The last argument to xfs_bmapi_raad contains XFS_BMAPI_* flags, not the
fork. Given that XFS_DATA_FORK evaluates to 0 no real harm is done,
but let's fix this anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix this error message to complain about project and group quota flag
bits instead of "PUOTA" and "QUOTA".
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Since the old SWAPEXT ioctl doesn't know how to adjust quota ids,
bail out of the ids don't match and quotas are enabled.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
While QAing the new xfs_repair quotacheck code, I uncovered a quota
corruption bug resulting from a bad interaction between dquot buffer
initialization and quotacheck. The bug can be reproduced with the
following sequence:
# mkfs.xfs -f /dev/sdf
# mount /dev/sdf /opt -o usrquota
# su nobody -s /bin/bash -c 'touch /opt/barf'
# sync
# xfs_quota -x -c 'report -ahi' /opt
User quota on /opt (/dev/sdf)
Inodes
User ID Used Soft Hard Warn/Grace
---------- ---------------------------------
root 3 0 0 00 [------]
nobody 1 0 0 00 [------]
# xfs_io -x -c 'shutdown' /opt
# umount /opt
# mount /dev/sdf /opt -o usrquota
# touch /opt/man2
# xfs_quota -x -c 'report -ahi' /opt
User quota on /opt (/dev/sdf)
Inodes
User ID Used Soft Hard Warn/Grace
---------- ---------------------------------
root 1 0 0 00 [------]
nobody 1 0 0 00 [------]
# umount /opt
Notice how the initial quotacheck set the root dquot icount to 3
(rootino, rbmino, rsumino), but after shutdown -> remount -> recovery,
xfs_quota reports that the root dquot has only 1 icount. We haven't
deleted anything from the filesystem, which means that quota is now
under-counting. This behavior is not limited to icount or the root
dquot, but this is the shortest reproducer.
I traced the cause of this discrepancy to the way that we handle ondisk
dquot updates during quotacheck vs. regular fs activity. Normally, when
we allocate a disk block for a dquot, we log the buffer as a regular
(dquot) buffer. Subsequent updates to the dquots backed by that block
are done via separate dquot log item updates, which means that they
depend on the logged buffer update being written to disk before the
dquot items. Because individual dquots have their own LSN fields, that
initial dquot buffer must always be recovered.
However, the story changes for quotacheck, which can cause dquot block
allocations but persists the final dquot counter values via a delwri
list. Because recovery doesn't gate dquot buffer replay on an LSN, this
means that the initial dquot buffer can be replayed over the (newer)
contents that were delwritten at the end of quotacheck. In effect, this
re-initializes the dquot counters after they've been updated. If the
log does not contain any other dquot items to recover, the obsolete
dquot contents will not be corrected by log recovery.
Because quotacheck uses a transaction to log the setting of the CHKD
flags in the superblock, we skip quotacheck during the second mount
call, which allows the incorrect icount to remain.
Fix this by changing the ondisk dquot initialization function to use
ordered buffers to write out fresh dquot blocks if it detects that we're
running quotacheck. If the system goes down before quotacheck can
complete, the CHKD flags will not be set in the superblock and the next
mount will run quotacheck again, which can fix uninitialized dquot
buffers. This requires amending the defer code to maintaine ordered
buffer state across defer rolls for the sake of the dquot allocation
code.
For regular operations we preserve the current behavior since the dquot
items require properly initialized ondisk dquot records.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The attr fork can transition from shortform to leaf format while
empty if the first xattr doesn't fit in shortform. While this empty
leaf block state is intended to be transient, it is technically not
due to the transactional implementation of the xattr set operation.
We historically have a couple of bandaids to work around this
problem. The first is to hold the buffer after the format conversion
to prevent premature writeback of the empty leaf buffer and the
second is to bypass the xattr count check in the verifier during
recovery. The latter assumes that the xattr set is also in the log
and will be recovered into the buffer soon after the empty leaf
buffer is reconstructed. This is not guaranteed, however.
If the filesystem crashes after the format conversion but before the
xattr set that induced it, only the format conversion may exist in
the log. When recovered, this creates a latent corrupted state on
the inode as any subsequent attempts to read the buffer fail due to
verifier failure. This includes further attempts to set xattrs on
the inode or attempts to destroy the attr fork, which prevents the
inode from ever being removed from the unlinked list.
To avoid this condition, accept that an empty attr leaf block is a
valid state and remove the count check from the verifier. This means
that on rare occasions an attr fork might exist in an unexpected
state, but is otherwise consistent and functional. Note that we
retain the logic to avoid racing with metadata writeback to reduce
the window where this can occur.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This patch corrects the SPDX License Identifier style in header files
related to XFS File System support. For C header files
Documentation/process/license-rules.rst mandates C-like comments.
