2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
Commit Graph

888112 Commits

Author SHA1 Message Date
Sean Christopherson
a9dd6f09d7 KVM: x86: Allocate vcpu struct in common x86 code
Move allocation of VMX and SVM vcpus to common x86.  Although the struct
being allocated is technically a VMX/SVM struct, it can be interpreted
directly as a 'struct kvm_vcpu' because of the pre-existing requirement
that 'struct kvm_vcpu' be located at offset zero of the arch/vendor vcpu
struct.

Remove the message from the build-time assertions regarding placement of
the struct, as compatibility with the arch usercopy region is no longer
the sole dependent on 'struct kvm_vcpu' being at offset zero.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:55 +01:00
Sean Christopherson
7f27179a88 KVM: SVM: Use direct vcpu pointer during vCPU create/free
Capture the vcpu pointer in a local varaible and replace '&svm->vcpu'
references with a direct reference to the pointer in anticipation of
moving bits of the code to common x86 and passing the vcpu pointer into
svm_create_vcpu(), i.e. eliminate unnecessary noise from future patches.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:54 +01:00
Sean Christopherson
34109c0476 KVM: VMX: Use direct vcpu pointer during vCPU create/free
Capture the vcpu pointer in a local varaible and replace '&vmx->vcpu'
references with a direct reference to the pointer in anticipation of
moving bits of the code to common x86 and passing the vcpu pointer into
vmx_create_vcpu(), i.e. eliminate unnecessary noise from future patches.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:54 +01:00
Sean Christopherson
034d8e2cb9 KVM: VMX: Allocate VPID after initializing VCPU
Do VPID allocation after calling the common kvm_vcpu_init() as a step
towards doing vCPU allocation (via kmem_cache_zalloc()) and calling
kvm_vcpu_init() back-to-back.  Squishing allocation and initialization
together will eventually allow the sequence to be moved to arch-agnostic
creation code.

Note, the VPID is not consumed until KVM_RUN, slightly delaying its
allocation should have no real function impact.  VPID allocation was
arbitrarily placed in the original patch, commit 2384d2b326 ("KVM:
VMX: Enable Virtual Processor Identification (VPID)").

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:53 +01:00
Sean Christopherson
16be9ddea2 KVM: x86: Free wbinvd_dirty_mask if vCPU creation fails
Free the vCPU's wbinvd_dirty_mask if vCPU creation fails after
kvm_arch_vcpu_init(), e.g. when installing the vCPU's file descriptor.
Do the freeing by calling kvm_arch_vcpu_free() instead of open coding
the freeing.  This adds a likely superfluous, but ultimately harmless,
call to kvmclock_reset(), which only clears vcpu->arch.pv_time_enabled.
Using kvm_arch_vcpu_free() allows for additional cleanup in the future.

Fixes: f5f48ee15c ("KVM: VMX: Execute WBINVD to keep data consistency with assigned devices")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:52 +01:00
Sean Christopherson
cb10bf9194 KVM: PPC: Book3S PR: Free shared page if mmu initialization fails
Explicitly free the shared page if kvmppc_mmu_init() fails during
kvmppc_core_vcpu_create(), as the page is freed only in
kvmppc_core_vcpu_free(), which is not reached via kvm_vcpu_uninit().

Fixes: 96bc451a15 ("KVM: PPC: Introduce shared page")
Cc: stable@vger.kernel.org
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:52 +01:00
Sean Christopherson
1a978d9d3e KVM: PPC: Book3S HV: Uninit vCPU if vcore creation fails
Call kvm_vcpu_uninit() if vcore creation fails to avoid leaking any
resources allocated by kvm_vcpu_init(), i.e. the vcpu->run page.

Fixes: 371fefd6f2 ("KVM: PPC: Allow book3s_hv guests to use SMT processor modes")
Cc: stable@vger.kernel.org
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:51 +01:00
Paolo Bonzini
6441fa6178 KVM: x86: avoid incorrect writes to host MSR_IA32_SPEC_CTRL
If the guest is configured to have SPEC_CTRL but the host does not
(which is a nonsensical configuration but these are not explicitly
forbidden) then a host-initiated MSR write can write vmx->spec_ctrl
(respectively svm->spec_ctrl) and trigger a #GP when KVM tries to
restore the host value of the MSR.  Add a more comprehensive check
for valid bits of SPEC_CTRL, covering host CPUID flags and,
since we are at it and it is more correct that way, guest CPUID
flags too.

