This reverts commit 48f5e52e91.
The ptrace ABI change was a prerequisite to the proposed design for
FSGSBASE. Since FSGSBASE support has been reverted, and since I'm not
convinced that the ABI was ever adequately tested, revert the ABI change as
well.
This also modifies the test case so that it tests the preexisting behavior.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/fca39c478ea7fb15bc76fe8a36bd180810a067f6.1563200250.git.luto@kernel.org
* support for chained PMU counters in guests
* improved SError handling
* handle Neoverse N1 erratum #1349291
* allow side-channel mitigation status to be migrated
* standardise most AArch64 system register accesses to msr_s/mrs_s
* fix host MPIDR corruption on 32bit
* selftests ckleanups
x86:
* PMU event {white,black}listing
* ability for the guest to disable host-side interrupt polling
* fixes for enlightened VMCS (Hyper-V pv nested virtualization),
* new hypercall to yield to IPI target
* support for passing cstate MSRs through to the guest
* lots of cleanups and optimizations
Generic:
* Some txt->rST conversions for the documentation
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdJzdIAAoJEL/70l94x66DQDoH/i83/8kX4I8AWDlushPru4ts
Q4lCE5VAPha+o4pLb1dtfFL3gTmSbsB1N++JSlqK3JOo6LphIOy6b0wBjQBbAa6U
3CT1dJaHJoScLLj09vyBlvClGUH2ZKEQTWOiquCCf7JfPofxwPUA6vJ7TYsdkckx
zR3ygbADWmnfS7hFfiqN3JzuYh9eoooGNWSU+Giq6VF41SiL3IqhBGZhWS0zE9c2
2c5lpqqdeHmAYNBqsyzNiDRKp7+zLFSmZ7Z5/0L755L8KYwR6F5beTnmBMHvb4lA
PWH/SWOC8EYR+PEowfrH+TxKZwp0gMn1kcAKjilHk0uCRwG1IzuHAr2jlNxICCk=
=t/Oq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for chained PMU counters in guests
- improved SError handling
- handle Neoverse N1 erratum #1349291
- allow side-channel mitigation status to be migrated
- standardise most AArch64 system register accesses to msr_s/mrs_s
- fix host MPIDR corruption on 32bit
- selftests ckleanups
x86:
- PMU event {white,black}listing
- ability for the guest to disable host-side interrupt polling
- fixes for enlightened VMCS (Hyper-V pv nested virtualization),
- new hypercall to yield to IPI target
- support for passing cstate MSRs through to the guest
- lots of cleanups and optimizations
Generic:
- Some txt->rST conversions for the documentation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (128 commits)
Documentation: virtual: Add toctree hooks
Documentation: kvm: Convert cpuid.txt to .rst
Documentation: virtual: Convert paravirt_ops.txt to .rst
KVM: x86: Unconditionally enable irqs in guest context
KVM: x86: PMU Event Filter
kvm: x86: Fix -Wmissing-prototypes warnings
KVM: Properly check if "page" is valid in kvm_vcpu_unmap
KVM: arm/arm64: Initialise host's MPIDRs by reading the actual register
KVM: LAPIC: Retry tune per-vCPU timer_advance_ns if adaptive tuning goes insane
kvm: LAPIC: write down valid APIC registers
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
KVM: doc: Add API documentation on the KVM_REG_ARM_WORKAROUNDS register
KVM: arm/arm64: Add save/restore support for firmware workaround state
arm64: KVM: Propagate full Spectre v2 workaround state to KVM guests
KVM: arm/arm64: Support chained PMU counters
KVM: arm/arm64: Remove pmc->bitmask
KVM: arm/arm64: Re-create event when setting counter value
KVM: arm/arm64: Extract duplicated code to own function
KVM: arm/arm64: Rename kvm_pmu_{enable/disable}_counter functions
KVM: LAPIC: ARBPRI is a reserved register for x2APIC
...
Here is the "big" driver core and debugfs changes for 5.3-rc1
It's a lot of different patches, all across the tree due to some api
changes and lots of debugfs cleanups. Because of this, there is going
to be some merge issues with your tree at the moment, I'll follow up
with the expected resolutions to make it easier for you.
Other than the debugfs cleanups, in this set of changes we have:
- bus iteration function cleanups (will cause build warnings
with s390 and coresight drivers in your tree)
- scripts/get_abi.pl tool to display and parse Documentation/ABI
entries in a simple way
- cleanups to Documenatation/ABI/ entries to make them parse
easier due to typos and other minor things
- default_attrs use for some ktype users
- driver model documentation file conversions to .rst
- compressed firmware file loading
- deferred probe fixes
All of these have been in linux-next for a while, with a bunch of merge
issues that Stephen has been patient with me for. Other than the merge
issues, functionality is working properly in linux-next :)
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXSgpnQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykcwgCfS30OR4JmwZydWGJ7zK/cHqk+KjsAnjOxjC1K
LpRyb3zX29oChFaZkc5a
=XrEZ
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core and debugfs updates from Greg KH:
"Here is the "big" driver core and debugfs changes for 5.3-rc1
It's a lot of different patches, all across the tree due to some api
changes and lots of debugfs cleanups.
Other than the debugfs cleanups, in this set of changes we have:
- bus iteration function cleanups
- scripts/get_abi.pl tool to display and parse Documentation/ABI
entries in a simple way
- cleanups to Documenatation/ABI/ entries to make them parse easier
due to typos and other minor things
- default_attrs use for some ktype users
- driver model documentation file conversions to .rst
- compressed firmware file loading
- deferred probe fixes
All of these have been in linux-next for a while, with a bunch of
merge issues that Stephen has been patient with me for"
* tag 'driver-core-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (102 commits)
debugfs: make error message a bit more verbose
orangefs: fix build warning from debugfs cleanup patch
ubifs: fix build warning after debugfs cleanup patch
driver: core: Allow subsystems to continue deferring probe
drivers: base: cacheinfo: Ensure cpu hotplug work is done before Intel RDT
arch_topology: Remove error messages on out-of-memory conditions
lib: notifier-error-inject: no need to check return value of debugfs_create functions
swiotlb: no need to check return value of debugfs_create functions
ceph: no need to check return value of debugfs_create functions
sunrpc: no need to check return value of debugfs_create functions
ubifs: no need to check return value of debugfs_create functions
orangefs: no need to check return value of debugfs_create functions
nfsd: no need to check return value of debugfs_create functions
lib: 842: no need to check return value of debugfs_create functions
debugfs: provide pr_fmt() macro
debugfs: log errors when something goes wrong
drivers: s390/cio: Fix compilation warning about const qualifiers
drivers: Add generic helper to match by of_node
driver_find_device: Unify the match function with class_find_device()
bus_find_device: Unify the match callback with class_find_device
...
This patch is a pre-requisite for enabling KASAN bitops instrumentation;
using static_cpu_has instead of boot_cpu_has avoids instrumentation of
test_bit inside the uaccess region. With instrumentation, the KASAN
check would otherwise be flagged by objtool.
For consistency, kernel/signal.c was changed to mirror this change,
however, is never instrumented with KASAN (currently unsupported under
x86 32bit).
Link: http://lkml.kernel.org/r/20190613125950.197667-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Thomas Gleixner:
"A collection of assorted fixes:
- Fix for the pinned cr0/4 fallout which escaped all testing efforts
because the kvm-intel module was never loaded when the kernel was
compiled with CONFIG_PARAVIRT=n. The cr0/4 accessors are moved out
of line and static key is now solely used in the core code and
therefore can stay in the RO after init section. So the kvm-intel
and other modules do not longer reference the (read only) static
key which the module loader tried to update.
- Prevent an infinite loop in arch_stack_walk_user() by breaking out
of the loop once the return address is detected to be 0.
- Prevent the int3_emulate_call() selftest from corrupting the stack
when KASAN is enabled. KASASN clobbers more registers than covered
by the emulated call implementation. Convert the int3_magic()
selftest to a ASM function so the compiler cannot KASANify it.
- Unbreak the build with old GCC versions and with the Gold linker by
reverting the 'Move of _etext to the actual end of .text'. In both
cases the build fails with 'Invalid absolute R_X86_64_32S
relocation: _etext'
- Initialize the context lock for init_mm, which was never an issue
until the alternatives code started to use a temporary mm for
patching.
- Fix a build warning vs. the LOWMEM_PAGES constant where clang
complains rightfully about a signed integer overflow in the shift
operation by converting the operand to an ULL.
- Adjust the misnamed ENDPROC() of common_spurious in the 32bit entry
code"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/stacktrace: Prevent infinite loop in arch_stack_walk_user()
x86/asm: Move native_write_cr0/4() out of line
x86/pgtable/32: Fix LOWMEM_PAGES constant
x86/alternatives: Fix int3_emulate_call() selftest stack corruption
x86/entry/32: Fix ENDPROC of common_spurious
Revert "x86/build: Move _etext to actual end of .text"
x86/ldt: Initialize the context lock for init_mm
- Add support for chained PMU counters in guests
- Improve SError handling
- Handle Neoverse N1 erratum #1349291
- Allow side-channel mitigation status to be migrated
- Standardise most AArch64 system register accesses to msr_s/mrs_s
- Fix host MPIDR corruption on 32bit
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl0kge4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDYyQP/3XY5tFcLKkp/h9rnGaCXwAxhNzn
TyF/IZEFBKFTSoDMXKLLc8KllvoPQ7aUl03heYbuayYpyKR1+LCx7lDwu1MYyEf+
aSSuOKlbG//tLUEGp09pTRCgjs2mhhZYqOj5GF2mZ7xpovFVSNOPzTazbXDNQ7tw
zUAs43YNg+bUMwj+SLWpBlizjrLr7T34utIr6daKJE/GSfmIrcYXhGbZqUh0zbO0
z5LNasebws8/pHyeGI7+/yoMIKaQ8foMgywTpsRpBsx6YI+AbOLjEmCk2IBOPcEK
pm9KkSIBZEO2CSxZKl3NQiEow/Qd/lnz2xLMCSfh4XrYoI2Th4gNcsbJpiBDWP5a
0eZ5jSiexxKngIbM+to7jR3m0yc9RgcuzceJg3Uly7Ya0vb5RqKwOX4Ge4XP4VDT
DzIVFdQjxDKdVIf3EvGp1cj4P7dRUU3xbZcbzyuRPEmT3vgjEnbxawmPLs3QMAl1
31Wd2wIsPB86kSxzSMel27Vs5VgMhgyHE26zN91R745CvhDXaDKydIWjGjdVMHsB
GuX/h2kL+ohx+N/OpZPgwsVUAGLSOQFP3pE/EcGtqc2kkfqa+bx12DKcZ3zdmJvy
+cu5ixU8q5thPH/pZob/C3hKUY/eLy02emS34RK0Jh2sZHbQgAOtMsiqUxNHEjUm
6TkpdWa5SRd7CtGV
=yfCs
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 5.3
- Add support for chained PMU counters in guests
- Improve SError handling
- Handle Neoverse N1 erratum #1349291
- Allow side-channel mitigation status to be migrated
- Standardise most AArch64 system register accesses to msr_s/mrs_s
- Fix host MPIDR corruption on 32bit
arch_stack_walk_user() checks `if (fp == frame.next_fp)` to prevent a
infinite loop by self reference but it's not enogh for circular reference.
Once a lack of return address is found, there is no point to continue the
loop, so break out.
Fixes: 02b67518e2 ("tracing: add support for userspace stacktraces in tracing/iter_ctrl")
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20190711023501.963-1-devel@etsukata.com
The pinning of sensitive CR0 and CR4 bits caused a boot crash when loading
the kvm_intel module on a kernel compiled with CONFIG_PARAVIRT=n.
The reason is that the static key which controls the pinning is marked RO
after init. The kvm_intel module contains a CR4 write which requires to
update the static key entry list. That obviously does not work when the key
is in a RO section.
With CONFIG_PARAVIRT enabled this does not happen because the CR4 write
uses the paravirt indirection and the actual write function is built in.
As the key is intended to be immutable after init, move
native_write_cr0/4() out of line.
While at it consolidate the update of the cr4 shadow variable and store the
value right away when the pinning is initialized on a booting CPU. No point
in reading it back 20 instructions later. This allows to confine the static
key and the pinning variable to cpu/common and allows to mark them static.
Fixes: 8dbec27a24 ("x86/asm: Pin sensitive CR0 bits")
Fixes: 873d50d58f ("x86/asm: Pin sensitive CR4 bits")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Xi Ruoyao <xry111@mengyan1223.wang>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Xi Ruoyao <xry111@mengyan1223.wang>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907102140340.1758@nanos.tec.linutronix.de
KASAN shows the following splat during boot:
BUG: KASAN: unknown-crash in unwind_next_frame+0x3f6/0x490
Read of size 8 at addr ffffffff84007db0 by task swapper/0
CPU: 0 PID: 0 Comm: swapper Tainted: G T 5.2.0-rc6-00013-g7457c0d #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
Call Trace:
dump_stack+0x19/0x1b
print_address_description+0x1b0/0x2b2
__kasan_report+0x10f/0x171
kasan_report+0x12/0x1c
__asan_load8+0x54/0x81
unwind_next_frame+0x3f6/0x490
unwind_next_frame+0x1b/0x23
arch_stack_walk+0x68/0xa5
stack_trace_save+0x7b/0xa0
save_trace+0x3c/0x93
mark_lock+0x1ef/0x9b1
lock_acquire+0x122/0x221
__mutex_lock+0xb6/0x731
mutex_lock_nested+0x16/0x18
_vm_unmap_aliases+0x141/0x183
vm_unmap_aliases+0x14/0x16
change_page_attr_set_clr+0x15e/0x2f2
set_memory_4k+0x2a/0x2c
check_bugs+0x11fd/0x1298
start_kernel+0x793/0x7eb
x86_64_start_reservations+0x55/0x76
x86_64_start_kernel+0x87/0xaa
secondary_startup_64+0xa4/0xb0
Memory state around the buggy address:
ffffffff84007c80: 00 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1
ffffffff84007d00: f1 00 00 00 00 00 00 00 00 00 f2 f2 f2 f3 f3 f3
>ffffffff84007d80: f3 79 be 52 49 79 be 00 00 00 00 00 00 00 00 f1
It turns out that int3_selftest() is corrupting the stack. The problem is
that the KASAN-ified version of int3_magic() is much less trivial than the
C code appears. It clobbers several unexpected registers. So when the
selftest's INT3 is converted to an emulated call to int3_magic(), the
registers are clobbered and Bad Things happen when the function returns.
Fix this by converting int3_magic() to the trivial ASM function it should
be, avoiding all calling convention issues. Also add ASM_CALL_CONSTRAINT to
the INT3 ASM, since it contains a 'CALL'.
[peterz: cribbed changelog from josh]
Fixes: 7457c0da02 ("x86/alternatives: Add int3_emulate_call() selftest")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Debugged-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20190709125744.GB3402@hirez.programming.kicks-ass.net
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with other
trees, unfortunately. He has a lot more of these waiting on the wings
that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos, and one
on Spectre vulnerabilities.
- Various improvements to the build system, including automatic markup of
function() references because some people, for reasons I will never
understand, were of the opinion that :c:func:``function()`` is
unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl0krAEPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Yg98H/AuLqO9LpOgUjF4LhyjxGPdzJkY9RExSJ7km
gznyreLCZgFaJR+AY6YDsd4Jw6OJlPbu1YM/Qo3C3WrZVFVhgL/s2ebvBgCo50A8
raAFd8jTf4/mGCHnAqRotAPQ3mETJUk315B66lBJ6Oc+YdpRhwXWq8ZW2bJxInFF
3HDvoFgMf0KhLuMHUkkL0u3fxH1iA+KvDu8diPbJYFjOdOWENz/CV8wqdVkXRSEW
DJxIq89h/7d+hIG3d1I7Nw+gibGsAdjSjKv4eRKauZs4Aoxd1Gpl62z0JNk6aT3m
dtq4joLdwScydonXROD/Twn2jsu4xYTrPwVzChomElMowW/ZBBY=
=D0eO
-----END PGP SIGNATURE-----
Merge tag 'docs-5.3' of git://git.lwn.net/linux
Pull Documentation updates from Jonathan Corbet:
"It's been a relatively busy cycle for docs:
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with
other trees, unfortunately. He has a lot more of these waiting on
the wings that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos,
and one on Spectre vulnerabilities.
- Various improvements to the build system, including automatic
markup of function() references because some people, for reasons I
will never understand, were of the opinion that
:c:func:``function()`` is unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc"
* tag 'docs-5.3' of git://git.lwn.net/linux: (129 commits)
docs: automarkup.py: ignore exceptions when seeking for xrefs
docs: Move binderfs to admin-guide
Disable Sphinx SmartyPants in HTML output
doc: RCU callback locks need only _bh, not necessarily _irq
docs: format kernel-parameters -- as code
Doc : doc-guide : Fix a typo
platform: x86: get rid of a non-existent document
Add the RCU docs to the core-api manual
Documentation: RCU: Add TOC tree hooks
Documentation: RCU: Rename txt files to rst
Documentation: RCU: Convert RCU UP systems to reST
Documentation: RCU: Convert RCU linked list to reST
Documentation: RCU: Convert RCU basic concepts to reST
docs: filesystems: Remove uneeded .rst extension on toctables
scripts/sphinx-pre-install: fix out-of-tree build
docs: zh_CN: submitting-drivers.rst: Remove a duplicated Documentation/
Documentation: PGP: update for newer HW devices
Documentation: Add section about CPU vulnerabilities for Spectre
Documentation: platform: Delete x86-laptop-drivers.txt
docs: Note that :c:func: should no longer be used
...
