When using DMA, drivers need to pass special translation info to the
hardware.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Recent experiments have shown many cores share 0x1E0 register used for
clock management.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Some cards do not use additional 0x30 offset for SPROM location. We do
not know the real condition for it yet, make it BCM4331 specific for
now.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Function managing IRQs is needed for external drivers like b43.
On the other side we do not expect writing any hosts drivers outside of
bcma, so this is safe to do not export functions related to this.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
In the brcm80211 driver we disable the 80211 core when the driver is
'down'. The bcma_core_disable() function exactly does the same as
our implementation so exporting this function makes sense.
Cc: linux-wireless@vger.kernel.org
Cc: Rafal Milecki <zajec5@gmail.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
In case of BCMA cards SPROM is located in the ChipCommon core, it is
not mapped as separated host window. So far we have met only SPROMs rev
8.
SPROM layout seems to be the same as for SSB buses, so we decided to
share SPROM struct and some defines.
For now we extract MAC address only, this can be improved of course.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Broadcom has released cards based on a new AMBA-based bus type. From a
programming point of view, this new bus type differs from AMBA and does
not use AMBA common registers. It also differs enough from SSB. We
decided that a new bus driver is needed to keep the code clean.
In its current form, the driver detects devices present on the bus and
registers them in the system. It allows registering BCMA drivers for
specified bus devices and provides them basic operations. The bus driver
itself includes two important bus managing drivers: ChipCommon core
driver and PCI(c) core driver. They are early used to allow correct
initialization.
Currently code is limited to supporting buses on PCI(e) devices, however
the driver is designed to be used also on other hosts. The host
abstraction layer is implemented and already used for PCI(e).
Support for PCI(e) hosts is working and seems to be stable (access to
80211 core was tested successfully on a few devices). We can still
optimize it by using some fixed windows, but this can be done later
without affecting any external code. Windows are just ranges in MMIO
used for accessing cores on the bus.
Cc: Greg KH <greg@kroah.com>
Cc: Michael Büsch <mb@bu3sch.de>
Cc: Larry Finger <Larry.Finger@lwfinger.net>
Cc: George Kashperko <george@znau.edu.ua>
Cc: Arend van Spriel <arend@broadcom.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Botting <andy@andybotting.com>
Cc: linuxdriverproject <devel@linuxdriverproject.org>
Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org>
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>