For AMD, remove the unnecessary is_guest_mode check around setting
the MSR interception bitmap, so that the code looks the same as
for Intel.

Cc: Jim Mattson <jmattson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:47 +01:00
Paolo Bonzini
4425f567b0 KVM: async_pf: drop kvm_arch_async_page_present wrappers
The wrappers make it less clear that the position of the call
to kvm_arch_async_page_present depends on the architecture, and
that only one of the two call sites will actually be active.
Remove them.

Cc: Andy Lutomirski <luto@kernel.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-23 09:51:08 +01:00
Paolo Bonzini
99634e3ec0 KVM: x86: list MSR_IA32_UCODE_REV as an emulated MSR
Even if it's read-only, it can still be written to by userspace.  Let
them know by adding it to KVM_GET_MSR_INDEX_LIST.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-23 09:51:07 +01:00
Gavin Shan
5fcf3a55a6 tools/kvm_stat: Fix kvm_exit filter name
The filter name is fixed to "exit_reason" for some kvm_exit events, no
matter what architect we have. Actually, the filter name ("exit_reason")
is only applicable to x86, meaning it's broken on other architects
including aarch64.

This fixes the issue by providing various kvm_exit filter names, depending
on architect we're on. Afterwards, the variable filter name is picked and
applied through ioctl(fd, SET_FILTER).

Reported-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-23 09:51:06 +01:00
Paolo Bonzini
56871d444b KVM: x86: fix overlap between SPTE_MMIO_MASK and generation
The SPTE_MMIO_MASK overlaps with the bits used to track MMIO
generation number.  A high enough generation number would overwrite the
SPTE_SPECIAL_MASK region and cause the MMIO SPTE to be misinterpreted.

Likewise, setting bits 52 and 53 would also cause an incorrect generation
number to be read from the PTE, though this was partially mitigated by the
(useless if it weren't for the bug) removal of SPTE_SPECIAL_MASK from
the spte in get_mmio_spte_generation.  Drop that removal, and replace
it with a compile-time assertion.

Fixes: 6eeb4ef049 ("KVM: x86: assign two bits to track SPTE kinds")
Reported-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-23 09:50:34 +01:00
Milan Pandurov
09cbcef6c6 kvm: Refactor handling of VM debugfs files
We can store reference to kvm_stats_debugfs_item instead of copying
its values to kvm_stat_data.
This allows us to remove duplicated code and usage of temporary
kvm_stat_data inside vm_stat_get et al.

Signed-off-by: Milan Pandurov <milanpa@amazon.de>
Reviewed-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:33 +01:00
Sean Christopherson
e30a7d623d KVM: x86/mmu: Apply max PA check for MMIO sptes to 32-bit KVM
Remove the bogus 64-bit only condition from the check that disables MMIO
spte optimization when the system supports the max PA, i.e. doesn't have
any reserved PA bits.  32-bit KVM always uses PAE paging for the shadow
MMU, and per Intel's SDM:

  PAE paging translates 32-bit linear addresses to 52-bit physical
  addresses.

The kernel's restrictions on max physical addresses are limits on how
much memory the kernel can reasonably use, not what physical addresses
are supported by hardware.

Fixes: ce88decffd ("KVM: MMU: mmio page fault support")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:33 +01:00
Miaohe Lin
a4d956b939 KVM: nVMX: vmread should not set rflags to specify success in case of #PF
In case writing to vmread destination operand result in a #PF, vmread
should not call nested_vmx_succeed() to set rflags to specify success.
Similar to as done in VMPTRST (See handle_vmptrst()).

Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:32 +01:00
Sean Christopherson
b5c3c1b3c6 KVM: x86/mmu: Micro-optimize nEPT's bad memptype/XWR checks
Rework the handling of nEPT's bad memtype/XWR checks to micro-optimize
the checks as much as possible.  Move the check to a separate helper,
__is_bad_mt_xwr(), which allows the guest_rsvd_check usage in
paging_tmpl.h to omit the check entirely for paging32/64 (bad_mt_xwr is
always zero for non-nEPT) while retaining the bitwise-OR of the current
code for the shadow_zero_check in walk_shadow_page_get_mmio_spte().

