This introduces CONFIG_DEBUG_RODATA, making kernel text and rodata
read-only. Additionally, this splits rodata from text so that rodata can
also be NX, which may lead to wasted memory when aligning to SECTION_SIZE.
The read-only areas are made writable during ftrace updates and kexec.
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Laura Abbott <lauraa@codeaurora.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
This fixes build breakage of platsmp.c if ARMv6 was chosen for compile
time options (e.g. by building allmodconfig):
$ make allmodconfig
$ make
CC arch/arm/mach-exynos/platsmp.o
/tmp/ccdQM0Eg.s: Assembler messages:
/tmp/ccdQM0Eg.s:432: Error: selected processor does not support ARM mode `isb '
/tmp/ccdQM0Eg.s:437: Error: selected processor does not support ARM mode `isb '
/tmp/ccdQM0Eg.s:438: Error: selected processor does not support ARM mode `dsb '
make[1]: *** [arch/arm/mach-exynos/platsmp.o] Error 1
The error was introduced in commit "ARM: EXYNOS: Move code from
hotplug.c to platsmp.c". Previously code using
v7_exit_coherency_flush() macro was built with '-march=armv7-a' flag but
this flag dissapeared during the movement.
Fix this by annotating the v7_exit_coherency_flush() asm code with
armv7-a architecture.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On revisions of Cortex-A15 prior to r3p3, a CLREX instruction at PL1 may
falsely trigger a watchpoint exception, leading to potential data aborts
during exception return and/or livelock.
This patch resolves the issue in the following ways:
- Replacing our uses of CLREX with a dummy STREX sequence instead (as
we did for v6 CPUs).
- Removing the clrex code from v7_exit_coherency_flush and derivatives,
since this only exists as a minor performance improvement when
non-cached exclusives are in use (Linux doesn't use these).
Benchmarking on a variety of ARM cores revealed no measurable
performance difference with this change applied, so the change is
performed unconditionally and no new Kconfig entry is added.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
After instruction write into xol area, on ARM V7
architecture code need to flush dcache and icache to sync
them up for given set of addresses. Having just
'flush_dcache_page(page)' call is not enough - it is
possible to have stale instruction sitting in icache
for given xol area slot address.
Introduce arch_uprobe_ixol_copy weak function
that by default calls uprobes copy_to_page function and
than flush_dcache_page function and on ARM define new one
that handles xol slot copy in ARM specific way
flush_uprobe_xol_access function shares/reuses implementation
with/of flush_ptrace_access function and takes care of writing
instruction to user land address space on given variety of
different cache types on ARM CPUs. Because
flush_uprobe_xol_access does not have vma around
flush_ptrace_access was split into two parts. First that
retrieves set of condition from vma and common that receives
those conditions as flags.
Note ARM cache flush function need kernel address
through which instruction write happened, so instead
of using uprobes copy_to_page function changed
code to explicitly map page and do memcpy.
Note arch_uprobe_copy_ixol function, in similar way as
copy_to_user_page function, has preempt_disable/preempt_enable.
Signed-off-by: Victor Kamensky <victor.kamensky@linaro.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: David A. Long <dave.long@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
dsb st can be used to ensure completion of pending cache maintenance
operations, so use it for the v7 cache maintenance operations.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add DSB after icache flush to complete the cache maintenance operation.
Signed-off-by: Vinayak Kale <vkale@apm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Other architectures define various set_memory functions to allow
attributes to be changed (e.g. set_memory_x, set_memory_rw, etc.)
Currently, these functions are missing on ARM. Define these in an
appropriate manner for ARM.
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This code is becoming duplicated in many places. So let's consolidate
it into a handy macro that is known to be right and available for reuse.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The flush_cache_user_range macro takes a pair of addresses describing
the start and end of the virtual address range to flush. Due to an
accidental oversight when flush_cache_range_user was introduced, the
address range was rounded up so that the start and end addresses were
page-aligned.