Pull x865 kdump updates from Thomas Gleixner:
"Yet more kexec/kdump updates:
- Properly support kexec when AMD's memory encryption (SME) is
enabled
- Pass reserved e820 ranges to the kexec kernel so both PCI and SME
can work"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
fs/proc/vmcore: Enable dumping of encrypted memory when SEV was active
x86/kexec: Set the C-bit in the identity map page table when SEV is active
x86/kexec: Do not map kexec area as decrypted when SEV is active
x86/crash: Add e820 reserved ranges to kdump kernel's e820 table
x86/mm: Rework ioremap resource mapping determination
x86/e820, ioport: Add a new I/O resource descriptor IORES_DESC_RESERVED
x86/mm: Create a workarea in the kernel for SME early encryption
x86/mm: Identify the end of the kernel area to be reserved
Pull x86 boot updates from Thomas Gleixner:
"Assorted updates to kexec/kdump:
- Proper kexec support for 4/5-level paging and jumping from a
5-level to a 4-level paging kernel.
- Make the EFI support for kexec/kdump more robust
- Enforce that the GDT is properly aligned instead of getting the
alignment by chance"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kdump/64: Restrict kdump kernel reservation to <64TB
x86/kexec/64: Prevent kexec from 5-level paging to a 4-level only kernel
x86/boot: Add xloadflags bits to check for 5-level paging support
x86/boot: Make the GDT 8-byte aligned
x86/kexec: Add the ACPI NVS region to the ident map
x86/boot: Call get_rsdp_addr() after console_init()
Revert "x86/boot: Disable RSDP parsing temporarily"
x86/boot: Use efi_setup_data for searching RSDP on kexec-ed kernels
x86/kexec: Add the EFI system tables and ACPI tables to the ident map
The previous commit added macro calls in the entry code which mitigate the
Spectre v1 swapgs issue if the X86_FEATURE_FENCE_SWAPGS_* features are
enabled. Enable those features where applicable.
The mitigations may be disabled with "nospectre_v1" or "mitigations=off".
There are different features which can affect the risk of attack:
- When FSGSBASE is enabled, unprivileged users are able to place any
value in GS, using the wrgsbase instruction. This means they can
write a GS value which points to any value in kernel space, which can
be useful with the following gadget in an interrupt/exception/NMI
handler:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg1
// dependent load or store based on the value of %reg
// for example: mov %(reg1), %reg2
If an interrupt is coming from user space, and the entry code
speculatively skips the swapgs (due to user branch mistraining), it
may speculatively execute the GS-based load and a subsequent dependent
load or store, exposing the kernel data to an L1 side channel leak.
Note that, on Intel, a similar attack exists in the above gadget when
coming from kernel space, if the swapgs gets speculatively executed to
switch back to the user GS. On AMD, this variant isn't possible
because swapgs is serializing with respect to future GS-based
accesses.
NOTE: The FSGSBASE patch set hasn't been merged yet, so the above case
doesn't exist quite yet.
- When FSGSBASE is disabled, the issue is mitigated somewhat because
unprivileged users must use prctl(ARCH_SET_GS) to set GS, which
restricts GS values to user space addresses only. That means the
gadget would need an additional step, since the target kernel address
needs to be read from user space first. Something like:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg1
mov (%reg1), %reg2
// dependent load or store based on the value of %reg2
// for example: mov %(reg2), %reg3
It's difficult to audit for this gadget in all the handlers, so while
there are no known instances of it, it's entirely possible that it
exists somewhere (or could be introduced in the future). Without
tooling to analyze all such code paths, consider it vulnerable.
Effects of SMAP on the !FSGSBASE case:
- If SMAP is enabled, and the CPU reports RDCL_NO (i.e., not
susceptible to Meltdown), the kernel is prevented from speculatively
reading user space memory, even L1 cached values. This effectively
disables the !FSGSBASE attack vector.
- If SMAP is enabled, but the CPU *is* susceptible to Meltdown, SMAP
still prevents the kernel from speculatively reading user space
memory. But it does *not* prevent the kernel from reading the
user value from L1, if it has already been cached. This is probably
only a small hurdle for an attacker to overcome.
Thanks to Dave Hansen for contributing the speculative_smap() function.
Thanks to Andrew Cooper for providing the inside scoop on whether swapgs
is serializing on AMD.
[ tglx: Fixed the USER fence decision and polished the comment as suggested
by Dave Hansen ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
This reverts commit 392bef7096.
Per the discussion here:
https://lkml.kernel.org/r/201906201042.3BF5CD6@keescook
the above referenced commit breaks kernel compilation with old GCC
toolchains as well as current versions of the Gold linker.
Revert it to fix the regression and to keep the ability to compile the
kernel with these tools.
Signed-off-by: Ross Zwisler <zwisler@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Cc: <stable@vger.kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Johannes Hirte <johannes.hirte@datenkhaos.de>
Cc: Klaus Kusche <klaus.kusche@computerix.info>
Cc: samitolvanen@google.com
Cc: Guenter Roeck <groeck@google.com>
Link: https://lkml.kernel.org/r/20190701155208.211815-1-zwisler@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull force_sig() argument change from Eric Biederman:
"A source of error over the years has been that force_sig has taken a
task parameter when it is only safe to use force_sig with the current
task.
The force_sig function is built for delivering synchronous signals
such as SIGSEGV where the userspace application caused a synchronous
fault (such as a page fault) and the kernel responded with a signal.
Because the name force_sig does not make this clear, and because the
force_sig takes a task parameter the function force_sig has been
abused for sending other kinds of signals over the years. Slowly those
have been fixed when the oopses have been tracked down.
This set of changes fixes the remaining abusers of force_sig and
carefully rips out the task parameter from force_sig and friends
making this kind of error almost impossible in the future"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (27 commits)
signal/x86: Move tsk inside of CONFIG_MEMORY_FAILURE in do_sigbus
signal: Remove the signal number and task parameters from force_sig_info
signal: Factor force_sig_info_to_task out of force_sig_info
signal: Generate the siginfo in force_sig
signal: Move the computation of force into send_signal and correct it.
signal: Properly set TRACE_SIGNAL_LOSE_INFO in __send_signal
signal: Remove the task parameter from force_sig_fault
signal: Use force_sig_fault_to_task for the two calls that don't deliver to current
signal: Explicitly call force_sig_fault on current
signal/unicore32: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from ptrace_break
signal/nds32: Remove tsk parameter from send_sigtrap
signal/riscv: Remove tsk parameter from do_trap
signal/sh: Remove tsk parameter from force_sig_info_fault
signal/um: Remove task parameter from send_sigtrap
signal/x86: Remove task parameter from send_sigtrap
signal: Remove task parameter from force_sig_mceerr
signal: Remove task parameter from force_sig
signal: Remove task parameter from force_sigsegv
...
Pull integrity updates from Mimi Zohar:
"Bug fixes, code clean up, and new features:
- IMA policy rules can be defined in terms of LSM labels, making the
IMA policy dependent on LSM policy label changes, in particular LSM
label deletions. The new environment, in which IMA-appraisal is
being used, frequently updates the LSM policy and permits LSM label
deletions.
- Prevent an mmap'ed shared file opened for write from also being
mmap'ed execute. In the long term, making this and other similar
changes at the VFS layer would be preferable.
- The IMA per policy rule template format support is needed for a
couple of new/proposed features (eg. kexec boot command line
measurement, appended signatures, and VFS provided file hashes).
- Other than the "boot-aggregate" record in the IMA measuremeent
list, all other measurements are of file data. Measuring and
storing the kexec boot command line in the IMA measurement list is
the first buffer based measurement included in the measurement
list"
* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
integrity: Introduce struct evm_xattr
ima: Update MAX_TEMPLATE_NAME_LEN to fit largest reasonable definition
KEXEC: Call ima_kexec_cmdline to measure the boot command line args
IMA: Define a new template field buf
IMA: Define a new hook to measure the kexec boot command line arguments
IMA: support for per policy rule template formats
integrity: Fix __integrity_init_keyring() section mismatch
ima: Use designated initializers for struct ima_event_data
ima: use the lsm policy update notifier
LSM: switch to blocking policy update notifiers
x86/ima: fix the Kconfig dependency for IMA_ARCH_POLICY
ima: Make arch_policy_entry static
ima: prevent a file already mmap'ed write to be mmap'ed execute
x86/ima: check EFI SetupMode too
Pull x86 topology updates from Ingo Molnar:
"Implement multi-die topology support on Intel CPUs and expose the die
topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui.
These changes should have no effect on the kernel's existing
understanding of topologies, i.e. there should be no behavioral impact
on cache, NUMA, scheduler, perf and other topologies and overall
system performance"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support
perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support
hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages
thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages
perf/x86/intel/cstate: Support multi-die/package
perf/x86/intel/rapl: Support multi-die/package
perf/x86/intel/uncore: Support multi-die/package
topology: Create core_cpus and die_cpus sysfs attributes
topology: Create package_cpus sysfs attribute
hwmon/coretemp: Support multi-die/package
powercap/intel_rapl: Update RAPL domain name and debug messages
thermal/x86_pkg_temp_thermal: Support multi-die/package
powercap/intel_rapl: Support multi-die/package
powercap/intel_rapl: Simplify rapl_find_package()
x86/topology: Define topology_logical_die_id()
x86/topology: Define topology_die_id()
cpu/topology: Export die_id
x86/topology: Create topology_max_die_per_package()
x86/topology: Add CPUID.1F multi-die/package support
Pull x86 platform updayes from Ingo Molnar:
"Most of the commits add ACRN hypervisor guest support, plus two
cleanups"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/jailhouse: Mark jailhouse_x2apic_available() as __init
x86/platform/geode: Drop <linux/gpio.h> includes
x86/acrn: Use HYPERVISOR_CALLBACK_VECTOR for ACRN guest upcall vector
x86: Add support for Linux guests on an ACRN hypervisor
x86/Kconfig: Add new X86_HV_CALLBACK_VECTOR config symbol
Pull x86 paravirt updates from Ingo Molnar:
"A handful of paravirt patching code enhancements to make it more
robust against patching failures, and related cleanups and not so
related cleanups - by Thomas Gleixner and myself"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/paravirt: Rename paravirt_patch_site::instrtype to paravirt_patch_site::type
x86/paravirt: Standardize 'insn_buff' variable names
x86/paravirt: Match paravirt patchlet field definition ordering to initialization ordering
x86/paravirt: Replace the paravirt patch asm magic
x86/paravirt: Unify the 32/64 bit paravirt patching code
x86/paravirt: Detect over-sized patching bugs in paravirt_patch_call()
x86/paravirt: Detect over-sized patching bugs in paravirt_patch_insns()
x86/paravirt: Remove bogus extern declarations
Pull x86 AVX512 status update from Ingo Molnar:
"This adds a new ABI that the main scheduler probably doesn't want to
deal with but HPC job schedulers might want to use: the
AVX512_elapsed_ms field in the new /proc/<pid>/arch_status task status
file, which allows the user-space job scheduler to cluster such tasks,
to avoid turbo frequency drops"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/filesystems/proc.txt: Add arch_status file
x86/process: Add AVX-512 usage elapsed time to /proc/pid/arch_status
proc: Add /proc/<pid>/arch_status
Pull x86 cleanups from Ingo Molnar:
"Misc small cleanups: removal of superfluous code and coding style
cleanups mostly"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kexec: Make variable static and config dependent
x86/defconfigs: Remove useless UEVENT_HELPER_PATH
x86/amd_nb: Make hygon_nb_misc_ids static
x86/tsc: Move inline keyword to the beginning of function declarations
x86/io_delay: Define IO_DELAY macros in C instead of Kconfig
x86/io_delay: Break instead of fallthrough in switch statement
Pull x86 cache resource control update from Ingo Molnar:
"Two cleanup patches"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Cleanup cbm_ensure_valid()
x86/resctrl: Use _ASM_BX to avoid ifdeffery
Pull x86 asm updates from Ingo Molnar:
"Most of the changes relate to Peter Zijlstra's cleanup of ptregs
handling, in particular the i386 part is now much simplified and
standardized - no more partial ptregs stack frames via the esp/ss
oddity. This simplifies ftrace, kprobes, the unwinder, ptrace, kdump
and kgdb.
There's also a CR4 hardening enhancements by Kees Cook, to make the
generic platform functions such as native_write_cr4() less useful as
ROP gadgets that disable SMEP/SMAP. Also protect the WP bit of CR0
against similar attacks.
The rest is smaller cleanups/fixes"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/alternatives: Add int3_emulate_call() selftest
x86/stackframe/32: Allow int3_emulate_push()
x86/stackframe/32: Provide consistent pt_regs
x86/stackframe, x86/ftrace: Add pt_regs frame annotations
x86/stackframe, x86/kprobes: Fix frame pointer annotations
x86/stackframe: Move ENCODE_FRAME_POINTER to asm/frame.h
x86/entry/32: Clean up return from interrupt preemption path
x86/asm: Pin sensitive CR0 bits
x86/asm: Pin sensitive CR4 bits
Documentation/x86: Fix path to entry_32.S
x86/asm: Remove unused TASK_TI_flags from asm-offsets.c
Pull scheduler updates from Ingo Molnar:
- Remove the unused per rq load array and all its infrastructure, by
Dietmar Eggemann.
- Add utilization clamping support by Patrick Bellasi. This is a
refinement of the energy aware scheduling framework with support for
boosting of interactive and capping of background workloads: to make
sure critical GUI threads get maximum frequency ASAP, and to make
sure background processing doesn't unnecessarily move to cpufreq
governor to higher frequencies and less energy efficient CPU modes.
- Add the bare minimum of tracepoints required for LISA EAS regression
testing, by Qais Yousef - which allows automated testing of various
power management features, including energy aware scheduling.
- Restructure the former tsk_nr_cpus_allowed() facility that the -rt
kernel used to modify the scheduler's CPU affinity logic such as
migrate_disable() - introduce the task->cpus_ptr value instead of
taking the address of &task->cpus_allowed directly - by Sebastian
Andrzej Siewior.
- Misc optimizations, fixes, cleanups and small enhancements - see the
Git log for details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
sched/uclamp: Add uclamp support to energy_compute()
sched/uclamp: Add uclamp_util_with()
sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
sched/uclamp: Set default clamps for RT tasks
sched/uclamp: Reset uclamp values on RESET_ON_FORK
sched/uclamp: Extend sched_setattr() to support utilization clamping
sched/core: Allow sched_setattr() to use the current policy
sched/uclamp: Add system default clamps
sched/uclamp: Enforce last task's UCLAMP_MAX
sched/uclamp: Add bucket local max tracking
sched/uclamp: Add CPU's clamp buckets refcounting
sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
sched/debug: Export the newly added tracepoints
sched/debug: Add sched_overutilized tracepoint
sched/debug: Add new tracepoint to track PELT at se level
sched/debug: Add new tracepoints to track PELT at rq level
sched/debug: Add a new sched_trace_*() helper functions
sched/autogroup: Make autogroup_path() always available
sched/wait: Deduplicate code with do-while
sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
...
Pull RAS updates from Ingo Molnar:
"Boris is on vacation so I'm sending the RAS bits this time. The main
changes were:
- Various RAS/CEC improvements and fixes by Borislav Petkov:
- error insertion fixes
- offlining latency fix
- memory leak fix
- additional sanity checks
- cleanups
- debug output improvements
- More SMCA enhancements by Yazen Ghannam:
- make banks truly per-CPU which they are in the hardware
- don't over-cache certain registers
- make the number of MCA banks per-CPU variable
The long term goal with these changes is to support future
heterogenous SMCA extensions.
- Misc fixes and improvements"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Do not check return value of debugfs_create functions
x86/MCE: Determine MCA banks' init state properly
x86/MCE: Make the number of MCA banks a per-CPU variable
x86/MCE/AMD: Don't cache block addresses on SMCA systems
x86/MCE: Make mce_banks a per-CPU array
x86/MCE: Make struct mce_banks[] static
RAS/CEC: Add copyright
RAS/CEC: Add CONFIG_RAS_CEC_DEBUG and move CEC debug features there
RAS/CEC: Dump the different array element sections
RAS/CEC: Rename count_threshold to action_threshold
RAS/CEC: Sanity-check array on every insertion
RAS/CEC: Fix potential memory leak
RAS/CEC: Do not set decay value on error
RAS/CEC: Check count_threshold unconditionally
RAS/CEC: Fix pfn insertion
Pull locking updates from Ingo Molnar:
"The main changes in this cycle are:
- rwsem scalability improvements, phase #2, by Waiman Long, which are
rather impressive:
"On a 2-socket 40-core 80-thread Skylake system with 40 reader
and writer locking threads, the min/mean/max locking operations
done in a 5-second testing window before the patchset were:
40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810
40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255
After the patchset, they became:
40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741
40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098"
There's a lot of changes to the locking implementation that makes
it similar to qrwlock, including owner handoff for more fair
locking.