(opposed to C source files where C++ style should be used).
Changes made by using a script provided by Joe Perches here:
https://lkml.org/lkml/2019/2/7/46.
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nishad Kamdar <nishadkamdar@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove duplicate headers which are included twice.
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The random buffer write failure errortag patch introduced a local
mount pointer variable for the test macro, but the macro is compiled
out on !DEBUG kernels. This results in an unused variable warning.
Access the mount structure through the buffer pointer and remove the
local mount pointer to address the warning.
Fixes: 7376d74547 ("xfs: random buffer write failure errortag")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove unnecessary includes from the log recovery code.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Move the helpers that handle incore buffer cancellation records to
xfs_buf_item_recover.c since they're not directly related to the main
log recovery machinery. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The only purpose of XFS_LI_RECOVERED is to prevent log recovery from
trying to replay recovered intents more than once. Therefore, we can
move the bit setting up to the ->iop_recover caller.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we've made the recovered item tests all the same, we can hoist
the test and the ail locking code to the ->iop_recover caller and call
the recovery function directly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Rename XFS_{EFI,BUI,RUI,CUI}_RECOVERED to XFS_LI_RECOVERED so that we
track recovery status in the log item, then get rid of the now unused
flags fields in each of those log item types.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
During recovery, every intent that we recover from the log has to be
added to the AIL. Replace the open-coded addition with a helper.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Replace the open-coded AIL item walking with a proper helper when we're
trying to release an intent item that has been finished. We add a new
->iop_match method to decide if an intent item matches a supplied ID.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we've finished converting all types of log intent items to
provide an ->iop_recover function, we can convert the "is this an intent
item?" predicate to look for a non-null iop_recover pointer.
Move the predicate closer to the functions that use it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the code that processes the log items created from the recovered
log items into the per-item source code files and use dispatch functions
to call them. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the code that processes the log items created from the recovered
log items into the per-item source code files and use dispatch functions
to call them. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the code that processes the log items created from the recovered
log items into the per-item source code files and use dispatch functions
to call them. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the code that processes the log items created from the recovered
log items into the per-item source code files and use dispatch functions
to call them. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Quotaoff doesn't actually do anything, so take advantage of the
commit_pass2 pointer being optional and get rid of the switch
statement clause.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the bmap update intent and intent-done pass2 commit code into the
per-item source code files and use dispatch functions to call them. We
do these one at a time because there's a lot of code to move. No
functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the refcount update intent and intent-done pass2 commit code into
the per-item source code files and use dispatch functions to call them.
We do these one at a time because there's a lot of code to move. No
functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the rmap update intent and intent-done pass2 commit code into the
per-item source code files and use dispatch functions to call them. We
do these one at a time because there's a lot of code to move. No
functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the extent free intent and intent-done pass2 commit code into the
per-item source code files and use dispatch functions to call them. We
do these one at a time because there's a lot of code to move. No
functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the log icreate item pass2 commit code into the per-item source code
files and use the dispatch function to call it. We do these one at a
time because there's a lot of code to move. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the log dquot item pass2 commit code into the per-item source code
files and use the dispatch function to call it. We do these one at a
time because there's a lot of code to move. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the log inode item pass2 commit code into the per-item source code
files and use the dispatch function to call it. We do these one at a
time because there's a lot of code to move. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the log buffer item pass2 commit code into the per-item source code
files and use the dispatch function to call it. We do these one at a
time because there's a lot of code to move. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the pass1 commit code into the per-item source code files and use
the dispatch function to call them.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the pass2 readhead code into the per-item source code files and use
the dispatch function to call them.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a generic dispatch structure to delegate recovery of different
log item types into various code modules. This will enable us to move
code specific to a particular log item type out of xfs_log_recover.c and
into the log item source.
The first operation we virtualize is the log item sorting.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove the old typedefs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
iget_flags is unused in xfs_imap_to_bp(). Remove the parameter and
fix up the callers.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Both types control shutdown messaging and neither is used in the
current codebase.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Introduce an error tag to randomly fail async buffer writes. This is
primarily to facilitate testing of the XFS error configuration
mechanism.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The stale parameter was used to control the now unused shutdown
parameter of xfs_trans_ail_remove().
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that the functions and callers of
xfs_trans_ail_[remove|delete]() have been fixed up appropriately,
the only difference between the two is the shutdown behavior. There
are only a few callers of the _remove() variant, so make the
shutdown conditional on the parameter and combine the two functions.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The shutdown parameter of xfs_trans_ail_remove() is no longer used.
The remaining callers use it for items that legitimately might not
be in the AIL or from contexts where AIL state has already been
checked. Remove the unnecessary parameter and fix up the callers.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Various intent log items call xfs_trans_ail_remove() with a log I/O
error shutdown type, but this helper historically checks whether an
item is in the AIL before calling xfs_trans_ail_delete(). This means
the shutdown check is essentially a no-op for users of
xfs_trans_ail_remove().
