A single NFSv4 WRITE compound can often have three operations:
PUTFH, WRITE, then GETATTR.
When the WRITE payload is sent in a Read chunk, the client places
the GETATTR in the inline part of the RPC/RDMA message, just after
the WRITE operation (sans payload). The position value in the Read
chunk enables the receiver to insert the Read chunk at the correct
place in the received XDR stream; that is between the WRITE and
GETATTR.
According to RFC 8166, an NFS/RDMA client does not have to add XDR
round-up to the Read chunk that carries the WRITE payload. The
receiver adds XDR round-up padding if it is absent and the
receiver's XDR decoder requires it to be present.
Commit 193bcb7b37 ("svcrdma: Populate tail iovec when receiving")
attempted to add support for receiving such a compound so that just
the WRITE payload appears in rq_arg's page list, and the trailing
GETATTR is placed in rq_arg's tail iovec. (TCP just strings the
whole compound into the head iovec and page list, without regard
to the alignment of the WRITE payload).
The server transport logic also had to accommodate the optional XDR
round-up of the Read chunk, which it did simply by lengthening the
tail iovec when round-up was needed. This approach is adequate for
the NFSv2 and NFSv3 WRITE decoders.
Unfortunately it is not sufficient for nfsd4_decode_write. When the
Read chunk length is a couple of bytes less than PAGE_SIZE, the
computation at the end of nfsd4_decode_write allows argp->pagelen to
go negative, which breaks the logic in read_buf that looks for the
tail iovec.
The result is that a WRITE operation whose payload length is just
less than a multiple of a page succeeds, but the subsequent GETATTR
in the same compound fails with NFS4ERR_OP_ILLEGAL because the XDR
decoder can't find it. Clients ignore the error, but they must
update their attribute cache via a separate round trip.
As nfsd4_decode_write appears to expect the payload itself to always
have appropriate XDR round-up, have svc_rdma_build_normal_read_chunk
add the Read chunk XDR round-up to the page_len rather than
lengthening the tail iovec.
Reported-by: Olga Kornievskaia <kolga@netapp.com>
Fixes: 193bcb7b37 ("svcrdma: Populate tail iovec when receiving")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Olga Kornievskaia <kolga@netapp.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
So that NFS WRITE payloads can eventually be placed directly into a
file's page cache, enable the RPC-over-RDMA transport to present
these payloads in the xdr_buf's page list, while placing trailing
content (such as a GETATTR operation) in the xdr_buf's tail.
After this change, the RPC-over-RDMA's "copy tail" hack, added by
commit a97c331f9a ("svcrdma: Handle additional inline content"),
is no longer needed and can be removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Dan Carpenter <dan.carpenter@oracle.com> observed that the while()
loop in svc_rdma_build_read_chunk() does not document the assumption
that the loop interior is always executed at least once.
Defensive: the function now returns -EINVAL if this assumption
fails.
Suggested-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Clean up: No need to save the I/O direction. The functions that
release svc_rdma_chunk_ctxt already know what direction to use.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Clean up: Use offset_in_page() macro instead of open-coding.
Reported-by: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
When an RPC-over-RDMA request is received, the Receive buffer
contains a Transport Header possibly followed by an RPC message.
Even though rq_arg.head[0] (as passed to NFSD) does not contain the
Transport Header header, currently rq_arg.len includes the size of
the Transport Header.
That violates the intent of the xdr_buf API contract. .buflen should
include everything, but .len should be exactly the length of the RPC
message in the buffer.
The rq_arg fields are summed together at the end of
svc_rdma_recvfrom to obtain the correct return value. rq_arg.len
really ought to contain the correct number of bytes already, but it
currently doesn't due to the above misbehavior.
Let's instead ensure that .buflen includes the length of the
transport header, and that .len is always equal to head.iov_len +
.page_len + tail.iov_len .
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
svc_rdma_rw.c already contains helpers for the sendto path.
Introduce helpers for the recvfrom path.
The plan is to replace the local NFSD bespoke code that constructs
and posts RDMA Read Work Requests with calls to the rdma_rw API.
This shares code with other RDMA-enabled ULPs that manages the gory
details of buffer registration and posting Work Requests.
This new code also puts all RDMA_NOMSG-specific logic in one place.
Lastly, the use of rqstp->rq_arg.pages is deprecated in favor of
using rqstp->rq_pages directly, for clarity.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Sanity case: Catch the case where more Work Requests are being
posted to the Send Queue than there are Send Queue Entries.
This might happen if a client sends a chunk with more segments than
there are SQEs for the transport. The server can't send that reply,
so the transport will deadlock unless the client drops the RPC.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
The plan is to replace the local bespoke code that constructs and
posts RDMA Read and Write Work Requests with calls to the rdma_rw
API. This shares code with other RDMA-enabled ULPs that manages the
gory details of buffer registration and posting Work Requests.
Some design notes:
o The structure of RPC-over-RDMA transport headers is flexible,
allowing multiple segments per Reply with arbitrary alignment,
each with a unique R_key. Write and Send WRs continue to be
built and posted in separate code paths. However, one whole
chunk (with one or more RDMA segments apiece) gets exactly
one ib_post_send and one work completion.
o svc_xprt reference counting is modified, since a chain of
rdma_rw_ctx structs generates one completion, no matter how
many Write WRs are posted.
o The current code builds the transport header as it is construct-
ing Write WRs. I've replaced that with marshaling of transport
header data items in a separate step. This is because the exact
structure of client-provided segments may not align with the
components of the server's reply xdr_buf, or the pages in the
page list. Thus parts of each client-provided segment may be
written at different points in the send path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>