For historical reference, the interesting commits in history.git are:
10eacf1775e1 ("[ARM] Clean up ARM cache handling interfaces (part 1)")
71432e79b76b ("[ARM] Add flush_cache_user_page() for sys_cacheflush()")
This patch removes the alignment code, reducing the amount of flushing
required for ranges that are not an exact multiple of PAGE_SIZE.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Jonathan Austin <jonathan.austin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
flush_cache_vmap contains a dsb to ensure that any cacheflushing
operations to flush out newly written ptes have completed.
This patch adds the -ishst option to the dsb, since that is all that is
required for completing cacheflushing in the inner-shareable domain.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit f8b63c1 made flush_kernel_dcache_page a no-op assuming that
the pages it needs to handle are kernel mapped only. However, for
example when doing direct I/O, pages with user space mappings may
occur.
Thus, continue to do lazy flushing if there are no user space
mappings. Otherwise, flush the kernel cache lines directly.
Signed-off-by: Simon Baatz <gmbnomis@gmail.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org> # 3.2+
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Algorithms used by the MCPM layer rely on state variables which are
accessed while the cache is either active or inactive, depending
on the code path and the active state.
This patch introduces generic cache maintenance helpers to provide the
necessary cache synchronization for such state variables to always hit
main memory in an ordered way.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Dave Martin <dave.martin@linaro.org>
ARM v7 architecture introduced the concept of cache levels and related
control registers. New processors like A7 and A15 embed an L2 unified cache
controller that becomes part of the cache level hierarchy. Some operations in
the kernel like cpu_suspend and __cpu_disable do not require a flush of the
entire cache hierarchy to DRAM but just the cache levels belonging to the
Level of Unification Inner Shareable (LoUIS), which in most of ARM v7 systems
correspond to L1.
The current cache flushing API used in cpu_suspend and __cpu_disable,
flush_cache_all(), ends up flushing the whole cache hierarchy since for
v7 it cleans and invalidates all cache levels up to Level of Coherency
(LoC) which cripples system performance when used in hot paths like hotplug
and cpuidle.
Therefore a new kernel cache maintenance API must be added to cope with
latest ARM system requirements.
This patch adds flush_cache_louis() to the ARM kernel cache maintenance API.
This function cleans and invalidates all data cache levels up to the
Level of Unification Inner Shareable (LoUIS) and invalidates the instruction
cache for processors that support it (> v7).
This patch also creates an alias of the cache LoUIS function to flush_kern_all
for all processor versions prior to v7, so that the current cache flushing
behaviour is unchanged for those processors.
v7 cache maintenance code implements a cache LoUIS function that cleans and
invalidates the D-cache up to LoUIS and invalidates the I-cache, according
to the new API.
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
The vivt_flush_cache_{range,page} functions check that the mm_struct
of the VMA being flushed has been active on the current CPU before
performing the cache maintenance.
The gate_vma has a NULL mm_struct pointer and, as such, will cause a
kernel fault if we try to flush it with the above operations. This
happens during ELF core dumps, which include the gate_vma as it may be
useful for debugging purposes.
This patch adds checks to the VIVT cache flushing functions so that VMAs
with a NULL mm_struct are flushed unconditionally (the vectors page may
be dirty if we use it to store the current TLS pointer).
Cc: <stable@vger.kernel.org> # 3.4+
Reported-by: Gilles Chanteperdrix <gilles.chanteperdrix@xenomai.org>
Tested-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The cacheflush syscall can fail for two reasons:
(1) The arguments are invalid (nonsensical address range or no VMA)
(2) The region generates a translation fault on a VIPT or PIPT cache
This patch allows do_cache_op to return an error code to userspace in
the case of the above. The various coherent_user_range implementations
are modified to return 0 in the case of VIVT caches or -EFAULT in the
case of an abort on v6/v7 cores.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
vma isn't used and flush_cache_user_range isn't a standard macro that
is used on several archs with the same prototype. In fact only unicore32
has a macro with the same name (with an identical implementation and no
in-tree users).
This is a part of a patch proposed by Dima Zavin (with Message-id:
1272439931-12795-1-git-send-email-dima@android.com) that didn't get
accepted.
Cc: Dima Zavin <dima@android.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This allows the cache/processor/fault glue to be more easily used
from assembler code. Tested on Assabet and Tegra 2.