Another microbenchmark shows how across the spectrum the
improvements are:
"With a locking microbenchmark running on 5.1 based kernel, the
total locking rates (in kops/s) on a 2-socket Skylake system
with equal numbers of readers and writers (mixed) before and
after this patchset were:
# of Threads Before Patch After Patch
------------ ------------ -----------
2 2,618 4,193
4 1,202 3,726
8 802 3,622
16 729 3,359
32 319 2,826
64 102 2,744"
The changes are extensive and the patch-set has been through
several iterations addressing various locking workloads. There
might be more regressions, but unless they are pathological I
believe we want to use this new implementation as the baseline
going forward.
- jump-label optimizations by Daniel Bristot de Oliveira: the primary
motivation was to remove IPI disturbance of isolated RT-workload
CPUs, which resulted in the implementation of batched jump-label
updates. Beyond the improvement of the real-time characteristics
kernel, in one test this patchset improved static key update
overhead from 57 msecs to just 1.4 msecs - which is a nice speedup
as well.
- atomic64_t cross-arch type cleanups by Mark Rutland: over the last
~10 years of atomic64_t existence the various types used by the
APIs only had to be self-consistent within each architecture -
which means they became wildly inconsistent across architectures.
Mark puts and end to this by reworking all the atomic64
implementations to use 's64' as the base type for atomic64_t, and
to ensure that this type is consistently used for parameters and
return values in the API, avoiding further problems in this area.
- A large set of small improvements to lockdep by Yuyang Du: type
cleanups, output cleanups, function return type and othr cleanups
all around the place.
- A set of percpu ops cleanups and fixes by Peter Zijlstra.
- Misc other changes - please see the Git log for more details"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits)
locking/lockdep: increase size of counters for lockdep statistics
locking/atomics: Use sed(1) instead of non-standard head(1) option
locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING
x86/jump_label: Make tp_vec_nr static
x86/percpu: Optimize raw_cpu_xchg()
x86/percpu, sched/fair: Avoid local_clock()
x86/percpu, x86/irq: Relax {set,get}_irq_regs()
x86/percpu: Relax smp_processor_id()
x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}()
locking/rwsem: Guard against making count negative
locking/rwsem: Adaptive disabling of reader optimistic spinning
locking/rwsem: Enable time-based spinning on reader-owned rwsem
locking/rwsem: Make rwsem->owner an atomic_long_t
locking/rwsem: Enable readers spinning on writer
locking/rwsem: Clarify usage of owner's nonspinaable bit
locking/rwsem: Wake up almost all readers in wait queue
locking/rwsem: More optimal RT task handling of null owner
locking/rwsem: Always release wait_lock before waking up tasks
locking/rwsem: Implement lock handoff to prevent lock starvation
locking/rwsem: Make rwsem_spin_on_owner() return owner state
...
Pull x86 pti updates from Thomas Gleixner:
"The speculative paranoia departement delivers a few more plugs for
possible (probably theoretical) spectre/mds leaks"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tls: Fix possible spectre-v1 in do_get_thread_area()
x86/ptrace: Fix possible spectre-v1 in ptrace_get_debugreg()
x86/speculation/mds: Eliminate leaks by trace_hardirqs_on()
Pull x86 timer updates from Thomas Gleixner:
"A rather large series consolidating the HPET code, which was triggered
by the attempt to bolt HPET NMI watchdog support on to the existing
maze with the usual duct tape and super glue approach.
This mainly removes two separate partially redundant storage layers
and consolidates them into a single one which provides a consistent
view of the different HPET channels and their usage and allows to
integrate HPET NMI watchdog support (if it turns out to be feasible)
in a non intrusive way"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
x86/hpet: Use channel for legacy clockevent storage
x86/hpet: Use common init for legacy clockevent
x86/hpet: Carve out shareable parts of init_one_hpet_msi_clockevent()
x86/hpet: Consolidate clockevent functions
x86/hpet: Wrap legacy clockevent in hpet_channel
x86/hpet: Use cached info instead of extra flags
x86/hpet: Move clockevents into channels
x86/hpet: Rename variables to prepare for switching to channels
x86/hpet: Add function to select a /dev/hpet channel
x86/hpet: Add mode information to struct hpet_channel
x86/hpet: Use cached channel data
x86/hpet: Introduce struct hpet_base and struct hpet_channel
x86/hpet: Coding style cleanup
x86/hpet: Clean up comments
x86/hpet: Make naming consistent
x86/hpet: Remove not required includes
x86/hpet: Decapitalize and rename EVT_TO_HPET_DEV
x86/hpet: Simplify counter validation
x86/hpet: Separate counter check out of clocksource register code
x86/hpet: Shuffle code around for readability sake
...
Pull x86 CPU feature updates from Thomas Gleixner:
"Updates for x86 CPU features:
- Support for UMWAIT/UMONITOR, which allows to use MWAIT and MONITOR
instructions in user space to save power e.g. in HPC workloads
which spin wait on synchronization points.
The maximum time a MWAIT can halt in userspace is controlled by the
kernel and can be adjusted by the sysadmin.
- Speed up the MTRR handling code on CPUs which support cache
self-snooping correctly.
On those CPUs the wbinvd() invocations can be omitted which speeds
up the MTRR setup by a factor of 50.
- Support for the new x86 vendor Zhaoxin who develops processors
based on the VIA Centaur technology.
- Prevent 'cat /proc/cpuinfo' from affecting isolated NOHZ_FULL CPUs
by sending IPIs to retrieve the CPU frequency and use the cached
values instead.
- The addition and late revert of the FSGSBASE support. The revert
was required as it turned out that the code still has hard to
diagnose issues. Yet another engineering trainwreck...
- Small fixes, cleanups, improvements and the usual new Intel CPU
family/model addons"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
x86/fsgsbase: Revert FSGSBASE support
selftests/x86/fsgsbase: Fix some test case bugs
x86/entry/64: Fix and clean up paranoid_exit
x86/entry/64: Don't compile ignore_sysret if 32-bit emulation is enabled
selftests/x86: Test SYSCALL and SYSENTER manually with TF set
x86/mtrr: Skip cache flushes on CPUs with cache self-snooping
x86/cpu/intel: Clear cache self-snoop capability in CPUs with known errata
Documentation/ABI: Document umwait control sysfs interfaces
x86/umwait: Add sysfs interface to control umwait maximum time
x86/umwait: Add sysfs interface to control umwait C0.2 state
x86/umwait: Initialize umwait control values
x86/cpufeatures: Enumerate user wait instructions
x86/cpu: Disable frequency requests via aperfmperf IPI for nohz_full CPUs
x86/acpi/cstate: Add Zhaoxin processors support for cache flush policy in C3
ACPI, x86: Add Zhaoxin processors support for NONSTOP TSC
x86/cpu: Create Zhaoxin processors architecture support file
x86/cpu: Split Tremont based Atoms from the rest
Documentation/x86/64: Add documentation for GS/FS addressing mode
x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2
x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit
...
Pull x86 FPU updates from Thomas Gleixner:
"A small set of updates for the FPU code:
- Make the no387/nofxsr command line options useful by restricting
them to 32bit and actually clearing all dependencies to prevent
random crashes and malfunction.
- Simplify and cleanup the kernel_fpu_*() helpers"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Inline fpu__xstate_clear_all_cpu_caps()
x86/fpu: Make 'no387' and 'nofxsr' command line options useful
x86/fpu: Remove the fpu__save() export
x86/fpu: Simplify kernel_fpu_begin()
x86/fpu: Simplify kernel_fpu_end()
Pull x96 apic updates from Thomas Gleixner:
"Updates for the x86 APIC interrupt handling and APIC timer:
- Fix a long standing issue with spurious interrupts which was caused
by the big vector management rework a few years ago. Robert Hodaszi
provided finally enough debug data and an excellent initial failure
analysis which allowed to understand the underlying issues.
This contains a change to the core interrupt management code which
is required to handle this correctly for the APIC/IO_APIC. The core
changes are NOOPs for most architectures except ARM64. ARM64 is not
impacted by the change as confirmed by Marc Zyngier.
- Newer systems allow to disable the PIT clock for power saving
causing panic in the timer interrupt delivery check of the IO/APIC
when the HPET timer is not enabled either. While the clock could be
turned on this would cause an endless whack a mole game to chase
the proper register in each affected chipset.
These systems provide the relevant frequencies for TSC, CPU and the
local APIC timer via CPUID and/or MSRs, which allows to avoid the
PIT/HPET based calibration. As the calibration code is the only
usage of the legacy timers on modern systems and is skipped anyway
when the frequencies are known already, there is no point in
setting up the PIT and actually checking for the interrupt delivery
via IO/APIC.
To achieve this on a wide variety of platforms, the CPUID/MSR based
frequency readout has been made more robust, which also allowed to
remove quite some workarounds which turned out to be not longer
required. Thanks to Daniel Drake for analysis, patches and
verification"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Seperate unused system vectors from spurious entry again
x86/irq: Handle spurious interrupt after shutdown gracefully
x86/ioapic: Implement irq_get_irqchip_state() callback
genirq: Add optional hardware synchronization for shutdown
genirq: Fix misleading synchronize_irq() documentation
genirq: Delay deactivation in free_irq()
x86/timer: Skip PIT initialization on modern chipsets
x86/apic: Use non-atomic operations when possible
x86/apic: Make apic_bsp_setup() static
x86/tsc: Set LAPIC timer period to crystal clock frequency
x86/apic: Rename 'lapic_timer_frequency' to 'lapic_timer_period'
x86/tsc: Use CPUID.0x16 to calculate missing crystal frequency
Pull timer updates from Thomas Gleixner:
"The timer and timekeeping departement delivers:
Core:
- The consolidation of the VDSO code into a generic library including
the conversion of x86 and ARM64. Conversion of ARM and MIPS are en
route through the relevant maintainer trees and should end up in
5.4.
This gets rid of the unnecessary different copies of the same code
and brings all architectures on the same level of VDSO
functionality.
- Make the NTP user space interface more robust by restricting the
TAI offset to prevent undefined behaviour. Includes a selftest.
- Validate user input in the compat settimeofday() syscall to catch
invalid values which would be turned into valid values by a
multiplication overflow
- Consolidate the time accessors
- Small fixes, improvements and cleanups all over the place
Drivers:
- Support for the NXP system counter, TI davinci timer
- Move the Microsoft HyperV clocksource/events code into the
drivers/clocksource directory so it can be shared between x86 and
ARM64.
- Overhaul of the Tegra driver
- Delay timer support for IXP4xx
- Small fixes, improvements and cleanups as usual"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
time: Validate user input in compat_settimeofday()
timer: Document TIMER_PINNED
clocksource/drivers: Continue making Hyper-V clocksource ISA agnostic
clocksource/drivers: Make Hyper-V clocksource ISA agnostic
MAINTAINERS: Fix Andy's surname and the directory entries of VDSO
hrtimer: Use a bullet for the returns bullet list
arm64: vdso: Fix compilation with clang older than 8
arm64: compat: Fix __arch_get_hw_counter() implementation
arm64: Fix __arch_get_hw_counter() implementation
lib/vdso: Make delta calculation work correctly
MAINTAINERS: Add entry for the generic VDSO library
arm64: compat: No need for pre-ARMv7 barriers on an ARMv8 system
arm64: vdso: Remove unnecessary asm-offsets.c definitions
vdso: Remove superfluous #ifdef __KERNEL__ in vdso/datapage.h
clocksource/drivers/davinci: Add support for clocksource
clocksource/drivers/davinci: Add support for clockevents
clocksource/drivers/tegra: Set up maximum-ticks limit properly
clocksource/drivers/tegra: Cycles can't be 0
clocksource/drivers/tegra: Restore base address before cleanup
clocksource/drivers/tegra: Add verbose definition for 1MHz constant
...
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new XAFLAG
and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the 'arm_boot_flags'
introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl0eHqcACgkQa9axLQDI
XvFyNA/+L+bnkz8m3ncydlqqfXomQn4eJJVQ8Uksb0knJz+1+3CUxxbO4ry4jXZN
fMkbggYrDPRKpDbsUl0lsRipj7jW9bqan+N37c3SWqCkgb6HqDaHViwxdx6Ec/Uk
gHudozDSPh/8c7hxGcSyt/CFyuW6b+8eYIQU5rtIgz8aVY2BypBvS/7YtYCbIkx0
w4CFleRTK1zXD5mJQhrc6jyDx659sVkrAvdhf6YIymOY8nBTv40vwdNo3beJMYp8
Po/+0Ixu+VkHUNtmYYZQgP/AGH96xiTcRnUqd172JdtRPpCLqnLqwFokXeVIlUKT
KZFMDPzK+756Ayn4z4huEePPAOGlHbJje8JVNnFyreKhVVcCotW7YPY/oJR10bnc
eo7yD+DxABTn+93G2yP436bNVa8qO1UqjOBfInWBtnNFJfANIkZweij/MQ6MjaTA
o7KtviHnZFClefMPoiI7HDzwL8XSmsBDbeQ04s2Wxku1Y2xUHLx4iLmadwLQ1ZPb
lZMTZP3N/T1554MoURVA1afCjAwiqU3bt1xDUGjbBVjLfSPBAn/25IacsG9Li9AF
7Rp1M9VhrfLftjFFkB2HwpbhRASOxaOSx+EI3kzEfCtM2O9I1WHgP3rvCdc3l0HU
tbK0/IggQicNgz7GSZ8xDlWPwwSadXYGLys+xlMZEYd3pDIOiFc=
=0TDT
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new
XAFLAG and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the
'arm_boot_flags' introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
perf: arm_spe: Enable ACPI/Platform automatic module loading
arm_pmu: acpi: spe: Add initial MADT/SPE probing
ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens
ACPI/PPTT: Modify node flag detection to find last IDENTICAL
x86/entry: Simplify _TIF_SYSCALL_EMU handling
arm64: rename dump_instr as dump_kernel_instr
arm64/mm: Drop [PTE|PMD]_TYPE_FAULT
arm64: Implement panic_smp_self_stop()
arm64: Improve parking of stopped CPUs
arm64: Expose FRINT capabilities to userspace
arm64: Expose ARMv8.5 CondM capability to userspace
arm64: defconfig: enable CONFIG_RANDOMIZE_BASE
arm64: ARM64_MODULES_PLTS must depend on MODULES
arm64: bpf: do not allocate executable memory
arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages
arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP
arm64: module: create module allocations without exec permissions
arm64: Allow user selection of ARM64_MODULE_PLTS
acpi/arm64: ignore 5.1 FADTs that are reported as 5.0
arm64: Allow selecting Pseudo-NMI again
...
All fpu__xstate_clear_all_cpu_caps() does is to invoke one simple
function since commit
73e3a7d2a7 ("x86/fpu: Remove the explicit clearing of XSAVE dependent features")
so invoke that function directly and remove the wrapper.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190704060743.rvew4yrjd6n33uzx@linutronix.de
The command line option `no387' is designed to disable the FPU
entirely. This only 'works' with CONFIG_MATH_EMULATION enabled.
But on 64bit this cannot work because user space expects SSE to work which
required basic FPU support. MATH_EMULATION does not help because SSE is not
emulated.
The command line option `nofxsr' should also be limited to 32bit because
FXSR is part of the required flags on 64bit so turning it off is not
possible.
Clearing X86_FEATURE_FPU without emulation enabled will not work anyway and
hang in fpu__init_system_early_generic() before the console is enabled.
Setting additioal dependencies, ensures that the CPU still boots on a
modern CPU. Otherwise, dropping FPU will leave FXSR enabled causing the
kernel to crash early in fpu__init_system_mxcsr().
With XSAVE support it will crash in fpu__init_cpu_xstate(). The problem is
that xsetbv() with XMM set and SSE cleared is not allowed. That means
XSAVE has to be disabled. The XSAVE support is disabled in
fpu__init_system_xstate_size_legacy() but it is too late. It can be
removed, it has been added in commit
1f999ab5a1 ("x86, xsave: Disable xsave in i387 emulation mode")
to use `no387' on a CPU with XSAVE support.
All this happens before console output.
After hat, the next possible crash is in RAID6 detect code because MMX
remained enabled. With a 3DNOW enabled config it will explode in memcpy()
for instance due to kernel_fpu_begin() but this is unconditionally enabled.
This is enough to boot a Debian Wheezy on a 32bit qemu "host" CPU which
supports everything up to XSAVES, AVX2 without 3DNOW. Later, Debian
increased the minimum requirements to i686 which means it does not boot
userland atleast due to CMOV.
After masking the additional features it still keeps SSE4A and 3DNOW*
enabled (if present on the host) but those are unused in the kernel.
Restrict `no387' and `nofxsr' otions to 32bit only. Add dependencies for
FPU, FXSR to additionaly mask CMOV, MMX, XSAVE if FXSR or FPU is cleared.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190703083247.57kjrmlxkai3vpw3@linutronix.de
- Fixes a deadlock from a previous fix to keep module loading
and function tracing text modifications from stepping on each other.
(this has a few patches to help document the issue in comments)
- Fix a crash when the snapshot buffer gets out of sync with the
main ring buffer.