Add a comment for the bitwise-OR usage in the mmio spte walk to avoid
future attempts to "fix" the code, which is what prompted this
optimization in the first place[*].

Opportunistically remove the superfluous '!= 0' and parantheses, and
use BIT_ULL() instead of open coding its equivalent.

The net effect is that code generation is largely unchanged for
walk_shadow_page_get_mmio_spte(), marginally better for
ept_prefetch_invalid_gpte(), and significantly improved for
paging32/64_prefetch_invalid_gpte().

Note, walk_shadow_page_get_mmio_spte() can't use a templated version of
the memtype/XRW as it works on the host's shadow PTEs, e.g. checks that
KVM hasn't borked its EPT tables.  Even if it could be templated, the
benefits of having a single implementation far outweight the few uops
that would be saved for NPT or non-TDP paging, e.g. most compilers
inline it all the way to up kvm_mmu_page_fault().

[*] https://lkml.kernel.org/r/20200108001859.25254-1-sean.j.christopherson@intel.com

Cc: Jim Mattson <jmattson@google.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:31 +01:00
Sean Christopherson
f8052a053a KVM: x86/mmu: Reorder the reserved bit check in prefetch_invalid_gpte()
Move the !PRESENT and !ACCESSED checks in FNAME(prefetch_invalid_gpte)
above the call to is_rsvd_bits_set().  For a well behaved guest, the
!PRESENT and !ACCESSED are far more likely to evaluate true than the
reserved bit checks, and they do not require additional memory accesses.

Before:
 Dump of assembler code for function paging32_prefetch_invalid_gpte:
   0x0000000000044240 <+0>:     callq  0x44245 <paging32_prefetch_invalid_gpte+5>
   0x0000000000044245 <+5>:     mov    %rcx,%rax
   0x0000000000044248 <+8>:     shr    $0x7,%rax
   0x000000000004424c <+12>:    and    $0x1,%eax
   0x000000000004424f <+15>:    lea    0x0(,%rax,4),%r8
   0x0000000000044257 <+23>:    add    %r8,%rax
   0x000000000004425a <+26>:    mov    %rcx,%r8
   0x000000000004425d <+29>:    and    0x120(%rsi,%rax,8),%r8
   0x0000000000044265 <+37>:    mov    0x170(%rsi),%rax
   0x000000000004426c <+44>:    shr    %cl,%rax
   0x000000000004426f <+47>:    and    $0x1,%eax
   0x0000000000044272 <+50>:    or     %rax,%r8
   0x0000000000044275 <+53>:    jne    0x4427c <paging32_prefetch_invalid_gpte+60>
   0x0000000000044277 <+55>:    test   $0x1,%cl
   0x000000000004427a <+58>:    jne    0x4428a <paging32_prefetch_invalid_gpte+74>
   0x000000000004427c <+60>:    mov    %rdx,%rsi
   0x000000000004427f <+63>:    callq  0x44080 <drop_spte>
   0x0000000000044284 <+68>:    mov    $0x1,%eax
   0x0000000000044289 <+73>:    retq
   0x000000000004428a <+74>:    xor    %eax,%eax
   0x000000000004428c <+76>:    and    $0x20,%ecx
   0x000000000004428f <+79>:    jne    0x44289 <paging32_prefetch_invalid_gpte+73>
   0x0000000000044291 <+81>:    mov    %rdx,%rsi
   0x0000000000044294 <+84>:    callq  0x44080 <drop_spte>
   0x0000000000044299 <+89>:    mov    $0x1,%eax
   0x000000000004429e <+94>:    jmp    0x44289 <paging32_prefetch_invalid_gpte+73>
 End of assembler dump.

