  That's not good; better to fold the
higher nodes down, so that some nodes are included in the resulting mapped
mempolicy.  In this case, the mempolicy nodes 12-15 are taken modulo 8 (the
weight of the mems_allowed of the confining cpuset), resulting in a mempolicy
specifying nodes 4-7.

Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: <kosaki.motohiro@jp.fujitsu.com>
Cc: <ray-lk@madrabbit.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:19 -07:00
Christoph Lameter
37c0708dbe Memoryless nodes: Add N_CPU node state
We need the check for a node with cpu in zone reclaim.  Zone reclaim will not
allow remote zone reclaim if a node has a cpu.

[Lee.Schermerhorn@hp.com: Move setup of N_CPU node state mask]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by:  Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:58 -07:00
Christoph Lameter
7ea1530ab3 Memoryless nodes: introduce mask of nodes with memory
It is necessary to know if nodes have memory since we have recently begun to
add support for memoryless nodes.  For that purpose we introduce a two new
node states: N_HIGH_MEMORY and N_NORMAL_MEMORY.

A node has its bit in N_HIGH_MEMORY set if it has any memory regardless of the
type of mmemory.  If a node has memory then it has at least one zone defined
in its pgdat structure that is located in the pgdat itself.

A node has its bit in N_NORMAL_MEMORY set if it has a lower zone than
ZONE_HIGHMEM.  This means it is possible to allocate memory that is not
subject to kmap.

N_HIGH_MEMORY and N_NORMAL_MEMORY can then be used in various places to insure
that we do the right thing when we encounter a memoryless node.

[akpm@linux-foundation.org: build fix]
[Lee.Schermerhorn@hp.com: update N_HIGH_MEMORY node state for memory hotadd]
[y-goto@jp.fujitsu.com: Fix memory hotplug + sparsemem build]
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:58 -07:00
Christoph Lameter
1380891071 Memoryless nodes: Generic management of nodemasks for various purposes
Why do we need to support memoryless nodes?

KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:

> For fujitsu, problem is called "empty" node.
>
> When ACPI's SRAT table includes "possible nodes", ia64 bootstrap(acpi_numa_init)
> creates nodes, which includes no memory, no cpu.
>
> I tried to remove empty-node in past, but that was denied.
> It was because we can hot-add cpu to the empty node.
> (node-hotplug triggered by cpu is not implemented now. and it will be ugly.)
>
>
> For HP, (Lee can comment on this later), they have memory-less-node.
> As far as I hear, HP's machine can have following configration.
>
> (example)
> Node0: CPU0   memory AAA MB
> Node1: CPU1   memory AAA MB
> Node2: CPU2   memory AAA MB
> Node3: CPU3   memory AAA MB
> Node4: Memory XXX GB
>
> AAA is very small value (below 16MB)  and will be omitted by ia64 bootstrap.
> After boot, only Node 4 has valid memory (but have no cpu.)
>
> Maybe this is memory-interleave by firmware config.

Christoph Lameter <clameter@sgi.com> wrote:

> Future SGI platforms (actually also current one can have but nothing like
> that is deployed to my knowledge) have nodes with only cpus. Current SGI
> platforms have nodes with just I/O that we so far cannot manage in the
> core. So the arch code maps them to the nearest memory node.

Lee Schermerhorn <Lee.Schermerhorn@hp.com> wrote:

> For the HP platforms, we can configure each cell with from 0% to 100%
> "cell local memory".  When we configure with <100% CLM, the "missing
> percentages" are interleaved by hardware on a cache-line granularity to
> improve bandwidth at the expense of latency for numa-challenged
> applications [and OSes, but not our problem ;-)].  When we boot Linux on
> such a config, all of the real nodes have no memory--it all resides in a
> single interleaved pseudo-node.
>
> When we boot Linux on a 100% CLM configuration [== NUMA], we still have
> the interleaved pseudo-node.  It contains a few hundred MB stolen from
> the real nodes to contain the DMA zone.  [Interleaved memory resides at
> phys addr 0].  The memoryless-nodes patches, along with the zoneorder
> patches, support this config as well.
>
> Also, when we boot a NUMA config with the "mem=" command line,
> specifying less memory than actually exists, Linux takes the excluded
> memory "off the top" rather than distributing it across the nodes.  This
> can result in memoryless nodes, as well.
>

This patch:

Preparation for memoryless node patches.