- Fix a memory leak when reading the memory logs
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXRzBCBQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qnDaAP9qTFBOFtgIGCT5wVP8xjQeESxh1b8R
tbaT7/U2oPpeiwEAvp1mYo5UYcc8KauBqVaLSLJVN4pv07xiZF5Qgh9C1QE=
=m2IT
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"This includes three fixes:
- Fix a deadlock from a previous fix to keep module loading and
function tracing text modifications from stepping on each other
(this has a few patches to help document the issue in comments)
- Fix a crash when the snapshot buffer gets out of sync with the main
ring buffer
- Fix a memory leak when reading the memory logs"
* tag 'trace-v5.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace/x86: Anotate text_mutex split between ftrace_arch_code_modify_post_process() and ftrace_arch_code_modify_prepare()
tracing/snapshot: Resize spare buffer if size changed
tracing: Fix memory leak in tracing_err_log_open()
ftrace/x86: Add a comment to why we take text_mutex in ftrace_arch_code_modify_prepare()
ftrace/x86: Remove possible deadlock between register_kprobe() and ftrace_run_update_code()
The FSGSBASE series turned out to have serious bugs and there is still an
open issue which is not fully understood yet.
The confidence in those changes has become close to zero especially as the
test cases which have been shipped with that series were obviously never
run before sending the final series out to LKML.
./fsgsbase_64 >/dev/null
Segmentation fault
As the merge window is close, the only sane decision is to revert FSGSBASE
support. The revert is necessary as this branch has been merged into
perf/core already and rebasing all of that a few days before the merge
window is not the most brilliant idea.
I could definitely slap myself for not noticing the test case fail when
merging that series, but TBH my expectations weren't that low back
then. Won't happen again.
Revert the following commits:
539bca535d ("x86/entry/64: Fix and clean up paranoid_exit")
2c7b5ac5d5 ("Documentation/x86/64: Add documentation for GS/FS addressing mode")
f987c955c7 ("x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2")
2032f1f96e ("x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit")
5bf0cab60e ("x86/entry/64: Document GSBASE handling in the paranoid path")
708078f657 ("x86/entry/64: Handle FSGSBASE enabled paranoid entry/exit")
79e1932fa3 ("x86/entry/64: Introduce the FIND_PERCPU_BASE macro")
1d07316b13 ("x86/entry/64: Switch CR3 before SWAPGS in paranoid entry")
f60a83df45 ("x86/process/64: Use FSGSBASE instructions on thread copy and ptrace")
1ab5f3f7fe ("x86/process/64: Use FSBSBASE in switch_to() if available")
a86b462513 ("x86/fsgsbase/64: Enable FSGSBASE instructions in helper functions")
8b71340d70 ("x86/fsgsbase/64: Add intrinsics for FSGSBASE instructions")
b64ed19b93 ("x86/cpu: Add 'unsafe_fsgsbase' to enable CR4.FSGSBASE")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Hyper-V clock/timer code and data structures are currently mixed
in with other code in the ISA independent drivers/hv directory as
well as the ISA dependent Hyper-V code under arch/x86.
Consolidate this code and data structures into a Hyper-V clocksource driver
to better follow the Linux model. In doing so, separate out the ISA
dependent portions so the new clocksource driver works for x86 and for the
in-process Hyper-V on ARM64 code.
To start, move the existing clockevents code to create the new clocksource
driver. Update the VMbus driver to call initialization and cleanup routines
since the Hyper-V synthetic timers are not independently enumerated in
ACPI.
No behavior is changed and no new functionality is added.
Suggested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "bp@alien8.de" <bp@alien8.de>
Cc: "will.deacon@arm.com" <will.deacon@arm.com>
Cc: "catalin.marinas@arm.com" <catalin.marinas@arm.com>
Cc: "mark.rutland@arm.com" <mark.rutland@arm.com>
Cc: "linux-arm-kernel@lists.infradead.org" <linux-arm-kernel@lists.infradead.org>
Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org>
Cc: "linux-hyperv@vger.kernel.org" <linux-hyperv@vger.kernel.org>
Cc: "olaf@aepfle.de" <olaf@aepfle.de>
Cc: "apw@canonical.com" <apw@canonical.com>
Cc: "jasowang@redhat.com" <jasowang@redhat.com>
Cc: "marcelo.cerri@canonical.com" <marcelo.cerri@canonical.com>
Cc: Sunil Muthuswamy <sunilmut@microsoft.com>
Cc: KY Srinivasan <kys@microsoft.com>
Cc: "sashal@kernel.org" <sashal@kernel.org>
Cc: "vincenzo.frascino@arm.com" <vincenzo.frascino@arm.com>
Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org>
Cc: "linux-mips@vger.kernel.org" <linux-mips@vger.kernel.org>
Cc: "linux-kselftest@vger.kernel.org" <linux-kselftest@vger.kernel.org>
Cc: "arnd@arndb.de" <arnd@arndb.de>
Cc: "linux@armlinux.org.uk" <linux@armlinux.org.uk>
Cc: "ralf@linux-mips.org" <ralf@linux-mips.org>
Cc: "paul.burton@mips.com" <paul.burton@mips.com>
Cc: "daniel.lezcano@linaro.org" <daniel.lezcano@linaro.org>
Cc: "salyzyn@android.com" <salyzyn@android.com>
Cc: "pcc@google.com" <pcc@google.com>
Cc: "shuah@kernel.org" <shuah@kernel.org>
Cc: "0x7f454c46@gmail.com" <0x7f454c46@gmail.com>
Cc: "linux@rasmusvillemoes.dk" <linux@rasmusvillemoes.dk>
Cc: "huw@codeweavers.com" <huw@codeweavers.com>
Cc: "sfr@canb.auug.org.au" <sfr@canb.auug.org.au>
Cc: "pbonzini@redhat.com" <pbonzini@redhat.com>
Cc: "rkrcmar@redhat.com" <rkrcmar@redhat.com>
Cc: "kvm@vger.kernel.org" <kvm@vger.kernel.org>
Link: https://lkml.kernel.org/r/1561955054-1838-2-git-send-email-mikelley@microsoft.com
Quite some time ago the interrupt entry stubs for unused vectors in the
system vector range got removed and directly mapped to the spurious
interrupt vector entry point.
Sounds reasonable, but it's subtly broken. The spurious interrupt vector
entry point pushes vector number 0xFF on the stack which makes the whole
logic in __smp_spurious_interrupt() pointless.
As a consequence any spurious interrupt which comes from a vector != 0xFF
is treated as a real spurious interrupt (vector 0xFF) and not
acknowledged. That subsequently stalls all interrupt vectors of equal and
lower priority, which brings the system to a grinding halt.
This can happen because even on 64-bit the system vector space is not
guaranteed to be fully populated. A full compile time handling of the
unused vectors is not possible because quite some of them are conditonally
populated at runtime.
Bring the entry stubs back, which wastes 160 bytes if all stubs are unused,
but gains the proper handling back. There is no point to selectively spare
some of the stubs which are known at compile time as the required code in
the IDT management would be way larger and convoluted.
Do not route the spurious entries through common_interrupt and do_IRQ() as
the original code did. Route it to smp_spurious_interrupt() which evaluates
the vector number and acts accordingly now that the real vector numbers are
handed in.
Fixup the pr_warn so the actual spurious vector (0xff) is clearly
distiguished from the other vectors and also note for the vectored case
whether it was pending in the ISR or not.
"Spurious APIC interrupt (vector 0xFF) on CPU#0, should never happen."
"Spurious interrupt vector 0xed on CPU#1. Acked."
"Spurious interrupt vector 0xee on CPU#1. Not pending!."
Fixes: 2414e021ac ("x86: Avoid building unused IRQ entry stubs")
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jan Beulich <jbeulich@suse.com>
Link: https://lkml.kernel.org/r/20190628111440.550568228@linutronix.de
Since the rework of the vector management, warnings about spurious
interrupts have been reported. Robert provided some more information and
did an initial analysis. The following situation leads to these warnings:
CPU 0 CPU 1 IO_APIC
interrupt is raised
sent to CPU1
Unable to handle
immediately
(interrupts off,
deep idle delay)
mask()
...
free()
shutdown()
synchronize_irq()
clear_vector()
do_IRQ()
-> vector is clear
Before the rework the vector entries of legacy interrupts were statically
assigned and occupied precious vector space while most of them were
unused. Due to that the above situation was handled silently because the
vector was handled and the core handler of the assigned interrupt
descriptor noticed that it is shut down and returned.
While this has been usually observed with legacy interrupts, this situation
is not limited to them. Any other interrupt source, e.g. MSI, can cause the
same issue.
After adding proper synchronization for level triggered interrupts, this
can only happen for edge triggered interrupts where the IO-APIC obviously
cannot provide information about interrupts in flight.
While the spurious warning is actually harmless in this case it worries
users and driver developers.
Handle it gracefully by marking the vector entry as VECTOR_SHUTDOWN instead
of VECTOR_UNUSED when the vector is freed up.
If that above late handling happens the spurious detector will not complain
and switch the entry to VECTOR_UNUSED. Any subsequent spurious interrupt on
that line will trigger the spurious warning as before.
Fixes: 464d12309e ("x86/vector: Switch IOAPIC to global reservation mode")
Reported-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>-
Tested-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Link: https://lkml.kernel.org/r/20190628111440.459647741@linutronix.de
When an interrupt is shut down in free_irq() there might be an inflight
interrupt pending in the IO-APIC remote IRR which is not yet serviced. That
means the interrupt has been sent to the target CPUs local APIC, but the
target CPU is in a state which delays the servicing.
So free_irq() would proceed to free resources and to clear the vector
because synchronize_hardirq() does not see an interrupt handler in
progress.
That can trigger a spurious interrupt warning, which is harmless and just
confuses users, but it also can leave the remote IRR in a stale state
because once the handler is invoked the interrupt resources might be freed
already and therefore acknowledgement is not possible anymore.
Implement the irq_get_irqchip_state() callback for the IO-APIC irq chip. The
callback is invoked from free_irq() via __synchronize_hardirq(). Check the
remote IRR bit of the interrupt and return 'in flight' if it is set and the
interrupt is configured in level mode. For edge mode the remote IRR has no
meaning.
As this is only meaningful for level triggered interrupts this won't cure
the potential spurious interrupt warning for edge triggered interrupts, but
the edge trigger case does not result in stale hardware state. This has to
be addressed at the vector/interrupt entry level seperately.
Fixes: 464d12309e ("x86/vector: Switch IOAPIC to global reservation mode")
Reported-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Link: https://lkml.kernel.org/r/20190628111440.370295517@linutronix.de
ftrace_arch_code_modify_prepare() is acquiring text_mutex, while the
corresponding release is happening in ftrace_arch_code_modify_post_process().
This has already been documented in the code, but let's also make the fact
that this is intentional clear to the semantic analysis tools such as sparse.
Link: http://lkml.kernel.org/r/nycvar.YFH.7.76.1906292321170.27227@cbobk.fhfr.pm
Fixes: 39611265ed ("ftrace/x86: Add a comment to why we take text_mutex in ftrace_arch_code_modify_prepare()")
Fixes: d5b844a2cf ("ftrace/x86: Remove possible deadlock between register_kprobe() and ftrace_run_update_code()")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
When sending a call-function IPI-many to vCPUs, yield if any of
the IPI target vCPUs was preempted, we just select the first
preempted target vCPU which we found since the state of target
vCPUs can change underneath and to avoid race conditions.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 fixes from Ingo Molnar:
"Misc fixes all over the place:
- might_sleep() atomicity fix in the microcode loader
- resctrl boundary condition fix
- APIC arithmethics bug fix for frequencies >= 4.2 GHz
- three 5-level paging crash fixes
- two speculation fixes
- a perf/stacktrace fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/unwind/orc: Fall back to using frame pointers for generated code
perf/x86: Always store regs->ip in perf_callchain_kernel()
x86/speculation: Allow guests to use SSBD even if host does not
x86/mm: Handle physical-virtual alignment mismatch in phys_p4d_init()
x86/boot/64: Add missing fixup_pointer() for next_early_pgt access
x86/boot/64: Fix crash if kernel image crosses page table boundary
x86/apic: Fix integer overflow on 10 bit left shift of cpu_khz
x86/resctrl: Prevent possible overrun during bitmap operations
x86/microcode: Fix the microcode load on CPU hotplug for real
Pull perf fixes from Ingo Molnar:
"Various fixes, most of them related to bugs perf fuzzing found in the
x86 code"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/regs: Use PERF_REG_EXTENDED_MASK
perf/x86: Remove pmu->pebs_no_xmm_regs
perf/x86: Clean up PEBS_XMM_REGS
perf/x86/regs: Check reserved bits
perf/x86: Disable extended registers for non-supported PMUs
perf/ioctl: Add check for the sample_period value
perf/core: Fix perf_sample_regs_user() mm check
Recent Intel chipsets including Skylake and ApolloLake have a special
ITSSPRC register which allows the 8254 PIT to be gated. When gated, the
8254 registers can still be programmed as normal, but there are no IRQ0
timer interrupts.
Some products such as the Connex L1430 and exone go Rugged E11 use this
register to ship with the PIT gated by default. This causes Linux to fail
to boot:
Kernel panic - not syncing: IO-APIC + timer doesn't work! Boot with
apic=debug and send a report.
The panic happens before the framebuffer is initialized, so to the user, it
appears as an early boot hang on a black screen.
Affected products typically have a BIOS option that can be used to enable
the 8254 and make Linux work (Chipset -> South Cluster Configuration ->
Miscellaneous Configuration -> 8254 Clock Gating), however it would be best
to make Linux support the no-8254 case.
Modern sytems allow to discover the TSC and local APIC timer frequencies,
so the calibration against the PIT is not required. These systems have
always running timers and the local APIC timer works also in deep power
states.
So the setup of the PIT including the IO-APIC timer interrupt delivery
checks are a pointless exercise.
Skip the PIT setup and the IO-APIC timer interrupt checks on these systems,
which avoids the panic caused by non ticking PITs and also speeds up the
boot process.
Thanks to Daniel for providing the changelog, initial analysis of the
problem and testing against a variety of machines.
Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Cc: hdegoede@redhat.com
Link: https://lkml.kernel.org/r/20190628072307.24678-1-drake@endlessm.com
Taking the text_mutex in ftrace_arch_code_modify_prepare() is to fix a
race against module loading and live kernel patching that might try to
change the text permissions while ftrace has it as read/write. This
really needs to be documented in the code. Add a comment that does such.
Link: http://lkml.kernel.org/r/20190627211819.5a591f52@gandalf.local.home
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The commit 9f255b632b ("module: Fix livepatch/ftrace module text
permissions race") causes a possible deadlock between register_kprobe()
and ftrace_run_update_code() when ftrace is using stop_machine().
The existing dependency chain (in reverse order) is:
-> #1 (text_mutex){+.+.}:
validate_chain.isra.21+0xb32/0xd70
__lock_acquire+0x4b8/0x928
lock_acquire+0x102/0x230
__mutex_lock+0x88/0x908
mutex_lock_nested+0x32/0x40
register_kprobe+0x254/0x658
init_kprobes+0x11a/0x168
do_one_initcall+0x70/0x318
kernel_init_freeable+0x456/0x508
kernel_init+0x22/0x150
ret_from_fork+0x30/0x34
kernel_thread_starter+0x0/0xc
-> #0 (cpu_hotplug_lock.rw_sem){++++}:
check_prev_add+0x90c/0xde0
validate_chain.isra.21+0xb32/0xd70
__lock_acquire+0x4b8/0x928
lock_acquire+0x102/0x230
cpus_read_lock+0x62/0xd0
stop_machine+0x2e/0x60
arch_ftrace_update_code+0x2e/0x40
ftrace_run_update_code+0x40/0xa0
ftrace_startup+0xb2/0x168
register_ftrace_function+0x64/0x88
klp_patch_object+0x1a2/0x290
klp_enable_patch+0x554/0x980
do_one_initcall+0x70/0x318
do_init_module+0x6e/0x250
load_module+0x1782/0x1990
__s390x_sys_finit_module+0xaa/0xf0
system_call+0xd8/0x2d0
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(text_mutex);
lock(cpu_hotplug_lock.rw_sem);
lock(text_mutex);
lock(cpu_hotplug_lock.rw_sem);
It is similar problem that has been solved by the commit 2d1e38f566
("kprobes: Cure hotplug lock ordering issues"). Many locks are involved.
To be on the safe side, text_mutex must become a low level lock taken
after cpu_hotplug_lock.rw_sem.
This can't be achieved easily with the current ftrace design.
For example, arm calls set_all_modules_text_rw() already in
ftrace_arch_code_modify_prepare(), see arch/arm/kernel/ftrace.c.
This functions is called:
+ outside stop_machine() from ftrace_run_update_code()
+ without stop_machine() from ftrace_module_enable()
Fortunately, the problematic fix is needed only on x86_64. It is
the only architecture that calls set_all_modules_text_rw()
in ftrace path and supports livepatching at the same time.
Therefore it is enough to move text_mutex handling from the generic
kernel/trace/ftrace.c into arch/x86/kernel/ftrace.c:
ftrace_arch_code_modify_prepare()
ftrace_arch_code_modify_post_process()
This patch basically reverts the ftrace part of the problematic
commit 9f255b632b ("module: Fix livepatch/ftrace module
text permissions race"). And provides x86_64 specific-fix.
Some refactoring of the ftrace code will be needed when livepatching
is implemented for arm or nds32. These architectures call
set_all_modules_text_rw() and use stop_machine() at the same time.
Link: http://lkml.kernel.org/r/20190627081334.12793-1-pmladek@suse.com
Fixes: 9f255b632b ("module: Fix livepatch/ftrace module text permissions race")
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
[
As reviewed by Miroslav Benes <mbenes@suse.cz>, removed return value of
ftrace_run_update_code() as it is a void function.