After:
 Dump of assembler code for function paging32_prefetch_invalid_gpte:
   0x0000000000044240 <+0>:     callq  0x44245 <paging32_prefetch_invalid_gpte+5>
   0x0000000000044245 <+5>:     test   $0x1,%cl
   0x0000000000044248 <+8>:     je     0x4424f <paging32_prefetch_invalid_gpte+15>
   0x000000000004424a <+10>:    test   $0x20,%cl
   0x000000000004424d <+13>:    jne    0x4425d <paging32_prefetch_invalid_gpte+29>
   0x000000000004424f <+15>:    mov    %rdx,%rsi
   0x0000000000044252 <+18>:    callq  0x44080 <drop_spte>
   0x0000000000044257 <+23>:    mov    $0x1,%eax
   0x000000000004425c <+28>:    retq
   0x000000000004425d <+29>:    mov    %rcx,%rax
   0x0000000000044260 <+32>:    mov    (%rsi),%rsi
   0x0000000000044263 <+35>:    shr    $0x7,%rax
   0x0000000000044267 <+39>:    and    $0x1,%eax
   0x000000000004426a <+42>:    lea    0x0(,%rax,4),%r8
   0x0000000000044272 <+50>:    add    %r8,%rax
   0x0000000000044275 <+53>:    mov    %rcx,%r8
   0x0000000000044278 <+56>:    and    0x120(%rsi,%rax,8),%r8
   0x0000000000044280 <+64>:    mov    0x170(%rsi),%rax
   0x0000000000044287 <+71>:    shr    %cl,%rax
   0x000000000004428a <+74>:    and    $0x1,%eax
   0x000000000004428d <+77>:    mov    %rax,%rcx
   0x0000000000044290 <+80>:    xor    %eax,%eax
   0x0000000000044292 <+82>:    or     %rcx,%r8
   0x0000000000044295 <+85>:    je     0x4425c <paging32_prefetch_invalid_gpte+28>
   0x0000000000044297 <+87>:    mov    %rdx,%rsi
   0x000000000004429a <+90>:    callq  0x44080 <drop_spte>
   0x000000000004429f <+95>:    mov    $0x1,%eax
   0x00000000000442a4 <+100>:   jmp    0x4425c <paging32_prefetch_invalid_gpte+28>
 End of assembler dump.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:30 +01:00
Tom Lendacky
52918ed5fc KVM: SVM: Override default MMIO mask if memory encryption is enabled
The KVM MMIO support uses bit 51 as the reserved bit to cause nested page
faults when a guest performs MMIO. The AMD memory encryption support uses
a CPUID function to define the encryption bit position. Given this, it is
possible that these bits can conflict.

Use svm_hardware_setup() to override the MMIO mask if memory encryption
support is enabled. Various checks are performed to ensure that the mask
is properly defined and rsvd_bits() is used to generate the new mask (as
was done prior to the change that necessitated this patch).

Fixes: 28a1f3ac1d ("kvm: x86: Set highest physical address bits in non-present/reserved SPTEs")
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:30 +01:00
Miaohe Lin
d8010a779a KVM: vmx: delete meaningless nested_vmx_prepare_msr_bitmap() declaration
The function nested_vmx_prepare_msr_bitmap() declaration is below its
implementation. So this is meaningless and should be removed.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:29 +01:00
Sean Christopherson
87382003e3 KVM: x86: Refactor and rename bit() to feature_bit() macro
Rename bit() to __feature_bit() to give it a more descriptive name, and
add a macro, feature_bit(), to stuff the X68_FEATURE_ prefix to keep
line lengths manageable for code that hardcodes the bit to be retrieved.

No functional change intended.

Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:28 +01:00
Sean Christopherson
a7c48c3f56 KVM: x86: Expand build-time assertion on reverse CPUID usage
Add build-time checks to ensure KVM isn't trying to do a reverse CPUID
lookup on Linux-defined feature bits, along with comments to explain
the gory details of X86_FEATUREs and bit().

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:39 +01:00
Sean Christopherson
daa0d8c3a4 KVM: x86: Add CPUID_7_1_EAX to the reverse CPUID table
Add an entry for CPUID_7_1_EAX in the reserve_cpuid array in preparation
for incorporating the array in bit() build-time assertions, specifically
to avoid an assertion on F(AVX512_BF16) in do_cpuid_7_mask().

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:33 +01:00
Sean Christopherson
a0a2260c12 KVM: x86: Move bit() helper to cpuid.h
Move bit() to cpuid.h in preparation for incorporating the reverse_cpuid
array in bit() build-time assertions.  Opportunistically use the BIT()
macro instead of open-coding the shift.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:27 +01:00
Sean Christopherson
5ae78e95ed KVM: x86: Add dedicated emulator helpers for querying CPUID features
Add feature-specific helpers for querying guest CPUID support from the
emulator instead of having the emulator do a full CPUID and perform its
own bit tests.  The primary motivation is to eliminate the emulator's
usage of bit() so that future patches can add more extensive build-time
assertions on the usage of bit() without having to expose yet more code
to the emulator.

