2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 15:13:55 +08:00
Commit Graph

8 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Marek Vasut
d975440bf8 asm-generic: cmpxchg: avoid warnings from macro-ized cmpxchg() implementations
This change is similar to e001bbae71
ARM: cmpxchg: avoid warnings from macro-ized cmpxchg() implementations

A recent change in kernel/acct.c added a new warning for many
configurations using generic __xchg() implementation:

In file included from ./arch/nios2/include/asm/cmpxchg.h:12:0,
                 from include/asm-generic/atomic.h:18,
                 from arch/nios2/include/generated/asm/atomic.h:1,
                 from include/linux/atomic.h:4,
                 from include/linux/spinlock.h:406,
                 from include/linux/mmzone.h:7,
                 from include/linux/gfp.h:5,
                 from include/linux/mm.h:9,
                 from kernel/acct.c:46:
kernel/acct.c: In function 'acct_pin_kill':
include/asm-generic/cmpxchg.h:94:3: warning: value computed is not used [-Wunused-value]
  ((__typeof__(*(ptr)))__cmpxchg_local_generic((ptr), (unsigned long)(o),\
   ^
include/asm-generic/cmpxchg.h:102:28: note: in expansion of macro 'cmpxchg_local'
 #define cmpxchg(ptr, o, n) cmpxchg_local((ptr), (o), (n))
                            ^
kernel/acct.c:177:2: note: in expansion of macro 'cmpxchg'
  cmpxchg(&acct->ns->bacct, pin, NULL);
  ^

The code is in fact correct, it's just a cmpxchg() call that
intentionally ignores the result, and no other code does that.  The
warning does not show up on x86 because of the way that its cmpxchg()
macro is written. This changes the asm-ggeneric implementation to use
a similar construct with a compound expression instead of a typecast,
which causes the compiler to not complain about an unused result.

Fix the other macros in this file in a similar way, and place them
just below their function implementations.

Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2015-10-15 00:21:13 +02:00
Sebastian Andrzej Siewior
cede88418b locking/rtmutex: Drop usage of __HAVE_ARCH_CMPXCHG
The rtmutex code is the only user of __HAVE_ARCH_CMPXCHG and we have a few
other user of cmpxchg() which do not care about __HAVE_ARCH_CMPXCHG. This
define was first introduced in 23f78d4a0 ("[PATCH] pi-futex: rt mutex core")
which is v2.6.18. The generic cmpxchg was introduced later in 068fbad288
("Add cmpxchg_local to asm-generic for per cpu atomic operations") which is
v2.6.25.
Back then something was required to get rtmutex working with the fast
path on architectures without cmpxchg and this seems to be the result.

It popped up recently on rt-users because ARM (v6+) does not define
__HAVE_ARCH_CMPXCHG (even that it implements it) which results in slower
locking performance in the fast path.
To put some numbers on it: preempt -RT, am335x, 10 loops of
100000 invocations of rt_spin_lock() + rt_spin_unlock() (time "total" is
the average of the 10 loops for the 100000 invocations, "loop" is
"total / 100000 * 1000"):

     cmpxchg |    slowpath used  ||    cmpxchg used
             |   total   | loop  ||   total    | loop
     --------|-----------|-------||------------|-------
     ARMv6   | 9129.4 us | 91 ns ||  3311.9 us |  33 ns
     generic | 9360.2 us | 94 ns || 10834.6 us | 108 ns
     ----------------------------||--------------------

Forcing it to generic cmpxchg() made things worse for the slowpath and
even worse in cmpxchg() path. It boils down to 14ns more per lock+unlock
in a cache hot loop so it might not be that much in real world.
The last test was a substitute for pre ARMv6 machine but then I was able
to perform the comparison on imx28 which is ARMv5 and therefore is
always is using the generic cmpxchg implementation. And the numbers:

              |   total     | loop
     -------- |-----------  |--------
     slowpath | 263937.2 us | 2639 ns
     cmpxchg  |  16934.2 us |  169 ns
     --------------------------------

The numbers are larger since the machine is slower in general. However,
letting rtmutex use cmpxchg() instead the slowpath seem to improve things.

Since from the ARM (tested on am335x + imx28) point of view always
using cmpxchg() in rt_mutex_lock() + rt_mutex_unlock() makes sense I
would drop the define.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: will.deacon@arm.com
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/20150225175613.GE6823@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-05-13 10:51:28 +02:00
Jonas Bonn
00c30e0681 asm-generic: move cmpxchg*_local defs to cmpxchg.h
asm/cmpxchg.h can be included on its own and needs to be self-consistent.
The definitions for the cmpxchg*_local macros, as such, need to be part
of this file.

This fixes a build issue on OpenRISC since the system.h smashing patch
96f951edb1 that introdued the direct inclusion
asm/cmpxchg.h into linux/llist.h.