]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Programming MTRR registers in multi-processor systems is a rather lengthy
process. Furthermore, all processors must program these registers in lock
step and with interrupts disabled; the process also involves flushing
caches and TLBs twice. As a result, the process may take a considerable
amount of time.
On some platforms, this can lead to a large skew of the refined-jiffies
clock source. Early when booting, if no other clock is available (e.g.,
booting with hpet=disabled), the refined-jiffies clock source is used to
monitor the TSC clock source. If the skew of refined-jiffies is too large,
Linux wrongly assumes that the TSC is unstable:
clocksource: timekeeping watchdog on CPU1: Marking clocksource
'tsc-early' as unstable because the skew is too large:
clocksource: 'refined-jiffies' wd_now: fffedc10 wd_last:
fffedb90 mask: ffffffff
clocksource: 'tsc-early' cs_now: 5eccfddebc cs_last: 5e7e3303d4
mask: ffffffffffffffff
tsc: Marking TSC unstable due to clocksource watchdog
As per measurements, around 98% of the time needed by the procedure to
program MTRRs in multi-processor systems is spent flushing caches with
wbinvd(). As per the Section 11.11.8 of the Intel 64 and IA 32
Architectures Software Developer's Manual, it is not necessary to flush
caches if the CPU supports cache self-snooping. Thus, skipping the cache
flushes can reduce by several tens of milliseconds the time needed to
complete the programming of the MTRR registers:
Platform Before After
104-core (208 Threads) Skylake 1437ms 28ms
2-core ( 4 Threads) Haswell 114ms 2ms
Reported-by: Mohammad Etemadi <mohammad.etemadi@intel.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Alan Cox <alan.cox@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/1561689337-19390-3-git-send-email-ricardo.neri-calderon@linux.intel.com
Processors which have self-snooping capability can handle conflicting
memory type across CPUs by snooping its own cache. However, there exists
CPU models in which having conflicting memory types still leads to
unpredictable behavior, machine check errors, or hangs.
Clear this feature on affected CPUs to prevent its use.
Suggested-by: Alan Cox <alan.cox@intel.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Mohammad Etemadi <mohammad.etemadi@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/1561689337-19390-2-git-send-email-ricardo.neri-calderon@linux.intel.com
Restrict kdump to only reserve crashkernel below 64TB.
The reaons is that the kdump may jump from a 5-level paging mode to a
4-level paging mode kernel. If a 4-level paging mode kdump kernel is put
above 64TB, then the kdump kernel cannot start.
The 1st kernel reserves the kdump kernel region during bootup. At that
point it is not known whether the kdump kernel has 5-level or 4-level
paging support.
To support both restrict the kdump kernel reservation to the lower 64TB
address space to ensure that a 4-level paging mode kdump kernel can be
loaded and successfully started.
[ tglx: Massaged changelog ]
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20190524073810.24298-4-bhe@redhat.com
If the running kernel has 5-level paging activated, the 5-level paging mode
is preserved across kexec. If the kexec'ed kernel does not contain support
for handling active 5-level paging mode in the decompressor, the
decompressor will crash with #GP.
Prevent this situation at load time. If 5-level paging is active, check the
xloadflags whether the kexec kernel can handle 5-level paging at least in
the decompressor. If not, reject the load attempt and print out an error
message.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: dyoung@redhat.com
Link: https://lkml.kernel.org/r/20190524073810.24298-3-bhe@redhat.com
All preparations are done. Use the channel storage for the legacy
clockevent and remove the static variable.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.737689919@linutronix.de
Replace the static initialization of the legacy clockevent with runtime
initialization utilizing the common init function as the last preparatory
step to switch the legacy clockevent over to the channel 0 storage in
hpet_base.
This comes with a twist. The static clockevent initializer has selected
support for periodic and oneshot mode unconditionally whether the HPET
config advertised periodic mode or not. Even the pre clockevents code did
this. But....
Using the conditional in hpet_init_clockevent() makes at least Qemu and one
hardware machine fail to boot. There are two issues which cause the boot
failure:
#1 After the timer delivery test in IOAPIC and the IOAPIC setup the next
interrupt is not delivered despite the HPET channel being programmed
correctly. Reprogramming the HPET after switching to IOAPIC makes it
work again. After fixing this, the next issue surfaces:
#2 Due to the unconditional periodic mode 'availability' the Local APIC
timer calibration can hijack the global clockevents event handler
without causing damage. Using oneshot at this stage makes if hang
because the HPET does not get reprogrammed due to the handler
hijacking. Duh, stupid me!
Both issues require major surgery and especially the kick HPET again after
enabling IOAPIC results in really nasty hackery. This 'assume periodic
works' magic has survived since HPET support got added, so it's
questionable whether this should be fixed. Both Qemu and the failing
hardware machine support periodic mode despite the fact that both don't
advertise it in the configuration register and both need that extra kick
after switching to IOAPIC. Seems to be a feature...
Keep the 'assume periodic works' magic around and add a big fat comment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.646565913@linutronix.de
To finally remove the static channel0/clockevent storage and to utilize the
channel 0 storage in hpet_base, it's required to run time initialize the
clockevent. The MSI clockevents already have a run time init function.
Carve out the parts which can be shared between the legacy and the MSI
implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.552451082@linutronix.de
Now that the legacy clockevent is wrapped in a hpet_channel struct most
clockevent functions can be shared between the legacy and the MSI based
clockevents.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.461437795@linutronix.de
For HPET channel 0 there exist two clockevent structures right now:
- the static hpet_clockevent
- the clockevent in channel 0 storage
The goal is to use the clockevent in the channel storage, remove the static
variable and share code with the MSI implementation.
As a first step wrap the legacy clockevent into a hpet_channel struct and
convert the users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.368141247@linutronix.de
Now that HPET clockevent support is integrated into the channel data, reuse
the cached boot configuration instead of copying the same information into
a flags field.
This also allows to consolidate the reservation code into one place, which
can now solely depend on the mode information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.277510163@linutronix.de
Instead of allocating yet another data structure, move the clock event data
into the channel structure. This allows further consolidation of the
reservation code and the reuse of the cached boot config to replace the
extra flags in the clockevent data.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.185851116@linutronix.de
struct hpet_dev is gone with the next change as the clockevent storage
moves into struct hpet_channel. So the variable name hdev will not make
sense anymore. Ditto for timer vs. channel and similar details.
Doing the rename in the change makes the patch harder to review. Doing it
afterward is problematic vs. tracking down issues. Doing it upfront is the
easiest solution as it does not change functionality.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.093113681@linutronix.de
If CONFIG_HPET=y is enabled the x86 specific HPET code should reserve at
least one channel for the /dev/hpet character device, so that not all
channels are absorbed for per CPU clockevent devices.
Create a function to assign HPET_MODE_DEVICE so the rework of the
clockevents allocation code can utilize the mode information instead of
reducing the number of evaluated channels by #ifdef hackery.
The function is not yet used, but provided as a separate patch for ease of
review. It will be used when the rework of the clockevent selection takes
place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.002758910@linutronix.de
The usage of the individual HPET channels is not tracked in a central
place. The information is scattered in different data structures. Also the
HPET reservation in the HPET character device is split out into several
places which makes the code hard to follow.
Assigning a mode to the channel allows to consolidate the reservation code
and paves the way for further simplifications.
As a first step set the mode of the legacy channels when the HPET is in
legacy mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.911652981@linutronix.de
Instead of rereading the HPET registers over and over use the information
which was cached in hpet_enable().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.821728550@linutronix.de
Introduce new data structures to replace the ad hoc collection of separate
variables and pointers.
Replace the boot configuration store and restore as a first step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.728456320@linutronix.de
It's a function not a macro and the upcoming changes use channel for the
individual hpet timer units to allow a step by step refactoring approach.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.241032433@linutronix.de
There is no point to loop for 200k TSC cycles to check afterwards whether
the HPET counter is working. Read the counter inside of the loop and break
out when the counter value changed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.149535103@linutronix.de
The init code checks whether the HPET counter works late in the init
function when the clocksource is registered. That should happen right with
the other sanity checks.
Split it into a separate validation function and move it to the other
sanity checks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.058540608@linutronix.de
It doesn't make sense to have init functions in the middle of other
code. Aside of that, further changes in that area create horrible diffs if
the code stays where it is.
No functional change
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.951733064@linutronix.de
Having static and global variables sprinkled all over the code is just
annoying to read. Move them all to the top of the file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.860549134@linutronix.de
The clockevent device pointer is not used in this function.
While at it, rename the misnamed 'timer' parameter to 'channel', which makes it
clear what this parameter means.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.447880978@linutronix.de
As a preparatory change for further consolidation, restructure the HPET
init code so it becomes more readable. Fix up misleading and stale comments
and rename variables so they actually make sense.
No intended functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.247842972@linutronix.de
The indirection via work scheduled on the upcoming CPU was necessary with the
old hotplug code because the online callback was invoked on the control CPU
not on the upcoming CPU. The rework of the CPU hotplug core guarantees that
the online callbacks are invoked on the upcoming CPU.
Remove the now pointless work redirection.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.047254075@linutronix.de
The ORC unwinder can't unwind through BPF JIT generated code because
there are no ORC entries associated with the code.
If an ORC entry isn't available, try to fall back to frame pointers. If
BPF and other generated code always do frame pointer setup (even with
CONFIG_FRAME_POINTERS=n) then this will allow ORC to unwind through most
generated code despite there being no corresponding ORC entries.
Fixes: d15d356887 ("perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER")
Reported-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kairui Song <kasong@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/b6f69208ddff4343d56b7bfac1fc7cfcd62689e8.1561595111.git.jpoimboe@redhat.com
The index to access the threads tls array is controlled by userspace
via syscall: sys_ptrace(), hence leading to a potential exploitation
of the Spectre variant 1 vulnerability.
The index can be controlled from:
ptrace -> arch_ptrace -> do_get_thread_area.
Fix this by sanitizing the user supplied index before using it to access
the p->thread.tls_array.
Signed-off-by: Dianzhang Chen <dianzhangchen0@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1561524630-3642-1-git-send-email-dianzhangchen0@gmail.com
The index to access the threads ptrace_bps is controlled by userspace via
syscall: sys_ptrace(), hence leading to a potential exploitation of the
Spectre variant 1 vulnerability.
The index can be controlled from:
ptrace -> arch_ptrace -> ptrace_get_debugreg.
Fix this by sanitizing the user supplied index before using it access
thread->ptrace_bps.
Signed-off-by: Dianzhang Chen <dianzhangchen0@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1561476617-3759-1-git-send-email-dianzhangchen0@gmail.com
The bits set in x86_spec_ctrl_mask are used to calculate the guest's value
of SPEC_CTRL that is written to the MSR before VMENTRY, and control which
mitigations the guest can enable. In the case of SSBD, unless the host has
enabled SSBD always on mode (by passing "spec_store_bypass_disable=on" in
the kernel parameters), the SSBD bit is not set in the mask and the guest
can not properly enable the SSBD always on mitigation mode.
This has been confirmed by running the SSBD PoC on a guest using the SSBD
always on mitigation mode (booted with kernel parameter
"spec_store_bypass_disable=on"), and verifying that the guest is vulnerable
unless the host is also using SSBD always on mode. In addition, the guest
OS incorrectly reports the SSB vulnerability as mitigated.
Always set the SSBD bit in x86_spec_ctrl_mask when the host CPU supports
it, allowing the guest to use SSBD whether or not the host has chosen to
enable the mitigation in any of its modes.
Fixes: be6fcb5478 ("x86/bugs: Rework spec_ctrl base and mask logic")
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: bp@alien8.de
Cc: rkrcmar@redhat.com
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1560187210-11054-1-git-send-email-alejandro.j.jimenez@oracle.com
The following sparse warning is emitted:
arch/x86/kernel/crash.c:59:15:
warning: symbol 'crash_zero_bytes' was not declared. Should it be static?
The variable is only used in this compilation unit, but it is also only
used when CONFIG_KEXEC_FILE is enabled. Just making it static would result
in a 'defined but not used' warning for CONFIG_KEXEC_FILE=n.
Make it static and move it into the existing CONFIG_KEXEC_FILE section.
[ tglx: Massaged changelog and moved it into the existing ifdef ]
Fixes: dd5f726076 ("kexec: support for kexec on panic using new system call")
Signed-off-by: Tiezhu Yang <kernelpatch@126.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: kexec@lists.infradead.org
Cc: vgoyal@redhat.com
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: https://lkml.kernel.org/r/117ef0c6.3d30.16b87c9cfbf.Coremail.kernelpatch@126.com
__startup_64() uses fixup_pointer() to access global variables in a
position-independent fashion. Access to next_early_pgt was wrapped into the
helper, but one instance in the 5-level paging branch was missed.
GCC generates a R_X86_64_PC32 PC-relative relocation for the access which
doesn't trigger the issue, but Clang emmits a R_X86_64_32S which leads to
an invalid memory access and system reboot.
Fixes: 187e91fe5e ("x86/boot/64/clang: Use fixup_pointer() to access 'next_early_pgt'")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Potapenko <glider@google.com>
Link: https://lkml.kernel.org/r/20190620112422.29264-1-kirill.shutemov@linux.intel.com
A kernel which boots in 5-level paging mode crashes in a small percentage
of cases if KASLR is enabled.
This issue was tracked down to the case when the kernel image unpacks in a
way that it crosses an 1G boundary. The crash is caused by an overrun of
the PMD page table in __startup_64() and corruption of P4D page table
allocated next to it. This particular issue is not visible with 4-level
paging as P4D page tables are not used.
But the P4D and the PUD calculation have similar problems.
The PMD index calculation is wrong due to operator precedence, which fails
to confine the PMDs in the PMD array on wrap around.
The P4D calculation for 5-level paging and the PUD calculation calculate
the first index correctly, but then blindly increment it which causes the
same issue when a kernel image is located across a 512G and for 5-level
paging across a 46T boundary.
This wrap around mishandling was introduced when these parts moved from
assembly to C.
Restore it to the correct behaviour.
Fixes: c88d71508e ("x86/boot/64: Rewrite startup_64() in C")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190620112345.28833-1-kirill.shutemov@linux.intel.com
Given that the entry_*.S changes for this functionality are somewhat
tricky, make sure the paths are tested every boot, instead of on the
rare occasion when we trip an INT3 while rewriting text.
Requested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that x86_32 has an unconditional gap on the kernel stack frame,
the int3_emulate_push() thing will work without further changes.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently pt_regs on x86_32 has an oddity in that kernel regs
(!user_mode(regs)) are short two entries (esp/ss). This means that any
code trying to use them (typically: regs->sp) needs to jump through
some unfortunate hoops.
Change the entry code to fix this up and create a full pt_regs frame.
This then simplifies various trampolines in ftrace and kprobes, the
stack unwinder, ptrace, kdump and kgdb.
Much thanks to Josh for help with the cleanups!
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_FRAME_POINTER, we should mark pt_regs frames.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kprobe trampolines have a FRAME_POINTER annotation that makes no
sense. It marks the frame in the middle of pt_regs, at the place of
saving BP.
Change it to mark the pt_regs frame as per the ENCODE_FRAME_POINTER
from the respective entry_*.S.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All the files added to 'targets' are cleaned. Adding the same file to both
'targets' and 'clean-files' is redundant.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190625073311.18303-1-yamada.masahiro@socionext.com
Without 'set -e', shell scripts continue running even after any
error occurs. The missed 'set -e' is a typical bug in shell scripting.
For example, when a disk space shortage occurs while this script is
running, it actually ends up with generating a truncated capflags.c.
Yet, mkcapflags.sh continues running and exits with 0. So, the build
system assumes it has succeeded.
It will not be re-generated in the next invocation of Make since its
timestamp is newer than that of any of the source files.
Add 'set -e' so that any error in this script is caught and propagated
to the build system.
Since 9c2af1c737 ("kbuild: add .DELETE_ON_ERROR special target"),
make automatically deletes the target on any failure. So, the broken
capflags.c will be deleted automatically.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190625072622.17679-1-yamada.masahiro@socionext.com
Fix sparse warning:
arch/x86/kernel/jump_label.c:106:5: warning:
symbol 'tp_vec_nr' was not declared. Should it be static?
It's only used in jump_label.c, so make it static.
Fixes: ba54f0c3f7 ("x86/jump_label: Batch jump label updates")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <bp@alien8.de>
Cc: <hpa@zytor.com>
Cc: <peterz@infradead.org>
Cc: <bristot@redhat.com>
Cc: <namit@vmware.com>
Link: https://lkml.kernel.org/r/20190625034548.26392-1-yuehaibing@huawei.com
The perf fuzzer triggers a warning which map to:
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(pt_regs_offset)))
return 0;
The bits between XMM registers and generic registers are reserved.
But perf_reg_validate() doesn't check these bits.
Add PERF_REG_X86_RESERVED for reserved bits on X86.
Check the reserved bits in perf_reg_validate().
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 878068ea27 ("perf/x86: Support outputting XMM registers")
Link: https://lkml.kernel.org/r/1559081314-9714-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IA32_UMWAIT_CONTROL[31:2] determines the maximum time in TSC-quanta
that processor can stay in C0.1 or C0.2. A zero value means no maximum
time.
Each instruction sets its own deadline in the instruction's implicit
input EDX:EAX value. The instruction wakes up if the time-stamp counter
reaches or exceeds the specified deadline, or the umwait maximum time
expires, or a store happens in the monitored address range in umwait.