Note, providing a generic guest_cpuid_has() to the emulator doesn't work
due to the existing built-time assertions in guest_cpuid_has(), which
require the feature being checked to be a compile-time constant.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:22 +01:00
Sean Christopherson
345599f9a2 KVM: x86: Add macro to ensure reserved cr4 bits checks stay in sync
Add a helper macro to generate the set of reserved cr4 bits for both
host and guest to ensure that adding a check on guest capabilities is
also added for host capabilities, and vice versa.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:16 +01:00
Sean Christopherson
96be4e069c KVM: x86: Drop special XSAVE handling from guest_cpuid_has()
Now that KVM prevents setting host-reserved CR4 bits, drop the dedicated
XSAVE check in guest_cpuid_has() in favor of open coding similar checks
in the SVM/VMX XSAVES enabling flows.

Note, checking boot_cpu_has(X86_FEATURE_XSAVE) in the XSAVES flows is
technically redundant with respect to the CR4 reserved bit checks, e.g.
XSAVES #UDs if CR4.OSXSAVE=0 and arch.xsaves_enabled is consumed if and
only if CR4.OXSAVE=1 in guest.  Keep (add?) the explicit boot_cpu_has()
checks to help document KVM's usage of arch.xsaves_enabled.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:10 +01:00
Sean Christopherson
f1cdecf580 KVM: x86: Ensure all logical CPUs have consistent reserved cr4 bits
Check the current CPU's reserved cr4 bits against the mask calculated
for the boot CPU to ensure consistent behavior across all CPUs.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:05 +01:00
Sean Christopherson
b11306b53b KVM: x86: Don't let userspace set host-reserved cr4 bits
Calculate the host-reserved cr4 bits at runtime based on the system's
capabilities (using logic similar to __do_cpuid_func()), and use the
dynamically generated mask for the reserved bit check in kvm_set_cr4()
instead using of the static CR4_RESERVED_BITS define.  This prevents
userspace from "enabling" features in cr4 that are not supported by the
system, e.g. by ignoring KVM_GET_SUPPORTED_CPUID and specifying a bogus
CPUID for the vCPU.

Allowing userspace to set unsupported bits in cr4 can lead to a variety
of undesirable behavior, e.g. failed VM-Enter, and in general increases
KVM's attack surface.  A crafty userspace can even abuse CR4.LA57 to
induce an unchecked #GP on a WRMSR.

On a platform without LA57 support:

  KVM_SET_CPUID2 // CPUID_7_0_ECX.LA57 = 1
  KVM_SET_SREGS  // CR4.LA57 = 1
  KVM_SET_MSRS   // KERNEL_GS_BASE = 0x0004000000000000
  KVM_RUN

leads to a #GP when writing KERNEL_GS_BASE into hardware:

  unchecked MSR access error: WRMSR to 0xc0000102 (tried to write 0x0004000000000000)
  at rIP: 0xffffffffa00f239a (vmx_prepare_switch_to_guest+0x10a/0x1d0 [kvm_intel])
  Call Trace:
   kvm_arch_vcpu_ioctl_run+0x671/0x1c70 [kvm]
   kvm_vcpu_ioctl+0x36b/0x5d0 [kvm]
   do_vfs_ioctl+0xa1/0x620
   ksys_ioctl+0x66/0x70
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x4c/0x170
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7fc08133bf47

Note, the above sequence fails VM-Enter due to invalid guest state.
Userspace can allow VM-Enter to succeed (after the WRMSR #GP) by adding
a KVM_SET_SREGS w/ CR4.LA57=0 after KVM_SET_MSRS, in which case KVM will
technically leak the host's KERNEL_GS_BASE into the guest.  But, as
KERNEL_GS_BASE is a userspace-defined value/address, the leak is largely
benign as a malicious userspace would simply be exposing its own data to
the guest, and attacking a benevolent userspace would require multiple
bugs in the userspace VMM.