CC: David Howells <dhowells@redhat.com>
Signed-off-by: Jonas Bonn <jonas@southpole.se>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2013-03-13 06:11:05 +01:00
Paul Gortmaker
80da6a4fee asm-generic: add linux/types.h to cmpxchg.h
Builds of the openrisc or1ksim_defconfig show the following:

  In file included from arch/openrisc/include/generated/asm/cmpxchg.h:1:0,
                   from include/asm-generic/atomic.h:18,
                   from arch/openrisc/include/generated/asm/atomic.h:1,
                   from include/linux/atomic.h:4,
                   from include/linux/dcache.h:4,
                   from fs/notify/fsnotify.c:19:
  include/asm-generic/cmpxchg.h: In function '__xchg':
  include/asm-generic/cmpxchg.h:34:20: error: expected ')' before 'u8'
  include/asm-generic/cmpxchg.h:34:20: warning: type defaults to 'int' in type name

and many more lines of similar errors.  It seems specific to the or32
because most other platforms have an arch specific component that would
have already included types.h ahead of time, but the o32 does not.

Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Jonas Bonn <jonas@southpole.se>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: David Howells <dhowells@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-04-02 14:41:27 -07:00
David Howells
b4816afa39 Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h
Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h
to simplify disintegration of asm/system.h.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2012-03-28 18:30:03 +01:00
David Howells
34484277b1 Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h
Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h as all arch
files that #include the former also #include the latter.  See:

	grep -rl asm-generic/cmpxchg-local[.]h arch/ | sort > b
	grep -rl asm-generic/cmpxchg[.]h arch/ | sort > a
	comm a b

This simplifies the disintegration of asm-generic/system.h for arches that
don't have their own.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2012-03-28 18:30:03 +01:00
Mathieu Desnoyers
068fbad288 Add cmpxchg_local to asm-generic for per cpu atomic operations
Emulates the cmpxchg_local by disabling interrupts around variable modification.
This is not reentrant wrt NMIs and MCEs. It is only protected against normal
interrupts, but this is enough for architectures without such interrupt sources
or if used in a context where the data is not shared with such handlers.

It can be used as a fallback for architectures lacking a real cmpxchg
instruction.

For architectures that have a real cmpxchg but does not have NMIs or MCE,
testing which of the generic vs architecture specific cmpxchg is the fastest
should be done.

asm-generic/cmpxchg.h defines a cmpxchg that uses cmpxchg_local. It is meant to
be used as a cmpxchg fallback for architectures that do not support SMP.

* Patch series comments

Using cmpxchg_local shows a performance improvements of the fast path goes from
a 66% speedup on a Pentium 4 to a 14% speedup on AMD64.

In detail:

Tested-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Measurements on a Pentium4, 3GHz, Hyperthread.
SLUB Performance testing
========================
1. Kmalloc: Repeatedly allocate then free test

* slub HEAD, test 1
kmalloc(8) = 201 cycles         kfree = 351 cycles
kmalloc(16) = 198 cycles        kfree = 359 cycles
kmalloc(32) = 200 cycles        kfree = 381 cycles
kmalloc(64) = 224 cycles        kfree = 394 cycles
kmalloc(128) = 285 cycles       kfree = 424 cycles
kmalloc(256) = 411 cycles       kfree = 546 cycles
kmalloc(512) = 480 cycles       kfree = 619 cycles
kmalloc(1024) = 623 cycles      kfree = 750 cycles
kmalloc(2048) = 686 cycles      kfree = 811 cycles
kmalloc(4096) = 482 cycles      kfree = 538 cycles
kmalloc(8192) = 680 cycles      kfree = 734 cycles
kmalloc(16384) = 713 cycles     kfree = 843 cycles

* Slub HEAD, test 2
kmalloc(8) = 190 cycles         kfree = 351 cycles
kmalloc(16) = 195 cycles        kfree = 360 cycles
kmalloc(32) = 201 cycles        kfree = 370 cycles
kmalloc(64) = 245 cycles        kfree = 389 cycles
kmalloc(128) = 283 cycles       kfree = 413 cycles
kmalloc(256) = 409 cycles       kfree = 547 cycles
kmalloc(512) = 476 cycles       kfree = 616 cycles
kmalloc(1024) = 628 cycles      kfree = 753 cycles
kmalloc(2048) = 684 cycles      kfree = 811 cycles
kmalloc(4096) = 480 cycles      kfree = 539 cycles
kmalloc(8192) = 661 cycles      kfree = 746 cycles
kmalloc(16384) = 741 cycles     kfree = 856 cycles