Tested-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The v6 cache call optimization was disabled to allow the optional block
cache operations to be subsituted on CPUs which supported those
operations. However, as that functionality was removed, we no longer
need to prevent this optimization being taken advantage of.
The v7 cache call optimization was just a copy of the v6, so also fix
that too.
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Introduce a CPU_V6K configuration option for platforms to select if they
have a V6K CPU core. This allows us to identify whether we need to
support ARMv6 CPUs without the V6K SMP extensions at build time.
Currently CPU_V6K is just an alias for CPU_V6, and all places which
reference CPU_V6 are replaced by (CPU_V6 || CPU_V6K).
Select CPU_V6K from platforms which are known to be V6K-only.
Acked-by: Tony Lindgren <tony@atomide.com>
Tested-by: Sourav Poddar <sourav.poddar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Do this by adding flush_icache_all to cache_fns for ARMv6 and 7.
As flush_icache_all may neeed to be called from flush_kern_cache_all,
add it as the first entry in the cache_fns.
Note that now we can remove the ARM_ERRATA_411920 dependency
to !SMP so it can be selected on UP ARMv6 processors, such
as omap2.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Anand Gadiyar <gadiyar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since page cache pages are now considered 'dirty' by default, the cache
flushing is handled via __flush_dcache_page() when a page gets mapped to
user space. Highmem pages on VIVT systems are flushed during kunmap()
and flush_kernel_dcache_page() was already a no-op in this case.
ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE is still defined since ARM needs
specific implementations for flush_kernel_vmap_range() and
invalidate_kernel_vmap_range().
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There are places in Linux where writes to newly allocated page cache
pages happen without a subsequent call to flush_dcache_page() (several
PIO drivers including USB HCD). This patch changes the meaning of
PG_arch_1 to be PG_dcache_clean and always flush the D-cache for a newly
mapped page in update_mmu_cache().
The patch also sets the PG_arch_1 bit in the DMA cache maintenance
function to avoid additional cache flushing in update_mmu_cache().
Tested-by: Rabin Vincent <rabin.vincent@stericsson.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The standard I-cache Invalidate All (ICIALLU) and Branch Predication
Invalidate All (BPIALL) operations are not automatically broadcast to
the other CPUs in an ARMv7 MP system. The patch adds the Inner Shareable
variants, ICIALLUIS and BPIALLIS, if ARMv7 and SMP.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
To avoid #include collisions with subsequent patches in the series, this
patch moves the outer_cache definitions to a separate asm/outercache.h
file.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* git://git.kernel.org/pub/scm/linux/kernel/git/jejb/xfs-vipt:
xfs: fix xfs to work with Virtually Indexed architectures
sh: add mm API for DMA to vmalloc/vmap areas
arm: add mm API for DMA to vmalloc/vmap areas
parisc: add mm API for DMA to vmalloc/vmap areas
mm: add coherence API for DMA to vmalloc/vmap areas
This patch fix the below build error for arm1026ej-s processor (IntegratorCP/arm1026ej-s board).
CC init/main.o
In file included from include/linux/highmem.h:8,
from include/linux/pagemap.h:10,
from include/linux/mempolicy.h:62,
from init/main.c:52:
arch/arm/include/asm/cacheflush.h:134:2: error: #error Unknown cache maintainence model
make[1]: *** [init/main.o] Erreur 1
make: *** [init] Erreur 2
Signed-off-by: Abdoulaye Walsimou Gaye <walsimou@walsimou.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
These are now unused, and so can be removed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
ARM cannot prevent cache movein, so this patch implements both the
flush and invalidate pieces of the API.
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
The comments in cacheflush.h should follow what's in
struct cpu_cache_fns. The comments for V6 and V7 are
unnecessary.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There is not enough users to warrant its existence, and it is actually
an obstacle to progress with the new DMA API which cannot cover this
case properly.