Cc: stable@vger.kernel.org
Cc: Jun Nakajima <jun.nakajima@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:59 +01:00
Sean Christopherson
e348ac7c9e KVM: VMX: Add helper to consolidate up PT/RTIT WRMSR fault logic
Add a helper to consolidate the common checks for writing PT MSRs,
and opportunistically clean up the formatting of the affected code.

No functional change intended.

Cc: Chao Peng <chao.p.peng@linux.intel.com>
Cc: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:54 +01:00
Sean Christopherson
fe6ed369fc KVM: VMX: Add non-canonical check on writes to RTIT address MSRs
Reject writes to RTIT address MSRs if the data being written is a
non-canonical address as the MSRs are subject to canonical checks, e.g.
KVM will trigger an unchecked #GP when loading the values to hardware
during pt_guest_enter().

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:50 +01:00
Miaohe Lin
311497e0c5 KVM: Fix some writing mistakes
Fix some writing mistakes in the comments.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:44 +01:00
Miaohe Lin
2f9f5cddb2 KVM: hyperv: Fix some typos in vcpu unimpl info
Fix some typos in vcpu unimpl info. It should be unhandled rather than
uhandled.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:41 +01:00
Miaohe Lin
00116795aa KVM: Fix some grammar mistakes
Fix some grammar mistakes in the comments.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:37 +01:00
Miaohe Lin
67b0ae43df KVM: Fix some comment typos and missing parentheses
Fix some typos and add missing parentheses in the comments.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:32 +01:00
Miaohe Lin
4d516fe7d3 KVM: Fix some out-dated function names in comment
Since commit b1346ab2af ("KVM: nVMX: Rename prepare_vmcs02_*_full to
prepare_vmcs02_*_rare"), prepare_vmcs02_full has been renamed to
prepare_vmcs02_rare.
nested_vmx_merge_msr_bitmap is renamed to nested_vmx_prepare_msr_bitmap
since commit c992384bde ("KVM: vmx: speed up MSR bitmap merge").

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:27 +01:00
Miaohe Lin
668effb63d KVM: Fix some wrong function names in comment
Fix some wrong function names in comment. mmu_check_roots is a typo for
mmu_check_root, vmcs_read_any should be vmcs12_read_any and so on.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:23 +01:00
Miaohe Lin
cad23e72b7 KVM: x86: check kvm_pit outside kvm_vm_ioctl_reinject()
check kvm_pit outside kvm_vm_ioctl_reinject() to keep codestyle consistent
with other kvm_pit func and prepare for futher cleanups.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:18 +01:00
Wanpeng Li
dfd146fcae KVM: LAPIC: micro-optimize fixed mode ipi delivery
This patch optimizes redundancy logic before fixed mode ipi is delivered
in the fast path, broadcast handling needs to go slow path, so the delivery
mode repair can be delayed to before slow path.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:15 +01:00
Wanpeng Li
1e9e2622a1 KVM: VMX: FIXED+PHYSICAL mode single target IPI fastpath
ICR and TSCDEADLINE MSRs write cause the main MSRs write vmexits in our
product observation, multicast IPIs are not as common as unicast IPI like
RESCHEDULE_VECTOR and CALL_FUNCTION_SINGLE_VECTOR etc.

This patch introduce a mechanism to handle certain performance-critical
WRMSRs in a very early stage of KVM VMExit handler.

This mechanism is specifically used for accelerating writes to x2APIC ICR
that attempt to send a virtual IPI with physical destination-mode, fixed
delivery-mode and single target. Which was found as one of the main causes
of VMExits for Linux workloads.

The reason this mechanism significantly reduce the latency of such virtual
IPIs is by sending the physical IPI to the target vCPU in a very early stage
of KVM VMExit handler, before host interrupts are enabled and before expensive
operations such as reacquiring KVM’s SRCU lock.
Latency is reduced even more when KVM is able to use APICv posted-interrupt
mechanism (which allows to deliver the virtual IPI directly to target vCPU
without the need to kick it to host).

Testing on Xeon Skylake server:

The virtual IPI latency from sender send to receiver receive reduces
more than 200+ cpu cycles.

Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:12 +01:00
Sean Christopherson
6948199a9a KVM: x86/mmu: WARN if root_hpa is invalid when handling a page fault
WARN if root_hpa is invalid when handling a page fault.  The check on
root_hpa exists for historical reasons that no longer apply to the
current KVM code base.