Provide a generic way to keep nodemasks describing various characteristics of
NUMA nodes.

Remove the node_online_map and the node_possible map and realize the same
functionality using two nodes stats: N_POSSIBLE and N_ONLINE.

[Lee.Schermerhorn@hp.com: Initialize N_*_MEMORY and N_CPU masks for non-NUMA config]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:58 -07:00
Christoph Lameter
74c7aa8b85 [PATCH] Replace highest_possible_node_id() with nr_node_ids
highest_possible_node_id() is currently used to calculate the last possible
node idso that the network subsystem can figure out how to size per node
arrays.

I think having the ability to determine the maximum amount of nodes in a
system at runtime is useful but then we should name this entry
correspondingly, it should return the number of node_ids, and the the value
needs to be setup only once on bootup.  The node_possible_map does not
change after bootup.

This patch introduces nr_node_ids and replaces the use of
highest_possible_node_id().  nr_node_ids is calculated on bootup when the
page allocators pagesets are initialized.

[deweerdt@free.fr: fix oops]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Frederik Deweerdt <frederik.deweerdt@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-20 17:10:13 -08:00
Reinette Chatre
01a3ee2b20 [PATCH] bitmap: parse input from kernel and user buffers
lib/bitmap.c:bitmap_parse() is a library function that received as input a
user buffer.  This seemed to have originated from the way the write_proc
function of the /proc filesystem operates.

This has been reworked to not use kmalloc and eliminates a lot of
get_user() overhead by performing one access_ok before using __get_user().

We need to test if we are in kernel or user space (is_user) and access the
buffer differently.  We cannot use __get_user() to access kernel addresses
in all cases, for example in architectures with separate address space for
kernel and user.

This function will be useful for other uses as well; for example, taking
input for /sysfs instead of /proc, so it was changed to accept kernel
buffers.  We have this use for the Linux UWB project, as part as the
upcoming bandwidth allocator code.

Only a few routines used this function and they were changed too.

Signed-off-by: Reinette Chatre <reinette.chatre@linux.intel.com>
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Joe Korty <joe.korty@ccur.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-11 11:14:22 -07:00
Greg Banks
0f532f3861 [PATCH] cpumask: add highest_possible_node_id
cpumask: add highest_possible_node_id(), analogous to
highest_possible_processor_id().

[pj@sgi.com: fix typo]
Signed-off-by: Greg Banks <gnb@melbourne.sgi.com>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-02 07:57:17 -07:00
KAMEZAWA Hiroyuki
8357f8695d [PATCH] define for_each_online_pgdat
This patch defines for_each_online_pgdat() as a replacement of
for_each_pgdat()

Now, online nodes are managed by node_online_map.  But for_each_pgdat()
uses pgdat_link to iterate over all nodes(pgdat).  This means management
structure for online pgdat is duplicated.

I think using node_online_map for for_each_pgdat() is simple and sane
rather ather than pgdat_link.  New macro is named as
for_each_online_pgdat().  Following patch will fix callers of
for_each_pgdat().

The bootmem allocater uses for_each_pgdat() before pgdat initialization.  I
don't think it's sane.  Following patch will fix it.

Signed-off-by: Yasunori Goto     <y-goto@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:47 -08:00
Al Viro
1b8623545b [PATCH] remove bogus asm/bug.h includes.
A bunch of asm/bug.h includes are both not needed (since it will get
pulled anyway) and bogus (since they are done too early).  Removed.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-02-07 20:56:35 -05:00
Paul Jackson
fb5eeeee44 [PATCH] cpusets: bitmap and mask remap operators
In the forthcoming task migration support, a key calculation will be
mapping cpu and node numbers from the old set to the new set while
preserving cpuset-relative offset.

For example, if a task and its pages on nodes 8-11 are being migrated to
nodes 24-27, then pages on node 9 (the 2nd node in the old set) should be
moved to node 25 (the 2nd node in the new set.)

As with other bitmap operations, the proper way to code this is to provide
the underlying calculation in lib/bitmap.c, and then to provide the usual
cpumask and nodemask wrappers.

This patch provides that.  These operations are termed 'remap' operations.
Both remapping a single bit and a set of bits is supported.

Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 17:37:21 -08:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00