It is possible that some items might not be AIL resident when the
AIL remove attempt occurs, but this should be isolated to cases
where the filesystem has already shutdown. For example, this
includes abort of the transaction committing the intent and I/O
error of the iclog buffer committing the intent to the log.
Therefore, update these callsites to use xfs_trans_ail_delete() to
provide AIL state validation for the common path of items being
released and removed when associated done items commit to the
physical log.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Several callers acquire the lock just prior to the call. Callers
that require ->ail_lock for other purposes already check IN_AIL
state and thus don't require the additional shutdown check in the
helper. Push the lock down into xfs_trans_ail_delete(), open code
the instances that still acquire it, and remove the unnecessary ailp
parameter.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The dquot flush handler effectively aborts the dquot flush if the
filesystem is already shut down, but doesn't actually shut down if
the flush fails. Update xfs_qm_dqflush() to consistently abort the
dquot flush and shutdown the fs if the flush fails with an
unexpected error.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The pre-flush dquot verification in xfs_qm_dqflush() duplicates the
read verifier by checking the dquot in the on-disk buffer. Instead,
verify the in-core variant before it is flushed to the buffer.
Fixes: 7224fa482a ("xfs: add full xfs_dqblk verifier")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
At unmount time, XFS emits an alert for every in-core buffer that
might have undergone a write error. In practice this behavior is
probably reasonable given that the filesystem is likely short lived
once I/O errors begin to occur consistently. Under certain test or
otherwise expected error conditions, this can spam the logs and slow
down the unmount.
Now that we have a ratelimit mechanism specifically for buffer
alerts, reuse it for the per-buffer alerts in xfs_wait_buftarg().
Also lift the final repair message out of the loop so it always
prints and assert that the metadata error handling code has shut
down the fs.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS has some inconsistent log message rate limiting with respect to
buffer alerts. The metadata I/O error notification uses the generic
ratelimited alert, the buffer push code uses a custom rate limit and
the similar quiesce time failure checks are not rate limited at all
(when they should be).
The custom rate limit defined in the buf item code is specifically
crafted for buffer alerts. It is more aggressive than generic rate
limiting code because it must accommodate a high frequency of I/O
error events in a relative short timeframe.
Factor out the custom rate limit state from the buf item code into a
per-buftarg rate limit so various alerts are limited based on the
target. Define a buffer alert helper function and use it for the
buffer alerts that are already ratelimited.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The buffer write failure flag is intended to control the internal
write retry that XFS has historically implemented to help mitigate
the severity of transient I/O errors. The flag is set when a buffer
is resubmitted from the I/O completion path due to a previous
failure. It is checked on subsequent I/O completions to skip the
internal retry and fall through to the higher level configurable
error handling mechanism. The flag is cleared in the synchronous and
delwri submission paths and also checked in various places to log
write failure messages.
There are a couple minor problems with the current usage of this
flag. One is that we issue an internal retry after every submission
from xfsaild due to how delwri submission clears the flag. This
results in double the expected or configured number of write
attempts when under sustained failures. Another more subtle issue is
that the flag is never cleared on successful I/O completion. This
can cause xfs_wait_buftarg() to suggest that dirty buffers are being
thrown away due to the existence of the flag, when the reality is
that the flag might still be set because the write succeeded on the
retry.
Clear the write failure flag on successful I/O completion to address
both of these problems. This means that the internal retry attempt
occurs once since the last time a buffer write failed and that
various other contexts only see the flag set when the immediately
previous write attempt has failed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The shutdown check in xfs_iflush() duplicates checks down in the
buffer code. If the fs is shut down, xfs_trans_read_buf_map() always
returns an error and falls into the same error path. Remove the
unnecessary check along with the warning in xfs_imap_to_bp()
that generates excessive noise in the log if the fs is shut down.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The inode flush code has several layers of error handling between
the inode and cluster flushing code. If the inode flush fails before
acquiring the backing buffer, the inode flush is aborted. If the
cluster flush fails, the current inode flush is aborted and the
cluster buffer is failed to handle the initial inode and any others
that might have been attached before the error.
Since xfs_iflush() is the only caller of xfs_iflush_cluster(), the
error handling between the two can be condensed in the top-level
function. If we update xfs_iflush_int() to always fall through to
the log item update and attach the item completion handler to the
buffer, any errors that occur after the first call to
xfs_iflush_int() can be handled with a buffer I/O failure.
Lift the error handling from xfs_iflush_cluster() into xfs_iflush()
and consolidate with the existing error handling. This also replaces
the need to release the buffer because failing the buffer with
XBF_ASYNC drops the current reference.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>