Remove an equivalent debug-only warning in direct_page_fault(), whose
existence more or less confirms that root_hpa should always be valid
when handling a page fault.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:09 +01:00
Sean Christopherson
0c7a98e34d KVM: x86/mmu: WARN on an invalid root_hpa
WARN on the existing invalid root_hpa checks in __direct_map() and
FNAME(fetch).  The "legitimate" path that invalidated root_hpa in the
middle of a page fault is long since gone, i.e. it should no longer be
impossible to invalidate in the middle of a page fault[*].

The root_hpa checks were added by two related commits

  989c6b34f6 ("KVM: MMU: handle invalid root_hpa at __direct_map")
  37f6a4e237 ("KVM: x86: handle invalid root_hpa everywhere")

to fix a bug where nested_vmx_vmexit() could be called *in the middle*
of a page fault.  At the time, vmx_interrupt_allowed(), which was and
still is used by kvm_can_do_async_pf() via ->interrupt_allowed(),
directly invoked nested_vmx_vmexit() to switch from L2 to L1 to emulate
a VM-Exit on a pending interrupt.  Emulating the nested VM-Exit resulted
in root_hpa being invalidated by kvm_mmu_reset_context() without
explicitly terminating the page fault.

Now that root_hpa is checked for validity by kvm_mmu_page_fault(), WARN
on an invalid root_hpa to detect any flows that reset the MMU while
handling a page fault.  The broken vmx_interrupt_allowed() behavior has
long since been fixed and resetting the MMU during a page fault should
not be considered legal behavior.

[*] It's actually technically possible in FNAME(page_fault)() because it
    calls inject_page_fault() when the guest translation is invalid, but
    in that case the page fault handling is immediately terminated.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:08 +01:00
Sean Christopherson
ddce620821 KVM: x86/mmu: Move root_hpa validity checks to top of page fault handler
Add a check on root_hpa at the beginning of the page fault handler to
consolidate several checks on root_hpa that are scattered throughout the
page fault code.  This is a preparatory step towards eventually removing
such checks altogether, or at the very least WARNing if an invalid root
is encountered.  Remove only the checks that can be easily audited to
confirm that root_hpa cannot be invalidated between their current
location and the new check in kvm_mmu_page_fault(), and aren't currently
protected by mmu_lock, i.e. keep the checks in __direct_map() and
FNAME(fetch) for the time being.

The root_hpa checks that are consolidate were all added by commit

  37f6a4e237 ("KVM: x86: handle invalid root_hpa everywhere")

which was a follow up to a bug fix for __direct_map(), commit

  989c6b34f6 ("KVM: MMU: handle invalid root_hpa at __direct_map")

At the time, nested VMX had, in hindsight, crazy handling of nested
interrupts and would trigger a nested VM-Exit in ->interrupt_allowed(),
and thus unexpectedly reset the MMU in flows such as can_do_async_pf().

Now that the wonky nested VM-Exit behavior is gone, the root_hpa checks
are bogus and confusing, e.g. it's not at all obvious what they actually
protect against, and at first glance they appear to be broken since many
of them run without holding mmu_lock.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:07 +01:00
Sean Christopherson
4cd071d13c KVM: x86/mmu: Move calls to thp_adjust() down a level
Move the calls to thp_adjust() down a level from the page fault handlers
to the map/fetch helpers and remove the page count shuffling done in
thp_adjust().

Despite holding a reference to the underlying page while processing a
page fault, the page fault flows don't actually rely on holding a
reference to the page when thp_adjust() is called.  At that point, the
fault handlers hold mmu_lock, which prevents mmu_notifier from completing
any invalidations, and have verified no invalidations from mmu_notifier
have occurred since the page reference was acquired (which is done prior
to taking mmu_lock).

The kvm_release_pfn_clean()/kvm_get_pfn() dance in thp_adjust() is a
quirk that is necessitated because thp_adjust() modifies the pfn that is
consumed by its caller.  Because the page fault handlers call
kvm_release_pfn_clean() on said pfn, thp_adjust() needs to transfer the
reference to the correct pfn purely for correctness when the pfn is
released.

