2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
Commit Graph

13 Commits

Author SHA1 Message Date
Linus Torvalds
d01e7f10da Merge branch 'exec-update-lock-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull exec-update-lock update from Eric Biederman:
 "The key point of this is to transform exec_update_mutex into a
  rw_semaphore so readers can be separated from writers.

  This makes it easier to understand what the holders of the lock are
  doing, and makes it harder to contend or deadlock on the lock.

  The real deadlock fix wound up in perf_event_open"

* 'exec-update-lock-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  exec: Transform exec_update_mutex into a rw_semaphore
2020-12-15 19:36:48 -08:00
Eric W. Biederman
f7cfd871ae exec: Transform exec_update_mutex into a rw_semaphore
Recently syzbot reported[0] that there is a deadlock amongst the users
of exec_update_mutex.  The problematic lock ordering found by lockdep
was:

   perf_event_open  (exec_update_mutex -> ovl_i_mutex)
   chown            (ovl_i_mutex       -> sb_writes)
   sendfile         (sb_writes         -> p->lock)
     by reading from a proc file and writing to overlayfs
   proc_pid_syscall (p->lock           -> exec_update_mutex)

While looking at possible solutions it occured to me that all of the
users and possible users involved only wanted to state of the given
process to remain the same.  They are all readers.  The only writer is
exec.

There is no reason for readers to block on each other.  So fix
this deadlock by transforming exec_update_mutex into a rw_semaphore
named exec_update_lock that only exec takes for writing.

Cc: Jann Horn <jannh@google.com>
Cc: Vasiliy Kulikov <segoon@openwall.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Bernd Edlinger <bernd.edlinger@hotmail.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christopher Yeoh <cyeoh@au1.ibm.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Fixes: eea9673250 ("exec: Add exec_update_mutex to replace cred_guard_mutex")
[0] https://lkml.kernel.org/r/00000000000063640c05ade8e3de@google.com
Reported-by: syzbot+db9cdf3dd1f64252c6ef@syzkaller.appspotmail.com
Link: https://lkml.kernel.org/r/87ft4mbqen.fsf@x220.int.ebiederm.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-12-10 13:13:32 -06:00
Eric W. Biederman
ed77e80e14 kcmp: In get_file_raw_ptr use task_lookup_fd_rcu
Modify get_file_raw_ptr to use task_lookup_fd_rcu.  The helper
task_lookup_fd_rcu does the work of taking the task lock and verifying
that task->files != NULL and then calls files_lookup_fd_rcu.  So let
use the helper to make a simpler implementation of get_file_raw_ptr.

Acked-by: Cyrill Gorcunov <gorcunov@gmail.com>
Link: https://lkml.kernel.org/r/20201120231441.29911-13-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-12-10 12:42:49 -06:00
Eric W. Biederman
f36c294327 file: Replace fcheck_files with files_lookup_fd_rcu
This change renames fcheck_files to files_lookup_fd_rcu.  All of the
remaining callers take the rcu_read_lock before calling this function
so the _rcu suffix is appropriate.  This change also tightens up the
debug check to verify that all callers hold the rcu_read_lock.

All callers that used to call files_check with the files->file_lock
held have now been changed to call files_lookup_fd_locked.

This change of name has helped remind me of which locks and which
guarantees are in place helping me to catch bugs later in the
patchset.

The need for better names became apparent in the last round of
discussion of this set of changes[1].

[1] https://lkml.kernel.org/r/CAHk-=wj8BQbgJFLa+J0e=iT-1qpmCRTbPAJ8gd6MJQ=kbRPqyQ@mail.gmail.com
Link: https://lkml.kernel.org/r/20201120231441.29911-9-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-12-10 12:40:03 -06:00
Eric W. Biederman
f43c283a89 kcmp: In kcmp_epoll_target use fget_task
Use the helper fget_task and simplify the code.

As well as simplifying the code this removes one unnecessary increment of
struct files_struct.  This unnecessary increment of files_struct.count can
result in exec unnecessarily unsharing files_struct and breaking posix
locks, and it can result in fget_light having to fallback to fget reducing
performance.

Suggested-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-4-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-4-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-12-10 12:39:40 -06:00
Bernd Edlinger
454e3126cb kernel/kcmp.c: Use new infrastructure to fix deadlocks in execve
This changes kcmp_epoll_target to use the new exec_update_mutex
instead of cred_guard_mutex.