The administrator can write an unsigned 32-bit number to
/sys/devices/system/cpu/umwait_control/max_time to change the default
value. Note that a value of zero means there is no limit. The lower two
bits of the value must be zero.
[ tglx: Simplify the write function. Massage changelog ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Andy Lutomirski" <luto@kernel.org>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1560994438-235698-5-git-send-email-fenghua.yu@intel.com
C0.2 state in umwait and tpause instructions can be enabled or disabled
on a processor through IA32_UMWAIT_CONTROL MSR register.
By default, C0.2 is enabled and the user wait instructions results in
lower power consumption with slower wakeup time.
But in real time systems which require faster wakeup time although power
savings could be smaller, the administrator needs to disable C0.2 and all
umwait invocations from user applications use C0.1.
Create a sysfs interface which allows the administrator to control C0.2
state during run time.
Andy Lutomirski suggested to turn off local irqs before writing the MSR to
ensure the cached control value is not changed by a concurrent sysfs write
from a different CPU via IPI.
[ tglx: Simplified the update logic in the write function and got rid of
all the convoluted type casts. Added a shared update function and
made the namespace consistent. Moved the sysfs create invocation.
Massaged changelog ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Andy Lutomirski" <luto@kernel.org>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1560994438-235698-4-git-send-email-fenghua.yu@intel.com
umwait or tpause allows the processor to enter a light-weight
power/performance optimized state (C0.1 state) or an improved
power/performance optimized state (C0.2 state) for a period specified by
the instruction or until the system time limit or until a store to the
monitored address range in umwait.
IA32_UMWAIT_CONTROL MSR register allows the OS to enable/disable C0.2 on
the processor and to set the maximum time the processor can reside in C0.1
or C0.2.
By default C0.2 is enabled so the user wait instructions can enter the
C0.2 state to save more power with slower wakeup time.
Andy Lutomirski proposed to set the maximum umwait time to 100000 cycles by
default. A quote from Andy:
"What I want to avoid is the case where it works dramatically differently
on NO_HZ_FULL systems as compared to everything else. Also, UMWAIT may
behave a bit differently if the max timeout is hit, and I'd like that
path to get exercised widely by making it happen even on default
configs."
A sysfs interface to adjust the time and the C0.2 enablement is provided in
a follow up change.
[ tglx: Renamed MSR_IA32_UMWAIT_CONTROL_MAX_TIME to
MSR_IA32_UMWAIT_CONTROL_TIME_MASK because the constant is used as
mask throughout the code.
Massaged comments and changelog ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1560994438-235698-3-git-send-email-fenghua.yu@intel.com
Using __clear_bit() and __cpumask_clear_cpu() is more efficient than using
their atomic counterparts.
Use them when atomicity is not needed, such as when manipulating bitmasks
that are on the stack.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20190613064813.8102-10-namit@vmware.com
The x86 vDSO library requires some adaptations to take advantage of the
newly introduced generic vDSO library.
Introduce the following changes:
- Modification of vdso.c to be compliant with the common vdso datapage
- Use of lib/vdso for gettimeofday
[ tglx: Massaged changelog and cleaned up the function signature formatting ]
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mips@vger.kernel.org
Cc: linux-kselftest@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Huw Davies <huw@codeweavers.com>
Cc: Shijith Thotton <sthotton@marvell.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Link: https://lkml.kernel.org/r/20190621095252.32307-23-vincenzo.frascino@arm.com
Since commit 7d5905dc14 ("x86 / CPU: Always show current CPU frequency
in /proc/cpuinfo") open and read of /proc/cpuinfo sends IPI to all CPUs.
Many applications read /proc/cpuinfo at the start for trivial reasons like
counting cores or detecting cpu features. While sensitive workloads like
DPDK network polling don't like any interrupts.
Integrates this feature with cpu isolation and do not send IPIs to CPUs
without housekeeping flag HK_FLAG_MISC (set by nohz_full).
Code that requests cpu frequency like show_cpuinfo() falls back to the last
frequency set by the cpufreq driver if this method returns 0.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/155790354043.1104.15333317408370209.stgit@buzz
The left shift of unsigned int cpu_khz will overflow for large values of
cpu_khz, so cast it to a long long before shifting it to avoid overvlow.
For example, this can happen when cpu_khz is 4194305, i.e. ~4.2 GHz.
Addresses-Coverity: ("Unintentional integer overflow")
Fixes: 8c3ba8d049 ("x86, apic: ack all pending irqs when crashed/on kexec")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: kernel-janitors@vger.kernel.org
Link: https://lkml.kernel.org/r/20190619181446.13635-1-colin.king@canonical.com
Several recent exploits have used direct calls to the native_write_cr4()
function to disable SMEP and SMAP before then continuing their exploits
using userspace memory access.
Direct calls of this form can be mitigate by pinning bits of CR4 so that
they cannot be changed through a common function. This is not intended to
be a general ROP protection (which would require CFI to defend against
properly), but rather a way to avoid trivial direct function calling (or
CFI bypasses via a matching function prototype) as seen in:
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
(https://github.com/xairy/kernel-exploits/tree/master/CVE-2017-7308)
The goals of this change:
- Pin specific bits (SMEP, SMAP, and UMIP) when writing CR4.
- Avoid setting the bits too early (they must become pinned only after
CPU feature detection and selection has finished).
- Pinning mask needs to be read-only during normal runtime.
- Pinning needs to be checked after write to validate the cr4 state
Using __ro_after_init on the mask is done so it can't be first disabled
with a malicious write.
Since these bits are global state (once established by the boot CPU and
kernel boot parameters), they are safe to write to secondary CPUs before
those CPUs have finished feature detection. As such, the bits are set at
the first cr4 write, so that cr4 write bugs can be detected (instead of
silently papered over). This uses a few bytes less storage of a location we
don't have: read-only per-CPU data.
A check is performed after the register write because an attack could just
skip directly to the register write. Such a direct jump is possible because
of how this function may be built by the compiler (especially due to the
removal of frame pointers) where it doesn't add a stack frame (function
exit may only be a retq without pops) which is sufficient for trivial
exploitation like in the timer overwrites mentioned above).
The asm argument constraints gain the "+" modifier to convince the compiler
that it shouldn't make ordering assumptions about the arguments or memory,
and treat them as changed.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: kernel-hardening@lists.openwall.com
Link: https://lkml.kernel.org/r/20190618045503.39105-3-keescook@chromium.org
Same as Intel, Zhaoxin MP CPUs support C3 share cache and on all
recent Zhaoxin platforms ARB_DISABLE is a nop. So set related
flags correctly in the same way as Intel does.
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "hpa@zytor.com" <hpa@zytor.com>
Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org>
Cc: "rjw@rjwysocki.net" <rjw@rjwysocki.net>
Cc: "lenb@kernel.org" <lenb@kernel.org>
Cc: David Wang <DavidWang@zhaoxin.com>
Cc: "Cooper Yan(BJ-RD)" <CooperYan@zhaoxin.com>
Cc: "Qiyuan Wang(BJ-RD)" <QiyuanWang@zhaoxin.com>
Cc: "Herry Yang(BJ-RD)" <HerryYang@zhaoxin.com>
Link: https://lkml.kernel.org/r/a370503660994669991a7f7cda7c5e98@zhaoxin.com
Add x86 architecture support for new Zhaoxin processors.
Carve out initialization code needed by Zhaoxin processors into
a separate compilation unit.
To identify Zhaoxin CPU, add a new vendor type X86_VENDOR_ZHAOXIN
for system recognition.
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "hpa@zytor.com" <hpa@zytor.com>
Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org>
Cc: "rjw@rjwysocki.net" <rjw@rjwysocki.net>
Cc: "lenb@kernel.org" <lenb@kernel.org>
Cc: David Wang <DavidWang@zhaoxin.com>
Cc: "Cooper Yan(BJ-RD)" <CooperYan@zhaoxin.com>
Cc: "Qiyuan Wang(BJ-RD)" <QiyuanWang@zhaoxin.com>
Cc: "Herry Yang(BJ-RD)" <HerryYang@zhaoxin.com>
Link: https://lkml.kernel.org/r/01042674b2f741b2aed1f797359bdffb@zhaoxin.com
The kernel needs to explicitly enable FSGSBASE. So, the application needs
to know if it can safely use these instructions. Just looking at the CPUID
bit is not enough because it may be running in a kernel that does not
enable the instructions.
One way for the application would be to just try and catch the SIGILL.
But that is difficult to do in libraries which may not want to overwrite
the signal handlers of the main application.
Enumerate the enabled FSGSBASE capability in bit 1 of AT_HWCAP2 in the ELF
aux vector. AT_HWCAP2 is already used by PPC for similar purposes.
The application can access it open coded or by using the getauxval()
function in newer versions of glibc.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-18-git-send-email-chang.seok.bae@intel.com
Now that FSGSBASE is fully supported, remove unsafe_fsgsbase, enable
FSGSBASE by default, and add nofsgsbase to disable it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-17-git-send-email-chang.seok.bae@intel.com
When FSGSBASE is enabled, copying threads and reading fsbase and gsbase
using ptrace must read the actual values.
When copying a thread, use save_fsgs() and copy the saved values. For
ptrace, the bases must be read from memory regardless of the selector if
FSGSBASE is enabled.
[ tglx: Invoke __rdgsbase_inactive() with interrupts disabled ]
[ luto: Massage changelog ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-9-git-send-email-chang.seok.bae@intel.com
With the new FSGSBASE instructions, FS and GSABSE can be efficiently read
and writen in __switch_to(). Use that capability to preserve the full
state.
This will enable user code to do whatever it wants with the new
instructions without any kernel-induced gotchas. (There can still be
architectural gotchas: movl %gs,%eax; movl %eax,%gs may change GSBASE if
WRGSBASE was used, but users are expected to read the CPU manual before
doing things like that.)
This is a considerable speedup. It seems to save about 100 cycles
per context switch compared to the baseline 4.6-rc1 behavior on a
Skylake laptop.
[ chang: 5~10% performance improvements were seen with a context switch
benchmark that ran threads with different FS/GSBASE values (to the
baseline 4.16). Minor edit on the changelog. ]
[ tglx: Masaage changelog ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-8-git-send-email-chang.seok.bae@intel.com
Add cpu feature conditional FSGSBASE access to the relevant helper
functions. That allows to accelerate certain FS/GS base operations in
subsequent changes.
Note, that while possible, the user space entry/exit GSBASE operations are
not going to use the new FSGSBASE instructions. The reason is that it would
require additional storage for the user space value which adds more
complexity to the low level code and experiments have shown marginal
benefit. This may be revisited later but for now the SWAPGS based handling
in the entry code is preserved except for the paranoid entry/exit code.
To preserve the SWAPGS entry mechanism introduce __[rd|wr]gsbase_inactive()
helpers. Note, for Xen PV, paravirt hooks can be added later as they might
allow a very efficient but different implementation.
[ tglx: Massaged changelog ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-7-git-send-email-chang.seok.bae@intel.com
This is temporary. It will allow the next few patches to be tested
incrementally.
Setting unsafe_fsgsbase is a root hole. Don't do it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-4-git-send-email-chang.seok.bae@intel.com
When a ptracer writes a ptracee's FS/GSBASE with a different value, the
selector is also cleared. This behavior is not correct as the selector
should be preserved.
Update only the base value and leave the selector intact. To simplify the
code further remove the conditional checking for the same value as this
code is not performance critical.
The only recognizable downside of this change is when the selector is
already nonzero on write. The base will be reloaded according to the
selector. But the case is highly unexpected in real usages.
[ tglx: Massage changelog ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/9040CFCD-74BD-4C17-9A01-B9B713CF6B10@intel.com
While the DOC at the beginning of lib/bitmap.c explicitly states that
"The number of valid bits in a given bitmap does _not_ need to be an
exact multiple of BITS_PER_LONG.", some of the bitmap operations do
indeed access BITS_PER_LONG portions of the provided bitmap no matter
the size of the provided bitmap.
For example, if find_first_bit() is provided with an 8 bit bitmap the
operation will access BITS_PER_LONG bits from the provided bitmap. While
the operation ensures that these extra bits do not affect the result,
the memory is still accessed.
The capacity bitmasks (CBMs) are typically stored in u32 since they
can never exceed 32 bits. A few instances exist where a bitmap_*
operation is performed on a CBM by simply pointing the bitmap operation
to the stored u32 value.
The consequence of this pattern is that some bitmap_* operations will
access out-of-bounds memory when interacting with the provided CBM.
This same issue has previously been addressed with commit 49e00eee00
("x86/intel_rdt: Fix out-of-bounds memory access in CBM tests")
but at that time not all instances of the issue were fixed.
Fix this by using an unsigned long to store the capacity bitmask data
that is passed to bitmap functions.
Fixes: e651901187 ("x86/intel_rdt: Introduce "bit_usage" to display cache allocations details")
Fixes: f4e80d67a5 ("x86/intel_rdt: Resctrl files reflect pseudo-locked information")
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: stable <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/58c9b6081fd9bf599af0dfc01a6fdd335768efef.1560975645.git.reinette.chatre@intel.com
AVX512 BFLOAT16 instructions support 16-bit BFLOAT16 floating-point
format (BF16) for deep learning optimization.
BF16 is a short version of 32-bit single-precision floating-point
format (FP32) and has several advantages over 16-bit half-precision
floating-point format (FP16). BF16 keeps FP32 accumulation after
multiplication without loss of precision, offers more than enough
range for deep learning training tasks, and doesn't need to handle
hardware exception.
AVX512 BFLOAT16 instructions are enumerated in CPUID.7.1:EAX[bit 5]
AVX512_BF16.
CPUID.7.1:EAX contains only feature bits. Reuse the currently empty
word 12 as a pure features word to hold the feature bits including
AVX512_BF16.
Detailed information of the CPUID bit and AVX512 BFLOAT16 instructions
can be found in the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference.
[ bp: Check CPUID(7) subleaf validity before accessing subleaf 1. ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-3-git-send-email-fenghua.yu@intel.com
It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two
whole feature bits words. To better utilize feature words, re-define
word 11 to host scattered features and move the four X86_FEATURE_CQM_*
features into Linux defined word 11. More scattered features can be
added in word 11 in the future.
Rename leaf 11 in cpuid_leafs to CPUID_LNX_4 to reflect it's a
Linux-defined leaf.
Rename leaf 12 as CPUID_DUMMY which will be replaced by a meaningful
name in the next patch when CPUID.7.1:EAX occupies world 12.
Maximum number of RMID and cache occupancy scale are retrieved from
CPUID.0xf.1 after scattered CQM features are enumerated. Carve out the
code into a separate function.
KVM doesn't support resctrl now. So it's safe to move the
X86_FEATURE_CQM_* features to scattered features word 11 for KVM.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-2-git-send-email-fenghua.yu@intel.com
... into a separate function for better readability. Split out from a
patch from Fenghua Yu <fenghua.yu@intel.com> to keep the mechanical,
sole code movement separate for easy review.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: x86@kernel.org
When SEV is active, the second kernel image is loaded into encrypted
memory. For that, make sure that when kexec builds the identity mapping
page table, the memory is encrypted (i.e., _PAGE_ENC is set).
[ bp: Sort local args and OR in _PAGE_ENC for more clarity. ]
Co-developed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: bhe@redhat.com
Cc: dyoung@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kexec@lists.infradead.org
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190430074421.7852-3-lijiang@redhat.com
When a virtual machine panics, its memory needs to be dumped for
analysis. With memory encryption in the picture, special care must be
taken when loading a kexec/kdump kernel in a SEV guest.
A SEV guest starts and runs fully encrypted. In order to load a kexec
kernel and initrd, arch_kexec_post_{alloc,free}_pages() need to not map
areas as decrypted unconditionally but differentiate whether the kernel
is running as a SEV guest and if so, leave kexec area encrypted.
[ bp: Reduce commit message to the relevant information pertaining to
this commit only. ]
Co-developed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: bhe@redhat.com
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: dyoung@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kexec@lists.infradead.org
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190430074421.7852-2-lijiang@redhat.com
At present, when using the kexec_file_load() syscall to load the kernel
image and initramfs, for example:
kexec -s -p xxx
the kernel does not pass the e820 reserved ranges to the second kernel,
which might cause two problems:
1. MMCONFIG: A device in PCI segment 1 cannot be discovered by the
kernel PCI probing without all the e820 I/O reservations being present
in the e820 table. Which is the case currently, because the kdump kernel
does not have those reservations because the kexec command does not pass
the I/O reservation via the "memmap=xxx" command line option.
Further details courtesy of Bjorn Helgaas¹: I think you should regard
correct MCFG/ECAM usage in the kdump kernel as a requirement. MMCONFIG
(aka ECAM) space is described in the ACPI MCFG table. If you don't have
ECAM:
(a) PCI devices won't work at all on non-x86 systems that use only
ECAM for config access,
(b) you won't be able to access devices on non-0 segments (granted,
there aren't very many of these yet, but there will be more in the
future), and
(c) you won't be able to access extended config space (addresses
0x100-0xfff), which means none of the Extended Capabilities will be
available (AER, ACS, ATS, etc).
2. The second issue is that the SME kdump kernel doesn't work without
the e820 reserved ranges. When SME is active in the kdump kernel, those
reserved regions are still decrypted, but because those reserved ranges
are not present at all in kdump kernel's e820 table, they are accessed
as encrypted. Which is obviously wrong.