Calling thp_adjust() from __direct_map() and FNAME(fetch) means the pfn
adjustment doesn't change the pfn as seen by the page fault handlers,
i.e. the pfn released by the page fault handlers is the same pfn that
was returned by gfn_to_pfn().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:07 +01:00
Sean Christopherson
0885904d4f KVM: x86/mmu: Move transparent_hugepage_adjust() above __direct_map()
Move thp_adjust() above __direct_map() in preparation of calling
thp_adjust() from  __direct_map() and FNAME(fetch).

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:07 +01:00
Sean Christopherson
0f90e1c10d KVM: x86/mmu: Consolidate tdp_page_fault() and nonpaging_page_fault()
Consolidate the direct MMU page fault handlers into a common helper,
direct_page_fault().  Except for unique max level conditions, the tdp
and nonpaging fault handlers are functionally identical.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:06 +01:00
Sean Christopherson
2cb70fd441 KVM: x86/mmu: Rename lpage_disallowed to account_disallowed_nx_lpage
Rename __direct_map()'s param that controls whether or not a disallowed
NX large page should be accounted to match what it actually does.  The
nonpaging_page_fault() case unconditionally passes %false for the param
even though it locally sets lpage_disallowed.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:06 +01:00
Sean Christopherson
2f57b7051f KVM: x86/mmu: Persist gfn_lpage_is_disallowed() to max_level
Persist the max page level calculated via gfn_lpage_is_disallowed() to
the max level "returned" by mapping_level() so that its naturally taken
into account by the max level check that conditions calling
transparent_hugepage_adjust().

Drop the gfn_lpage_is_disallowed() check in thp_adjust() as it's now
handled by mapping_level() and its callers.

Add a comment to document the behavior of host_mapping_level() and its
interaction with max level and transparent huge pages.

Note, transferring the gfn_lpage_is_disallowed() from thp_adjust() to
mapping_level() superficially affects how changes to a memslot's
disallow_lpage count will be handled due to thp_adjust() being run while
holding mmu_lock.

In the more common case where a different vCPU increments the count via
account_shadowed(), gfn_lpage_is_disallowed() is rechecked by set_spte()
to ensure a writable large page isn't created.

In the less common case where the count is decremented to zero due to
all shadow pages in the memslot being zapped, THP behavior now matches
hugetlbfs behavior in the sense that a small page will be created when a
large page could be used if the count reaches zero in the miniscule
window between mapping_level() and acquiring mmu_lock.

Lastly, the new THP behavior also follows hugetlbfs behavior in the
absurdly unlikely scenario of a memslot being moved such that the
memslot's compatibility with respect to large pages changes, but without
changing the validity of the gpf->pfn walk.  I.e. if a memslot is moved
between mapping_level() and snapshotting mmu_seq, it's theoretically
possible to consume a stale disallow_lpage count.  But, since KVM zaps
all shadow pages when moving a memslot and forces all vCPUs to reload a
new MMU, the inserted spte will always be thrown away prior to
completing the memslot move, i.e. whether or not the spte accurately
reflects disallow_lpage is irrelevant.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:05 +01:00
Sean Christopherson
cbe1e6f035 KVM: x86/mmu: Incorporate guest's page level into max level for shadow MMU
Restrict the max level for a shadow page based on the guest's level
instead of capping the level after the fact for host-mapped huge pages,
e.g. hugetlbfs pages.  Explicitly capping the max level using the guest
mapping level also eliminates FNAME(page_fault)'s subtle dependency on
THP only supporting 2mb pages.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:05 +01:00
Sean Christopherson
39ca1ecb78 KVM: x86/mmu: Refactor handling of forced 4k pages in page faults
Refactor the page fault handlers and mapping_level() to track the max
allowed page level instead of only tracking if a 4k page is mandatory
due to one restriction or another.  This paves the way for cleanly
consolidating tdp_page_fault() and nonpaging_page_fault(), and for
eliminating a redundant check on mmu_gfn_lpage_is_disallowed().

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:05 +01:00
Sean Christopherson
f0f37e229c KVM: x86/mmu: Refactor the per-slot level calculation in mapping_level()
Invert the loop which adjusts the allowed page level based on what's
compatible with the associated memslot to use a largest-to-smallest
page size walk.  This paves the way for passing around a "max level"
variable instead of having redundant checks and/or multiple booleans.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:04 +01:00