* cmpxchg_local Slub test
kmalloc(8) = 83 cycles          kfree = 363 cycles
kmalloc(16) = 85 cycles         kfree = 372 cycles
kmalloc(32) = 92 cycles         kfree = 377 cycles
kmalloc(64) = 115 cycles        kfree = 397 cycles
kmalloc(128) = 179 cycles       kfree = 438 cycles
kmalloc(256) = 314 cycles       kfree = 564 cycles
kmalloc(512) = 398 cycles       kfree = 615 cycles
kmalloc(1024) = 573 cycles      kfree = 745 cycles
kmalloc(2048) = 629 cycles      kfree = 816 cycles
kmalloc(4096) = 473 cycles      kfree = 548 cycles
kmalloc(8192) = 659 cycles      kfree = 745 cycles
kmalloc(16384) = 724 cycles     kfree = 843 cycles

2. Kmalloc: alloc/free test

* slub HEAD, test 1
kmalloc(8)/kfree = 322 cycles
kmalloc(16)/kfree = 318 cycles
kmalloc(32)/kfree = 318 cycles
kmalloc(64)/kfree = 325 cycles
kmalloc(128)/kfree = 318 cycles
kmalloc(256)/kfree = 328 cycles
kmalloc(512)/kfree = 328 cycles
kmalloc(1024)/kfree = 328 cycles
kmalloc(2048)/kfree = 328 cycles
kmalloc(4096)/kfree = 678 cycles
kmalloc(8192)/kfree = 1013 cycles
kmalloc(16384)/kfree = 1157 cycles

* Slub HEAD, test 2
kmalloc(8)/kfree = 323 cycles
kmalloc(16)/kfree = 318 cycles
kmalloc(32)/kfree = 318 cycles
kmalloc(64)/kfree = 318 cycles
kmalloc(128)/kfree = 318 cycles
kmalloc(256)/kfree = 328 cycles
kmalloc(512)/kfree = 328 cycles
kmalloc(1024)/kfree = 328 cycles
kmalloc(2048)/kfree = 328 cycles
kmalloc(4096)/kfree = 648 cycles
kmalloc(8192)/kfree = 1009 cycles
kmalloc(16384)/kfree = 1105 cycles

* cmpxchg_local Slub test
kmalloc(8)/kfree = 112 cycles
kmalloc(16)/kfree = 103 cycles
kmalloc(32)/kfree = 103 cycles
kmalloc(64)/kfree = 103 cycles
kmalloc(128)/kfree = 112 cycles
kmalloc(256)/kfree = 111 cycles
kmalloc(512)/kfree = 111 cycles
kmalloc(1024)/kfree = 111 cycles
kmalloc(2048)/kfree = 121 cycles
kmalloc(4096)/kfree = 650 cycles
kmalloc(8192)/kfree = 1042 cycles
kmalloc(16384)/kfree = 1149 cycles

Tested-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Measurements on a AMD64 2.0 GHz dual-core

In this test, we seem to remove 10 cycles from the kmalloc fast path.
On small allocations, it gives a 14% performance increase. kfree fast
path also seems to have a 10 cycles improvement.

1. Kmalloc: Repeatedly allocate then free test

* cmpxchg_local slub
kmalloc(8) = 63 cycles      kfree = 126 cycles
kmalloc(16) = 66 cycles     kfree = 129 cycles
kmalloc(32) = 76 cycles     kfree = 138 cycles
kmalloc(64) = 100 cycles    kfree = 288 cycles
kmalloc(128) = 128 cycles   kfree = 309 cycles
kmalloc(256) = 170 cycles   kfree = 315 cycles
kmalloc(512) = 221 cycles   kfree = 357 cycles
kmalloc(1024) = 324 cycles  kfree = 393 cycles
kmalloc(2048) = 354 cycles  kfree = 440 cycles
kmalloc(4096) = 394 cycles  kfree = 330 cycles
kmalloc(8192) = 523 cycles  kfree = 481 cycles
kmalloc(16384) = 643 cycles kfree = 649 cycles

* Base
kmalloc(8) = 74 cycles      kfree = 113 cycles
kmalloc(16) = 76 cycles     kfree = 116 cycles
kmalloc(32) = 85 cycles     kfree = 133 cycles
kmalloc(64) = 111 cycles    kfree = 279 cycles
kmalloc(128) = 138 cycles   kfree = 294 cycles
kmalloc(256) = 181 cycles   kfree = 304 cycles
kmalloc(512) = 237 cycles   kfree = 327 cycles
kmalloc(1024) = 340 cycles  kfree = 379 cycles
kmalloc(2048) = 378 cycles  kfree = 433 cycles
kmalloc(4096) = 399 cycles  kfree = 329 cycles
kmalloc(8192) = 528 cycles  kfree = 624 cycles
kmalloc(16384) = 651 cycles kfree = 737 cycles

