2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
Commit Graph

5 Commits

Author SHA1 Message Date
Petr Mladek
d697bad588 livepatch: Remove Nop structures when unused
Replaced patches are removed from the stack when the transition is
finished. It means that Nop structures will never be needed again
and can be removed. Why should we care?

  + Nop structures give the impression that the function is patched
    even though the ftrace handler has no effect.

  + Ftrace handlers do not come for free. They cause slowdown that might
    be visible in some workloads. The ftrace-related slowdown might
    actually be the reason why the function is no longer patched in
    the new cumulative patch. One would expect that cumulative patch
    would help solve these problems as well.

  + Cumulative patches are supposed to replace any earlier version of
    the patch. The amount of NOPs depends on which version was replaced.
    This multiplies the amount of scenarios that might happen.

    One might say that NOPs are innocent. But there are even optimized
    NOP instructions for different processors, for example, see
    arch/x86/kernel/alternative.c. And klp_ftrace_handler() is much
    more complicated.

  + It sounds natural to clean up a mess that is no longer needed.
    It could only be worse if we do not do it.

This patch allows to unpatch and free the dynamic structures independently
when the transition finishes.

The free part is a bit tricky because kobject free callbacks are called
asynchronously. We could not wait for them easily. Fortunately, we do
not have to. Any further access can be avoided by removing them from
the dynamic lists.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00
Petr Mladek
19514910d0 livepatch: Change unsigned long old_addr -> void *old_func in struct klp_func
The address of the to be patched function and new function is stored
in struct klp_func as:

	void *new_func;
	unsigned long old_addr;

The different naming scheme and type are derived from the way
the addresses are set. @old_addr is assigned at runtime using
kallsyms-based search. @new_func is statically initialized,
for example:

  static struct klp_func funcs[] = {
	{
		.old_name = "cmdline_proc_show",
		.new_func = livepatch_cmdline_proc_show,
	}, { }
  };

This patch changes unsigned long old_addr -> void *old_func. It removes
some confusion when these address are later used in the code. It is
motivated by a followup patch that adds special NOP struct klp_func
where we want to assign func->new_func = func->old_addr respectively
func->new_func = func->old_func.

This patch does not modify the existing behavior.

Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Alice Ferrazzi <alice.ferrazzi@gmail.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:23 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Josh Poimboeuf
d83a7cb375 livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model.  This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics.  This is the
biggest remaining piece needed to make livepatch more generally useful.

This code stems from the design proposal made by Vojtech [1] in November
2014.  It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching.  There are also a number of fallback options which make
it quite flexible.

Patches are applied on a per-task basis, when the task is deemed safe to
switch over.  When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds.  The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.

An interrupt handler inherits the patched state of the task it
interrupts.  The same is true for forked tasks: the child inherits the
patched state of the parent.

Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:

1. The first and most effective approach is stack checking of sleeping
   tasks.  If no affected functions are on the stack of a given task,
   the task is patched.  In most cases this will patch most or all of
   the tasks on the first try.  Otherwise it'll keep trying
   periodically.  This option is only available if the architecture has
   reliable stacks (HAVE_RELIABLE_STACKTRACE).

2. The second approach, if needed, is kernel exit switching.  A
   task is switched when it returns to user space from a system call, a
   user space IRQ, or a signal.  It's useful in the following cases:

   a) Patching I/O-bound user tasks which are sleeping on an affected
      function.  In this case you have to send SIGSTOP and SIGCONT to
      force it to exit the kernel and be patched.
   b) Patching CPU-bound user tasks.  If the task is highly CPU-bound
      then it will get patched the next time it gets interrupted by an
      IRQ.
   c) In the future it could be useful for applying patches for
      architectures which don't yet have HAVE_RELIABLE_STACKTRACE.  In
      this case you would have to signal most of the tasks on the
      system.  However this isn't supported yet because there's
      currently no way to patch kthreads without
      HAVE_RELIABLE_STACKTRACE.

3. For idle "swapper" tasks, since they don't ever exit the kernel, they
   instead have a klp_update_patch_state() call in the idle loop which
   allows them to be patched before the CPU enters the idle state.

   (Note there's not yet such an approach for kthreads.)

All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately.  This can be useful if the patch doesn't
change any function or data semantics.  Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.

There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency.  This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.

For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately.  This option should be used with care, only when the patch
doesn't change any function or data semantics.

In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.

The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition.  Only a single patch (the topmost patch on the stack)
can be in transition at a given time.  A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.

A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress.  Then all the tasks will attempt to
converge back to the original patch state.

[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org>        # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-08 09:36:21 +01:00
Josh Poimboeuf
c349cdcaba livepatch: move patching functions into patch.c
Move functions related to the actual patching of functions and objects
into a new patch.c file.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-08 09:23:40 +01:00