This should be safe, as the credentials are only used for reading,
and furthermore ->mm and ->sighand are updated on execve,
but only under the new exec_update_mutex.

Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-03-25 10:04:01 -05:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Cyrill Gorcunov
c9653850c9 kernel/kcmp.c: drop branch leftover typo
The else branch been left over and escaped the source code refresh.  Not
a problem but better clean it up.

Fixes: 0791e3644e ("kcmp: add KCMP_EPOLL_TFD mode to compare epoll target files")
Link: http://lkml.kernel.org/r/20170917165838.GA1887@uranus.lan
Reported-by: Eugene Syromiatnikov <esyr@redhat.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Andrei Vagin <avagin@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:25 -07:00
Cyrill Gorcunov
0791e3644e kcmp: add KCMP_EPOLL_TFD mode to compare epoll target files
With current epoll architecture target files are addressed with
file_struct and file descriptor number, where the last is not unique.
Moreover files can be transferred from another process via unix socket,
added into queue and closed then so we won't find this descriptor in the
task fdinfo list.

Thus to checkpoint and restore such processes CRIU needs to find out
where exactly the target file is present to add it into epoll queue.
For this sake one can use kcmp call where some particular target file
from the queue is compared with arbitrary file passed as an argument.

Because epoll target files can have same file descriptor number but
different file_struct a caller should explicitly specify the offset
within.

To test if some particular file is matching entry inside epoll one have
to

 - fill kcmp_epoll_slot structure with epoll file descriptor,
   target file number and target file offset (in case if only
   one target is present then it should be 0)

 - call kcmp as kcmp(pid1, pid2, KCMP_EPOLL_TFD, fd, &kcmp_epoll_slot)
    - the kernel fetch file pointer matching file descriptor @fd of pid1
    - lookups for file struct in epoll queue of pid2 and returns traditional
      0,1,2 result for sorting purpose

Link: http://lkml.kernel.org/r/20170424154423.511592110@gmail.com
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Andrey Vagin <avagin@openvz.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:01 -07:00
Jann Horn
caaee6234d ptrace: use fsuid, fsgid, effective creds for fs access checks
By checking the effective credentials instead of the real UID / permitted
capabilities, ensure that the calling process actually intended to use its
credentials.

To ensure that all ptrace checks use the correct caller credentials (e.g.
in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS
flag), use two new flags and require one of them to be set.

The problem was that when a privileged task had temporarily dropped its
privileges, e.g.  by calling setreuid(0, user_uid), with the intent to
perform following syscalls with the credentials of a user, it still passed
ptrace access checks that the user would not be able to pass.

While an attacker should not be able to convince the privileged task to
perform a ptrace() syscall, this is a problem because the ptrace access
check is reused for things in procfs.

In particular, the following somewhat interesting procfs entries only rely
on ptrace access checks:

 /proc/$pid/stat - uses the check for determining whether pointers
     should be visible, useful for bypassing ASLR
 /proc/$pid/maps - also useful for bypassing ASLR
 /proc/$pid/cwd - useful for gaining access to restricted
     directories that contain files with lax permissions, e.g. in
     this scenario:
     lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar
     drwx------ root root /root
     drwxr-xr-x root root /root/foobar
     -rw-r--r-- root root /root/foobar/secret

Therefore, on a system where a root-owned mode 6755 binary changes its
effective credentials as described and then dumps a user-specified file,
this could be used by an attacker to reveal the memory layout of root's
processes or reveal the contents of files he is not allowed to access
(through /proc/$pid/cwd).

[akpm@linux-foundation.org: fix warning]
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Rasmus Villemoes
acbbe6fbb2 kcmp: fix standard comparison bug
The C operator <= defines a perfectly fine total ordering on the set of
values representable in a long.  However, unlike its namesake in the
integers, it is not translation invariant, meaning that we do not have
"b <= c" iff "a+b <= a+c" for all a,b,c.

This means that it is always wrong to try to boil down the relationship
between two longs to a question about the sign of their difference,
because the resulting relation [a LEQ b iff a-b <= 0] is neither
anti-symmetric or transitive.  The former is due to -LONG_MIN==LONG_MIN
(take any two a,b with a-b = LONG_MIN; then a LEQ b and b LEQ a, but a !=
b).  The latter can either be seen observing that x LEQ x+1 for all x,
implying x LEQ x+1 LEQ x+2 ...  LEQ x-1 LEQ x; or more directly with the
simple example a=LONG_MIN, b=0, c=1, for which a-b < 0, b-c < 0, but a-c >
0.