[1]: https://lkml.kernel.org/r/CABhMZUUscS3jUZUSM5Y6EYJK6weo7Mjj5-EAKGvbw0qEe%2B38zw@mail.gmail.com
[ bp: Heavily massage commit message. ]
Suggested-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bjorn Helgaas <bjorn.helgaas@gmail.com>
Cc: dave.hansen@linux.intel.com
Cc: Dave Young <dyoung@redhat.com>
Cc: "Gustavo A. R. Silva" <gustavo@embeddedor.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kexec@lists.infradead.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190423013007.17838-4-lijiang@redhat.com
When executing the kexec_file_load() syscall, the first kernel needs to
pass the e820 reserved ranges to the second kernel because some devices
(PCI, for example) need them present in the kdump kernel for proper
initialization.
But the kernel can not exactly match the e820 reserved ranges when
walking through the iomem resources using the default IORES_DESC_NONE
descriptor, because there are several types of e820 ranges which are
marked IORES_DESC_NONE, see e820_type_to_iores_desc().
Therefore, add a new I/O resource descriptor called IORES_DESC_RESERVED
to mark exactly those ranges. It will be used to match the reserved
resource ranges when walking through iomem resources.
[ bp: Massage commit message. ]
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: bhe@redhat.com
Cc: dave.hansen@linux.intel.com
Cc: dyoung@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huang Zijiang <huang.zijiang@zte.com.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kexec@lists.infradead.org
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190423013007.17838-2-lijiang@redhat.com
In order for the kernel to be encrypted "in place" during boot, a workarea
outside of the kernel must be used. This SME workarea used during early
encryption of the kernel is situated on a 2MB boundary after the end of
the kernel text, data, etc. sections (_end).
This works well during initial boot of a compressed kernel because of
the relocation used for decompression of the kernel. But when performing
a kexec boot, there's a chance that the SME workarea may not be mapped
by the kexec pagetables or that some of the other data used by kexec
could exist in this range.
Create a section for SME in vmlinux.lds.S. Position it after "_end", which
is after "__end_of_kernel_reserve", so that the memory will be reclaimed
during boot and since this area is all zeroes, it compresses well. This
new section will be part of the kernel image, so kexec will account for it
in pagetable mappings and placement of data after the kernel.
Here's an example of a kernel size without and with the SME section:
without:
vmlinux: 36,501,616
bzImage: 6,497,344
100000000-47f37ffff : System RAM
1e4000000-1e47677d4 : Kernel code (0x7677d4)
1e47677d5-1e4e2e0bf : Kernel data (0x6c68ea)
1e5074000-1e5372fff : Kernel bss (0x2fefff)
with:
vmlinux: 44,419,408
bzImage: 6,503,136
880000000-c7ff7ffff : System RAM
8cf000000-8cf7677d4 : Kernel code (0x7677d4)
8cf7677d5-8cfe2e0bf : Kernel data (0x6c68ea)
8d0074000-8d0372fff : Kernel bss (0x2fefff)
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/3c483262eb4077b1654b2052bd14a8d011bffde3.1560969363.git.thomas.lendacky@amd.com
The memory occupied by the kernel is reserved using memblock_reserve()
in setup_arch(). Currently, the area is from symbols _text to __bss_stop.
Everything after __bss_stop must be specifically reserved otherwise it
is discarded. This is not clearly documented.
Add a new symbol, __end_of_kernel_reserve, that more readily identifies
what is reserved, along with comments that indicate what is reserved,
what is discarded and what needs to be done to prevent a section from
being discarded.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/7db7da45b435f8477f25e66f292631ff766a844c.1560969363.git.thomas.lendacky@amd.com
cpuinfo_x86.x86_model is an unsigned type, so comparing against zero
will generate a compilation warning:
arch/x86/kernel/cpu/cacheinfo.c: In function 'cacheinfo_amd_init_llc_id':
arch/x86/kernel/cpu/cacheinfo.c:662:19: warning: comparison is always true \
due to limited range of data type [-Wtype-limits]
Remove the unnecessary lower bound check.
[ bp: Massage. ]
Fixes: 68091ee7ac ("x86/CPU/AMD: Calculate last level cache ID from number of sharing threads")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "Gustavo A. R. Silva" <gustavo@embeddedor.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560954773-11967-1-git-send-email-cai@lca.pw
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
subject to gplv2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081204.018005938@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file is licensed under the gpl v2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204654.634736654@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 2 normalized pattern(s):
this source code is licensed under the gnu general public license
version 2 see the file copying for more details
this source code is licensed under general public license version 2
see
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 52 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.449021192@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A recent change moved the microcode loader hotplug callback into the early
startup phase which is running with interrupts disabled. It missed that
the callbacks invoke sysfs functions which might sleep causing nice 'might
sleep' splats with proper debugging enabled.
Split the callbacks and only load the microcode in the early startup phase
and move the sysfs handling back into the later threaded and preemptible
bringup phase where it was before.
Fixes: 78f4e932f7 ("x86/microcode, cpuhotplug: Add a microcode loader CPU hotplug callback")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: stable@vger.kernel.org
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1906182228350.1766@nanos.tec.linutronix.de
This function is only use by the core FPU code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-4-hch@lst.de
Merge two helpers into the main function, remove a pointless local
variable and flatten a conditional.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-3-hch@lst.de
Currently, the jump label of a static key is transformed via the arch
specific function:
void arch_jump_label_transform(struct jump_entry *entry,
enum jump_label_type type)
The new approach (batch mode) uses two arch functions, the first has the
same arguments of the arch_jump_label_transform(), and is the function:
bool arch_jump_label_transform_queue(struct jump_entry *entry,
enum jump_label_type type)
Rather than transforming the code, it adds the jump_entry in a queue of
entries to be updated. This functions returns true in the case of a
successful enqueue of an entry. If it returns false, the caller must to
apply the queue and then try to queue again, for instance, because the
queue is full.
This function expects the caller to sort the entries by the address before
enqueueuing then. This is already done by the arch independent code, though.
After queuing all jump_entries, the function:
void arch_jump_label_transform_apply(void)
Applies the changes in the queue.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/57b4caa654bad7e3b066301c9a9ae233dea065b5.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the patch of an address is done in three steps:
-- Pseudo-code #1 - Current implementation ---
1) add an int3 trap to the address that will be patched
sync cores (send IPI to all other CPUs)
2) update all but the first byte of the patched range
sync cores (send IPI to all other CPUs)
3) replace the first byte (int3) by the first byte of replacing opcode
sync cores (send IPI to all other CPUs)
-- Pseudo-code #1 ---
When a static key has more than one entry, these steps are called once for
each entry. The number of IPIs then is linear with regard to the number 'n' of
entries of a key: O(n*3), which is O(n).
This algorithm works fine for the update of a single key. But we think
it is possible to optimize the case in which a static key has more than
one entry. For instance, the sched_schedstats jump label has 56 entries
in my (updated) fedora kernel, resulting in 168 IPIs for each CPU in
which the thread that is enabling the key is _not_ running.
With this patch, rather than receiving a single patch to be processed, a vector
of patches is passed, enabling the rewrite of the pseudo-code #1 in this
way:
-- Pseudo-code #2 - This patch ---
1) for each patch in the vector:
add an int3 trap to the address that will be patched
sync cores (send IPI to all other CPUs)
2) for each patch in the vector:
update all but the first byte of the patched range
sync cores (send IPI to all other CPUs)
3) for each patch in the vector:
replace the first byte (int3) by the first byte of replacing opcode
sync cores (send IPI to all other CPUs)
-- Pseudo-code #2 - This patch ---
Doing the update in this way, the number of IPI becomes O(3) with regard
to the number of keys, which is O(1).
The batch mode is done with the function text_poke_bp_batch(), that receives
two arguments: a vector of "struct text_to_poke", and the number of entries
in the vector.
The vector must be sorted by the addr field of the text_to_poke structure,
enabling the binary search of a handler in the poke_int3_handler function
(a fast path).
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/ca506ed52584c80f64de23f6f55ca288e5d079de.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the definition of the code to be written from
__jump_label_transform() to a specialized function. No functional
change.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/d2f52a0010ecd399cf9b02a65bcf5836571b9e52.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove two little helpers and merge them into kernel_fpu_end() to
streamline the function.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-2-hch@lst.de
Pull x86 fixes from Thomas Gleixner:
"The accumulated fixes from this and last week:
- Fix vmalloc TLB flush and map range calculations which lead to
stale TLBs, spurious faults and other hard to diagnose issues.
- Use fault_in_pages_writable() for prefaulting the user stack in the
FPU code as it's less fragile than the current solution
- Use the PF_KTHREAD flag when checking for a kernel thread instead
of current->mm as the latter can give the wrong answer due to
use_mm()
- Compute the vmemmap size correctly for KASLR and 5-Level paging.
Otherwise this can end up with a way too small vmemmap area.
- Make KASAN and 5-level paging work again by making sure that all
invalid bits are masked out when computing the P4D offset. This
worked before but got broken recently when the LDT remap area was
moved.
- Prevent a NULL pointer dereference in the resource control code
which can be triggered with certain mount options when the
requested resource is not available.
- Enforce ordering of microcode loading vs. perf initialization on
secondary CPUs. Otherwise perf tries to access a non-existing MSR
as the boot CPU marked it as available.
- Don't stop the resource control group walk early otherwise the
control bitmaps are not updated correctly and become inconsistent.
- Unbreak kgdb by returning 0 on success from
kgdb_arch_set_breakpoint() instead of an error code.
- Add more Icelake CPU model defines so depending changes can be
queued in other trees"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode, cpuhotplug: Add a microcode loader CPU hotplug callback
x86/kasan: Fix boot with 5-level paging and KASAN
x86/fpu: Don't use current->mm to check for a kthread
x86/kgdb: Return 0 from kgdb_arch_set_breakpoint()
x86/resctrl: Prevent NULL pointer dereference when local MBM is disabled
x86/resctrl: Don't stop walking closids when a locksetup group is found
x86/fpu: Update kernel's FPU state before using for the fsave header
x86/mm/KASLR: Compute the size of the vmemmap section properly
x86/fpu: Use fault_in_pages_writeable() for pre-faulting
x86/CPU: Add more Icelake model numbers
mm/vmalloc: Avoid rare case of flushing TLB with weird arguments
mm/vmalloc: Fix calculation of direct map addr range
Adric Blake reported the following warning during suspend-resume:
Enabling non-boot CPUs ...
x86: Booting SMP configuration:
smpboot: Booting Node 0 Processor 1 APIC 0x2
unchecked MSR access error: WRMSR to 0x10f (tried to write 0x0000000000000000) \
at rIP: 0xffffffff8d267924 (native_write_msr+0x4/0x20)
Call Trace:
intel_set_tfa
intel_pmu_cpu_starting
? x86_pmu_dead_cpu
x86_pmu_starting_cpu
cpuhp_invoke_callback
? _raw_spin_lock_irqsave
notify_cpu_starting
start_secondary
secondary_startup_64
microcode: sig=0x806ea, pf=0x80, revision=0x96
microcode: updated to revision 0xb4, date = 2019-04-01
CPU1 is up
The MSR in question is MSR_TFA_RTM_FORCE_ABORT and that MSR is emulated
by microcode. The log above shows that the microcode loader callback
happens after the PMU restoration, leading to the conjecture that
because the microcode hasn't been updated yet, that MSR is not present
yet, leading to the #GP.
Add a microcode loader-specific hotplug vector which comes before
the PERF vectors and thus executes earlier and makes sure the MSR is
present.
Fixes: 400816f60c ("perf/x86/intel: Implement support for TSX Force Abort")
Reported-by: Adric Blake <promarbler14@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: x86@kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=203637
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlz8fAYeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG1asH/3ySguxqtqL1MCBa
4/SZ37PHeWKMerfX6ZyJdgEqK3B+PWlmuLiOMNK5h2bPLzeQQQAmHU/mfKmpXqgB
dHwUbG9yNnyUtTfsfRqAnCA6vpuw9Yb1oIzTCVQrgJLSWD0j7scBBvmzYqguOkto
ThwigLUq3AILr8EfR4rh+GM+5Dn9OTEFAxwil9fPHQo7QoczwZxpURhScT6Co9TB
DqLA3fvXbBvLs/CZy/S5vKM9hKzC+p39ApFTURvFPrelUVnythAM0dPDJg3pIn5u
g+/+gDxDFa+7ANxvxO2ng1sJPDqJMeY/xmjJYlYyLpA33B7zLNk2vDHhAP06VTtr
XCMhQ9s=
=cb80
-----END PGP SIGNATURE-----
Merge tag 'v5.2-rc4' into mauro
We need to pick up post-rc1 changes to various document files so they don't
get lost in Mauro's massive RST conversion push.
Fix the following sparse warning:
arch/x86/kernel/amd_nb.c:74:28: warning:
symbol 'hygon_nb_misc_ids' was not declared. Should it be static?
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Brian Woods <Brian.Woods@amd.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190614155441.22076-1-yuehaibing@huawei.com
The inline keyword was not at the beginning of the function declarations.
Fix the following warnings triggered when using W=1:
arch/x86/kernel/tsc.c:62:1: warning: 'inline' is not at beginning of declaration [-Wold-style-declaration]
arch/x86/kernel/tsc.c:79:1: warning: 'inline' is not at beginning of declaration [-Wold-style-declaration]
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: trivial@kernel.org
Cc: kernel-janitors@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190524103252.28575-1-malat@debian.org
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
The only way this can fail is if:
* debugfs superblock can not be pinned - something really went wrong with the
vfs layer.
* file is created with same name - the caller's fault.
* new_inode() fails - happens if memory is exhausted.
so failing to clean up debugfs properly is the least of the system's
sproblems in uch a situation.
[ bp: Extend commit message, remove unused err var in inject_init(). ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190612151531.GA16278@kroah.com
current->mm can be non-NULL if a kthread calls use_mm(). Check for
PF_KTHREAD instead to decide when to store user mode FP state.
Fixes: 2722146eb7 ("x86/fpu: Remove fpu->initialized")
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604175411.GA27477@lst.de
err must be nonzero in order to reach text_poke(), which caused kgdb to
fail to set breakpoints:
(gdb) break __x64_sys_sync
Breakpoint 1 at 0xffffffff81288910: file ../fs/sync.c, line 124.
(gdb) c
Continuing.
Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0xffffffff81288910
Command aborted.
Fixes: 86a2205712 ("x86/kgdb: Avoid redundant comparison of patched code")
Signed-off-by: Matt Mullins <mmullins@fb.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nadav Amit <namit@vmware.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: "Gustavo A. R. Silva" <gustavo@embeddedor.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190531194755.6320-1-mmullins@fb.com
AVX-512 components usage can result in turbo frequency drop. So it's useful
to expose AVX-512 usage elapsed time as a heuristic hint for user space job
schedulers to cluster the AVX-512 using tasks together.
Examples:
$ while [ 1 ]; do cat /proc/tid/arch_status | grep AVX512; sleep 1; done
AVX512_elapsed_ms: 4
AVX512_elapsed_ms: 8
AVX512_elapsed_ms: 4
This means that 4 milliseconds have elapsed since the tsks AVX512 usage was
detected when the task was scheduled out.
$ cat /proc/tid/arch_status | grep AVX512
AVX512_elapsed_ms: -1
'-1' indicates that no AVX512 usage was recorded for this task.
The time exposed is not necessarily accurate when the arch_status file is
read as the AVX512 usage is only evaluated when a task is scheduled
out. Accurate usage information can be obtained with performance counters.
[ tglx: Massaged changelog ]
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: peterz@infradead.org
Cc: hpa@zytor.com
Cc: ak@linux.intel.com
Cc: tim.c.chen@linux.intel.com
Cc: dave.hansen@intel.com
Cc: arjan@linux.intel.com
Cc: adobriyan@gmail.com
Cc: aubrey.li@intel.com
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linux API <linux-api@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190606012236.9391-2-aubrey.li@linux.intel.com
Booting with kernel parameter "rdt=cmt,mbmtotal,memlocal,l3cat,mba" and
executing "mount -t resctrl resctrl -o mba_MBps /sys/fs/resctrl" results in
a NULL pointer dereference on systems which do not have local MBM support
enabled..
BUG: kernel NULL pointer dereference, address: 0000000000000020
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 0 PID: 722 Comm: kworker/0:3 Not tainted 5.2.0-0.rc3.git0.1.el7_UNSUPPORTED.x86_64 #2
Workqueue: events mbm_handle_overflow
RIP: 0010:mbm_handle_overflow+0x150/0x2b0
Only enter the bandwith update loop if the system has local MBM enabled.
Fixes: de73f38f76 ("x86/intel_rdt/mba_sc: Feedback loop to dynamically update mem bandwidth")
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190610171544.13474-1-prarit@redhat.com
When a new control group is created __init_one_rdt_domain() walks all
the other closids to calculate the sets of used and unused bits.
If it discovers a pseudo_locksetup group, it breaks out of the loop. This
means any later closid doesn't get its used bits added to used_b. These
bits will then get set in unused_b, and added to the new control group's
configuration, even if they were marked as exclusive for a later closid.
When encountering a pseudo_locksetup group, we should continue. This is
because "a resource group enters 'pseudo-locked' mode after the schemata is
written while the resource group is in 'pseudo-locksetup' mode." When we
find a pseudo_locksetup group, its configuration is expected to be
overwritten, we can skip it.