To keep backward compatibility, let's perform the necessary custom
cache maintenance locally in the only driver affected.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'for-2.6.33' of git://git.kernel.dk/linux-2.6-block: (113 commits)
cfq-iosched: Do not access cfqq after freeing it
block: include linux/err.h to use ERR_PTR
cfq-iosched: use call_rcu() instead of doing grace period stall on queue exit
blkio: Allow CFQ group IO scheduling even when CFQ is a module
blkio: Implement dynamic io controlling policy registration
blkio: Export some symbols from blkio as its user CFQ can be a module
block: Fix io_context leak after failure of clone with CLONE_IO
block: Fix io_context leak after clone with CLONE_IO
cfq-iosched: make nonrot check logic consistent
io controller: quick fix for blk-cgroup and modular CFQ
cfq-iosched: move IO controller declerations to a header file
cfq-iosched: fix compile problem with !CONFIG_CGROUP
blkio: Documentation
blkio: Wait on sync-noidle queue even if rq_noidle = 1
blkio: Implement group_isolation tunable
blkio: Determine async workload length based on total number of queues
blkio: Wait for cfq queue to get backlogged if group is empty
blkio: Propagate cgroup weight updation to cfq groups
blkio: Drop the reference to queue once the task changes cgroup
blkio: Provide some isolation between groups
...
We had two copies of the wrapper code for VIVT cache flushing - one in
asm/cacheflush.h and one in arch/arm/mm/flush.c. Reduce this down to
one common copy.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Mtdblock driver doesn't call flush_dcache_page for pages in request. So,
this causes problems on architectures where the icache doesn't fill from
the dcache or with dcache aliases. The patch fixes this.
The ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE symbol was introduced to avoid
pointless empty cache-thrashing loops on architectures for which
flush_dcache_page() is a no-op. Every architecture was provided with this
flush pages on architectires where ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE is
equal 1 or do nothing otherwise.
See "fix mtd_blkdevs problem with caches on some architectures" discussion
on LKML for more information.
Signed-off-by: Ilya Loginov <isloginov@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Peter Horton <phorton@bitbox.co.uk>
Cc: "Ed L. Cashin" <ecashin@coraid.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Errata 411920 indicates that any "invalidate entire instruction cache"
operation can fail if the right conditions are present. This is not
limited just to those operations in flush.c, but elsewhere. Place the
workaround in the already existing __flush_icache_all() function
instead.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Makes code futureproof against the impending change to mm->cpu_vm_mask.
It's also a chance to use the new cpumask_ ops which take a pointer
(the older ones are deprecated, but there's no hurry for arch code).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Without this, the default implementation is a no op which is completely
wrong with a VIVT cache, and usage of sg_copy_buffer() produces
unpredictable results.
Tested-by: Sebastian Andrzej Siewior <bigeasy@breakpoint.cc>
CC: stable@kernel.org
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Adds support for Faraday FA526 core. This core is used at least by:
Cortina Systems Gemini and Centroid family
Cavium Networks ECONA family
Grain Media GM8120
Pixelplus ImageARM
Prolific PL-1029
Faraday IP evaluation boards
v2:
- move TLB_BTB to separate patch
- update copyrights
Signed-off-by: Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
"""The Marvell® PXA168 processor is the first in a family of application
processors targeted at mass market opportunities in computing and consumer
devices. It balances high computing and multimedia performance with low
power consumption to support extended battery life, and includes a wealth
of integrated peripherals to reduce overall BOM cost .... """
See http://www.marvell.com/featured/pxa168.jsp for more information.
1. Marvell Mohawk core is a hybrid of xscale3 and its own ARM core,
there are many enhancements like instructions for flushing the
whole D-cache, and so on
2. Clock reuses Russell's common clkdev, and added the basic support
for UART1/2.
3. Devices are a bit different from the 'mach-pxa' way, the platform
devices are now dynamically allocated only when necessary (i.e.
when pxa_register_device() is called). Description for each device
are stored in an array of 'struct pxa_device_desc'. Now that:
a. this array of device description is marked with __initdata and
can be freed up system is fully up
b. which means board code has to add all needed devices early in
his initializing function
c. platform specific data can now be marked as __initdata since
they are allocated and copied by platform_device_add_data()
4. only the basic UART1/2/3 are added, more devices will come later.
Signed-off-by: Jason Chagas <chagas@marvell.com>
Signed-off-by: Eric Miao <eric.miao@marvell.com>