Note that it makes absolutely no difference that a transmogrying bijection
has been applied before the comparison is done.  In fact, had the
obfuscation not been done, one could probably not observe the bug
(assuming all values being compared always lie in one half of the address
space, the mathematical value of a-b is always representable in a long).
As it stands, one can easily obtain three file descriptors exhibiting the
non-transitivity of kcmp().

Side note 1: I can't see that ensuring the MSB of the multiplier is
set serves any purpose other than obfuscating the obfuscating code.

Side note 2:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>
#include <sys/syscall.h>

enum kcmp_type {
        KCMP_FILE,
        KCMP_VM,
        KCMP_FILES,
        KCMP_FS,
        KCMP_SIGHAND,
        KCMP_IO,
        KCMP_SYSVSEM,
        KCMP_TYPES,
};
pid_t pid;

int kcmp(pid_t pid1, pid_t pid2, int type,
	 unsigned long idx1, unsigned long idx2)
{
	return syscall(SYS_kcmp, pid1, pid2, type, idx1, idx2);
}
int cmp_fd(int fd1, int fd2)
{
	int c = kcmp(pid, pid, KCMP_FILE, fd1, fd2);
	if (c < 0) {
		perror("kcmp");
		exit(1);
	}
	assert(0 <= c && c < 3);
	return c;
}
int cmp_fdp(const void *a, const void *b)
{
	static const int normalize[] = {0, -1, 1};
	return normalize[cmp_fd(*(int*)a, *(int*)b)];
}
#define MAX 100 /* This is plenty; I've seen it trigger for MAX==3 */
int main(int argc, char *argv[])
{
	int r, s, count = 0;
	int REL[3] = {0,0,0};
	int fd[MAX];
	pid = getpid();
	while (count < MAX) {
		r = open("/dev/null", O_RDONLY);
		if (r < 0)
			break;
		fd[count++] = r;
	}
	printf("opened %d file descriptors\n", count);
	for (r = 0; r < count; ++r) {
		for (s = r+1; s < count; ++s) {
			REL[cmp_fd(fd[r], fd[s])]++;
		}
	}
	printf("== %d\t< %d\t> %d\n", REL[0], REL[1], REL[2]);
	qsort(fd, count, sizeof(fd[0]), cmp_fdp);
	memset(REL, 0, sizeof(REL));

	for (r = 0; r < count; ++r) {
		for (s = r+1; s < count; ++s) {
			REL[cmp_fd(fd[r], fd[s])]++;
		}
	}
	printf("== %d\t< %d\t> %d\n", REL[0], REL[1], REL[2]);
	return (REL[0] + REL[2] != 0);
}

Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
"Eric W. Biederman" <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-10 15:42:12 -07:00
Cyrill Gorcunov
44fd07e989 kcmp: include linux/ptrace.h
This makes it compile on s390. After all the ptrace_may_access
(which we use this file) is declared exactly in linux/ptrace.h.

This is preparatory work to wire this syscall up on all archs.

Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Alexander Kartashov <alekskartashov@parallels.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-20 17:40:19 -08:00
Cyrill Gorcunov
d97b46a646 syscalls, x86: add __NR_kcmp syscall
While doing the checkpoint-restore in the user space one need to determine
whether various kernel objects (like mm_struct-s of file_struct-s) are
shared between tasks and restore this state.

The 2nd step can be solved by using appropriate CLONE_ flags and the
unshare syscall, while there's currently no ways for solving the 1st one.

One of the ways for checking whether two tasks share e.g.  mm_struct is to
provide some mm_struct ID of a task to its proc file, but showing such
info considered to be not that good for security reasons.

Thus after some debates we end up in conclusion that using that named
'comparison' syscall might be the best candidate.  So here is it --
__NR_kcmp.

It takes up to 5 arguments - the pids of the two tasks (which
characteristics should be compared), the comparison type and (in case of
comparison of files) two file descriptors.

Lookups for pids are done in the caller's PID namespace only.

At moment only x86 is supported and tested.

[akpm@linux-foundation.org: fix up selftests, warnings]
[akpm@linux-foundation.org: include errno.h]
[akpm@linux-foundation.org: tweak comment text]
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Andrey Vagin <avagin@openvz.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Vasiliy Kulikov <segoon@openwall.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Valdis.Kletnieks@vt.edu
Cc: Michal Marek <mmarek@suse.cz>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-31 17:49:32 -07:00