Fixes: dfe9674b04 ("x86/intel_rdt: Enable entering of pseudo-locksetup mode")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H Peter Avin <hpa@zytor.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190603172531.178830-1-james.morse@arm.com
Use the HYPERVISOR_CALLBACK_VECTOR to notify an ACRN guest.
Co-developed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1559108037-18813-4-git-send-email-yakui.zhao@intel.com
ACRN is an open-source hypervisor maintained by The Linux Foundation. It
is built for embedded IOT with small footprint and real-time features.
Add ACRN guest support so that it allows Linux to be booted under the
ACRN hypervisor. This adds only the barebones implementation.
[ bp: Massage commit message and help text. ]
Co-developed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1559108037-18813-3-git-send-email-yakui.zhao@intel.com
Add a special Kconfig symbol X86_HV_CALLBACK_VECTOR so that the guests
using the hypervisor interrupt callback counter can select and thus
enable that counter. Select it when xen or hyperv support is enabled. No
functional changes.
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: linux-hyperv@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/1559108037-18813-2-git-send-email-yakui.zhao@intel.com
The OS is expected to write all bits to MCA_CTL for each bank,
thus enabling error reporting in all banks. However, some banks
may be unused in which case the registers for such banks are
Read-as-Zero/Writes-Ignored. Also, the OS may avoid setting some control
bits because of quirks, etc.
A bank can be considered uninitialized if the MCA_CTL register returns
zero. This is because either the OS did not write anything or because
the hardware is enforcing RAZ/WI for the bank.
Set a bank's init value based on if the control bits are set or not in
hardware. Return an error code in the sysfs interface for uninitialized
banks.
Do a final bank init check in a separate function which is not part of
any user-controlled code flows. This is so a user may enable/disable a
bank during runtime without having to restart their system.
[ bp: Massage a bit. Discover bank init state at boot. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-6-Yazen.Ghannam@amd.com
The number of MCA banks is provided per logical CPU. Historically, this
number has been the same across all CPUs, but this is not an
architectural guarantee. Future AMD systems may have MCA bank counts
that vary between logical CPUs in a system.
This issue was partially addressed in
006c077041 ("x86/mce: Handle varying MCA bank counts")
by allocating structures using the maximum number of MCA banks and by
saving the maximum MCA bank count in a system as the global count. This
means that some extra structures are allocated. Also, this means that
CPUs will spend more time in the #MC and other handlers checking extra
MCA banks.
Thus, define the number of MCA banks as a per-CPU variable.
[ bp: Make mce_num_banks an unsigned int. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-5-Yazen.Ghannam@amd.com
On legacy systems, the addresses of the MCA_MISC* registers need to be
recursively discovered based on a Block Pointer field in the registers.
On Scalable MCA systems, the register space is fixed, and particular
addresses can be derived by regular offsets for bank and register type.
This fixed address space includes the MCA_MISC* registers.
MCA_MISC0 is always available for each MCA bank. MCA_MISC1 through
MCA_MISC4 are considered available if MCA_MISC0[BlkPtr]=1.
Cache the value of MCA_MISC0[BlkPtr] for each bank and per CPU. This
needs to be done only during init. The values should be saved per CPU
to accommodate heterogeneous SMCA systems.
Redo smca_get_block_address() to directly return the block addresses.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-4-Yazen.Ghannam@amd.com
Current AMD systems have unique MCA banks per logical CPU even though
the type of the banks may all align to the same bank number. Each CPU
will have control of a set of MCA banks in the hardware and these are
not shared with other CPUs.
For example, bank 0 may be the Load-Store Unit on every logical CPU, but
each bank 0 is a unique structure in the hardware. In other words, there
isn't a *single* Load-Store Unit at MCA bank 0 that all logical CPUs
share.
This idea extends even to non-core MCA banks. For example, CPU0 and CPU4
may see a Unified Memory Controller at bank 15, but each CPU is actually
seeing a unique hardware structure that is not shared with other CPUs.
Because the MCA banks are all unique hardware structures, it would be
good to control them in a more granular way. For example, if there is a
known issue with the Floating Point Unit on CPU5 and a user wishes to
disable an error type on the Floating Point Unit, then it would be good
to do this only for CPU5 rather than all CPUs.
Also, future AMD systems may have heterogeneous MCA banks. Meaning
the bank numbers may not necessarily represent the same types between
CPUs. For example, bank 20 visible to CPU0 may be a Unified Memory
Controller and bank 20 visible to CPU4 may be a Coherent Slave. So
granular control will be even more necessary should the user wish to
control specific MCA banks.
Split the device attributes from struct mce_bank leaving only the MCA
bank control fields.
Make struct mce_banks[] per_cpu in order to have more granular control
over individual MCA banks in the hardware.
Allocate the device attributes statically based on the maximum number of
MCA banks supported. The sysfs interface will use as many as needed per
CPU. Currently, this is set to mca_cfg.banks, but will be changed to a
per_cpu bank count in a future patch.
Allocate the MCA control bits statically. This is in order to avoid
locking warnings when memory is allocated during secondary CPUs' init
sequences.
Also, remove the now unnecessary return values from
__mcheck_cpu_mce_banks_init() and __mcheck_cpu_cap_init().
Redo the sysfs store/show functions to handle the per_cpu mce_banks[].
[ bp: s/mce_banks_percpu/mce_banks_array/g ]
[ Locking issue reported by ]
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-3-Yazen.Ghannam@amd.com
The struct mce_banks[] array is only used in mce/core.c so move its
definition there and make it static. Also, change the "init" field to
bool type.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-2-Yazen.Ghannam@amd.com
Use the _ASM_BX macro which expands to either %rbx or %ebx, depending on
the 32-bit or 64-bit config selected.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190606200044.5730-1-ubizjak@gmail.com
With the recent addition of RSDP parsing in the decompression stage,
a kexec-ed kernel now needs ACPI tables to be covered by the identity
mapping. And in commit
6bbeb276b7 ("x86/kexec: Add the EFI system tables and ACPI tables to the ident map")
the ACPI tables memory region was added to the ident map.
But some machines have only an ACPI NVS memory region and the ACPI
tables are located in that region. In such case, the kexec-ed kernel
will still fail when trying to access ACPI tables if they're not mapped.
So add the NVS memory region to the ident map as well.
[ bp: Massage. ]
Fixes: 6bbeb276b7 ("x86/kexec: Add the EFI system tables and ACPI tables to the ident map")
Suggested-by: Junichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Junichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chao Fan <fanc.fnst@cn.fujitsu.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dirk van der Merwe <dirk.vandermerwe@netronome.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: kexec@lists.infradead.org
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190610073617.19767-1-kasong@redhat.com
Another round of SPDX header file fixes for 5.2-rc4
These are all more "GPL-2.0-or-later" or "GPL-2.0-only" tags being
added, based on the text in the files. We are slowly chipping away at
the 700+ different ways people tried to write the license text. All of
these were reviewed on the spdx mailing list by a number of different
people.
We now have over 60% of the kernel files covered with SPDX tags:
$ ./scripts/spdxcheck.py -v 2>&1 | grep Files
Files checked: 64533
Files with SPDX: 40392
Files with errors: 0
I think the majority of the "easy" fixups are now done, it's now the
start of the longer-tail of crazy variants to wade through.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXPuGTg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykBvQCg2SG+HmDH+tlwKLT/q7jZcLMPQigAoMpt9Uuy
sxVEiFZo8ZU9v1IoRb1I
=qU++
-----END PGP SIGNATURE-----
Merge tag 'spdx-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull yet more SPDX updates from Greg KH:
"Another round of SPDX header file fixes for 5.2-rc4
These are all more "GPL-2.0-or-later" or "GPL-2.0-only" tags being
added, based on the text in the files. We are slowly chipping away at
the 700+ different ways people tried to write the license text. All of
these were reviewed on the spdx mailing list by a number of different
people.
We now have over 60% of the kernel files covered with SPDX tags:
$ ./scripts/spdxcheck.py -v 2>&1 | grep Files
Files checked: 64533
Files with SPDX: 40392
Files with errors: 0
I think the majority of the "easy" fixups are now done, it's now the
start of the longer-tail of crazy variants to wade through"
* tag 'spdx-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (159 commits)
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 450
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 449
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 448
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 446
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 445
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 444
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 443
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 442
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 441
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 440
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 438
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 437
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 436
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 435
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 434
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 433
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 432
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 431
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 430
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 429
...
Mostly due to x86 and acpi conversion, several documentation
links are still pointing to the old file. Fix them.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Reviewed-by: Wolfram Sang <wsa@the-dreams.de>
Reviewed-by: Sven Van Asbroeck <TheSven73@gmail.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
In commit
39388e80f9 ("x86/fpu: Don't save fxregs for ia32 frames in copy_fpstate_to_sigframe()")
I removed the statement
| if (ia32_fxstate)
| copy_fxregs_to_kernel(fpu);
and argued that it was wrongly merged because the content was already
saved in kernel's state.
This was wrong: It is required to write it back because it is only
saved on the user-stack and save_fsave_header() reads it from task's
FPU-state. I missed that part…
Save x87 FPU state unless thread's FPU registers are already up to date.
Fixes: 39388e80f9 ("x86/fpu: Don't save fxregs for ia32 frames in copy_fpstate_to_sigframe()")
Reported-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Eric Biggers <ebiggers@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607142915.y52mfmgk5lvhll7n@linutronix.de
Fix a couple of s/poped/popped/ typos.
Signed-off-by: George G. Davis <george_davis@mentor.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Currently, only the whole physical memory is identity-mapped for the
kexec kernel and the regions reserved by firmware are ignored.
However, the recent addition of RSDP parsing in the decompression stage
and especially:
33f0df8d84 ("x86/boot: Search for RSDP in the EFI tables")
which tries to access EFI system tables and to dig out the RDSP address
from there, becomes a problem because in certain configurations, they
might not be mapped in the kexec'ed kernel's address space.
What is more, this problem doesn't appear on all systems because the
kexec kernel uses gigabyte pages to build the identity mapping. And
the EFI system tables and ACPI tables can, depending on the system
configuration, end up being mapped as part of all physical memory, if
they share the same 1 GB area with the physical memory.
Therefore, make sure they're always mapped.
[ bp: productize half-baked patch:
- rewrite commit message.
- correct the map_acpi_tables() function name in the !ACPI case. ]
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Dirk van der Merwe <dirk.vandermerwe@netronome.com>
Cc: dyoung@redhat.com
Cc: fanc.fnst@cn.fujitsu.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: j-nomura@ce.jp.nec.com
Cc: kexec@lists.infradead.org
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190429002318.GA25400@MiWiFi-R3L-srv
Since commit
d9c9ce34ed ("x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails")
get_user_pages_unlocked() pre-faults user's memory if a write generates
a page fault while the handler is disabled.
This works in general and uncovered a bug as reported by Mike
Rapoport¹. It has been pointed out that this function may be fragile
and a simple pre-fault as in fault_in_pages_writeable() would be a
better solution. Better as in taste and simplicity: that write (as
performed by the alternative function) performs exactly the same
faulting of memory as before. This was suggested by Hugh Dickins and
Andrew Morton.
Use fault_in_pages_writeable() for pre-faulting user's stack.
[ bigeasy: Write commit message. ]
[ bp: Massage some. ]
¹ https://lkml.kernel.org/r/1557844195-18882-1-git-send-email-rppt@linux.ibm.com
Fixes: d9c9ce34ed ("x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails")
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190529072540.g46j4kfeae37a3iu@linutronix.de
Link: https://lkml.kernel.org/r/1557844195-18882-1-git-send-email-rppt@linux.ibm.com
While the TIF_SYSCALL_EMU is set in ptrace_resume independent of any
architecture, currently only powerpc and x86 unset the TIF_SYSCALL_EMU
flag in ptrace_disable which gets called from ptrace_detach.
Let's move the clearing of TIF_SYSCALL_EMU flag to __ptrace_unlink
which gets executed from ptrace_detach and also keep it along with
or close to clearing of TIF_SYSCALL_TRACE.
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation version 2 of the license
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 315 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file is licensed under gplv2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 22 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190115.129548190@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
distribute under gplv2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 8 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190114.475576622@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file is released under the gplv2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 68 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190114.292346262@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
licensed under the terms of the gnu general public license version 2
see file copying for details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531081035.403801661@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
your use of this code is subject to the terms and conditions of the
gnu general public license version 2 see copying or http www gnu org
licenses gpl html
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000437.701946635@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
use of this code is subject to the terms and conditions of the gnu
general public license version 2 see copying or http www gnu org
licenses gpl html
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000437.611918838@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation inc 51 franklin st fifth floor boston ma 02110
1301 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 111 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000436.567572064@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation inc 59 temple place suite 330 boston ma 02111
1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 136 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000436.384967451@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 263 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.208660670@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <x86@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In commit:
4b53a3412d ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper")
the tsk_nr_cpus_allowed() wrapper was removed. There was not
much difference in !RT but in RT we used this to implement
migrate_disable(). Within a migrate_disable() section the CPU mask is
restricted to single CPU while the "normal" CPU mask remains untouched.
As an alternative implementation Ingo suggested to use:
struct task_struct {
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
};
with
t->cpus_ptr = &t->cpus_mask;
In -RT we then can switch the cpus_ptr to:
t->cpus_ptr = &cpumask_of(task_cpu(p));
in a migration disabled region. The rules are simple:
- Code that 'uses' ->cpus_allowed would use the pointer.
- Code that 'modifies' ->cpus_allowed would use the direct mask.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Two fixes: a quirk for KVM guests running on certain AMD CPUs, and a
KASAN related build fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Don't force the CPB cap when running under a hypervisor
x86/boot: Provide KASAN compatible aliases for string routines
Pull integrity subsystem fixes from Mimi Zohar:
"Four bug fixes, none 5.2-specific, all marked for stable.
The first two are related to the architecture specific IMA policy
support. The other two patches, one is related to EVM signatures,
based on additional hash algorithms, and the other is related to
displaying the IMA policy"
* 'next-fixes-for-5.2-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
ima: show rules with IMA_INMASK correctly
evm: check hash algorithm passed to init_desc()
ima: fix wrong signed policy requirement when not appraising
x86/ima: Check EFI_RUNTIME_SERVICES before using
Based on 1 normalized pattern(s):
subject to the gnu public license v 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 9 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528171440.130801526@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
subject to the gnu general public license v2 only
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528171439.275006521@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this copyrighted material is made available to anyone wishing to use
modify copy or redistribute it subject to the terms and conditions
of the gnu general public license v 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 45 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528170027.342746075@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file may be distributed under the terms of the gnu general
public license version 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 9 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.395589349@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 3 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [kishon] [vijay] [abraham]
[i] [kishon]@[ti] [com] this program is distributed in the hope that
it will be useful but without any warranty without even the implied
warranty of merchantability or fitness for a particular purpose see
the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [graeme] [gregory]
[gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
[kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
[hk] [hemahk]@[ti] [com] this program is distributed in the hope
that it will be useful but without any warranty without even the
implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1105 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation inc
59 temple place suite 330 boston ma 02111 1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1334 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation inc 675 mass ave cambridge ma 02139 usa
either version 2 of the license or at your option any later version
incorporated herein by reference
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 4 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190524100844.465381181@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 9ed0985332 ("x86: intel_epb: Take CONFIG_PM into account")
prevented the majority of the Performance and Energy Bias Hint (EPB)
handling code from being built when CONFIG_PM is unset to fix a
regression introduced by commit b9c273babc ("PM / arch: x86:
MSR_IA32_ENERGY_PERF_BIAS sysfs interface").
In hindsight, however, it would be better to skip all of the EPB
handling code for CONFIG_PM unset as there really is no reason for
it to be there in that case. Namely, if the EPB is not touched
by the kernel at all with CONFIG_PM unset, there is no need to
worry about modifying the EPB inadvertently on CPU online and since
the system will not suspend or hibernate then, there is no need to
worry about possible modifications of the EPB by the platform
firmware during system-wide PM transitions.
For this reason, revert the changes made by commit 9ed0985332
and only allow intel_epb.o to be built when CONFIG_PM is set.
Note that this changes the behavior of the kernels built with
CONFIG_PM unset as they will not modify the EPB on boot if it is
zero initially any more, so it is not a fix strictly speaking, but
users building their kernels with CONFIG_PM unset really should not
expect them to take energy efficiency into account. Moreover, if
CONFIG_PM is unset for performance reasons, leaving EPB as set
initially by the platform firmware will actually be consistent
with the user's expectations.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
As synchronous exceptions really only make sense against the current
task (otherwise how are you synchronous) remove the task parameter
from from force_sig_fault to make it explicit that is what is going
on.
The two known exceptions that deliver a synchronous exception to a
stopped ptraced task have already been changed to
force_sig_fault_to_task.
The callers have been changed with the following emacs regular expression
(with obvious variations on the architectures that take more arguments)
to avoid typos:
force_sig_fault[(]\([^,]+\)[,]\([^,]+\)[,]\([^,]+\)[,]\W+current[)]
->
force_sig_fault(\1,\2,\3)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Update the calls of force_sig_fault that pass in a variable that is
set to current earlier to explicitly use current.
This is to make the next change that removes the task parameter
from force_sig_fault easier to verify.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>