2. Kmalloc: alloc/free test

* cmpxchg_local slub
kmalloc(8)/kfree = 96 cycles
kmalloc(16)/kfree = 97 cycles
kmalloc(32)/kfree = 97 cycles
kmalloc(64)/kfree = 97 cycles
kmalloc(128)/kfree = 97 cycles
kmalloc(256)/kfree = 105 cycles
kmalloc(512)/kfree = 108 cycles
kmalloc(1024)/kfree = 105 cycles
kmalloc(2048)/kfree = 107 cycles
kmalloc(4096)/kfree = 390 cycles
kmalloc(8192)/kfree = 626 cycles
kmalloc(16384)/kfree = 662 cycles

* Base
kmalloc(8)/kfree = 116 cycles
kmalloc(16)/kfree = 116 cycles
kmalloc(32)/kfree = 116 cycles
kmalloc(64)/kfree = 116 cycles
kmalloc(128)/kfree = 116 cycles
kmalloc(256)/kfree = 126 cycles
kmalloc(512)/kfree = 126 cycles
kmalloc(1024)/kfree = 126 cycles
kmalloc(2048)/kfree = 126 cycles
kmalloc(4096)/kfree = 384 cycles
kmalloc(8192)/kfree = 749 cycles
kmalloc(16384)/kfree = 786 cycles

Tested-by: Christoph Lameter <clameter@sgi.com>
I can confirm Mathieus' measurement now:

Athlon64:

regular NUMA/discontig

1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 79 cycles kfree -> 92 cycles
10000 times kmalloc(16) -> 79 cycles kfree -> 93 cycles
10000 times kmalloc(32) -> 88 cycles kfree -> 95 cycles
10000 times kmalloc(64) -> 124 cycles kfree -> 132 cycles
10000 times kmalloc(128) -> 157 cycles kfree -> 247 cycles
10000 times kmalloc(256) -> 200 cycles kfree -> 257 cycles
10000 times kmalloc(512) -> 250 cycles kfree -> 277 cycles
10000 times kmalloc(1024) -> 337 cycles kfree -> 314 cycles
10000 times kmalloc(2048) -> 365 cycles kfree -> 330 cycles
10000 times kmalloc(4096) -> 352 cycles kfree -> 240 cycles
10000 times kmalloc(8192) -> 456 cycles kfree -> 340 cycles
10000 times kmalloc(16384) -> 646 cycles kfree -> 471 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 124 cycles
10000 times kmalloc(16)/kfree -> 124 cycles
10000 times kmalloc(32)/kfree -> 124 cycles
10000 times kmalloc(64)/kfree -> 124 cycles
10000 times kmalloc(128)/kfree -> 124 cycles
10000 times kmalloc(256)/kfree -> 132 cycles
10000 times kmalloc(512)/kfree -> 132 cycles
10000 times kmalloc(1024)/kfree -> 132 cycles
10000 times kmalloc(2048)/kfree -> 132 cycles
10000 times kmalloc(4096)/kfree -> 319 cycles
10000 times kmalloc(8192)/kfree -> 486 cycles
10000 times kmalloc(16384)/kfree -> 539 cycles

cmpxchg_local NUMA/discontig

1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 55 cycles kfree -> 90 cycles
10000 times kmalloc(16) -> 55 cycles kfree -> 92 cycles
10000 times kmalloc(32) -> 70 cycles kfree -> 91 cycles
10000 times kmalloc(64) -> 100 cycles kfree -> 141 cycles
10000 times kmalloc(128) -> 128 cycles kfree -> 233 cycles
10000 times kmalloc(256) -> 172 cycles kfree -> 251 cycles
10000 times kmalloc(512) -> 225 cycles kfree -> 275 cycles
10000 times kmalloc(1024) -> 325 cycles kfree -> 311 cycles
10000 times kmalloc(2048) -> 346 cycles kfree -> 330 cycles
10000 times kmalloc(4096) -> 351 cycles kfree -> 238 cycles
10000 times kmalloc(8192) -> 450 cycles kfree -> 342 cycles
10000 times kmalloc(16384) -> 630 cycles kfree -> 546 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 81 cycles
10000 times kmalloc(16)/kfree -> 81 cycles
10000 times kmalloc(32)/kfree -> 81 cycles
10000 times kmalloc(64)/kfree -> 81 cycles
10000 times kmalloc(128)/kfree -> 81 cycles
10000 times kmalloc(256)/kfree -> 91 cycles
10000 times kmalloc(512)/kfree -> 90 cycles
10000 times kmalloc(1024)/kfree -> 91 cycles
10000 times kmalloc(2048)/kfree -> 90 cycles
10000 times kmalloc(4096)/kfree -> 318 cycles
10000 times kmalloc(8192)/kfree -> 483 cycles
10000 times kmalloc(16384)/kfree -> 536 cycles

Changelog:
- Ran though checkpatch.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:30 -08:00