Have frwr's ro_unmap_sync recognize an invalidated rkey that appears
as part of a Receive completion. Local invalidation can be skipped
for that rkey.
Use an out-of-band signaling mechanism to indicate to the server
that the client is prepared to receive RDMA Send With Invalidate.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Send an RDMA-CM private message on connect, and look for one during
a connection-established event.
Both sides can communicate their various implementation limits.
Implementations that don't support this sideband protocol ignore it.
Once the client knows the server's inline threshold maxima, it can
adjust the use of Reply chunks, and eliminate most use of Position
Zero Read chunks. Moderately-sized I/O can be done using a pure
inline RDMA Send instead of RDMA operations that require memory
registration.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The fields in the recv_wr do not vary. There is no need to
initialize them before each ib_post_recv(). This removes a large-ish
data structure from the stack.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Most of the fields in each send_wr do not vary. There is
no need to initialize them before each ib_post_send(). This removes
a large-ish data structure from the stack.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up.
Since commit fc66448549 ("xprtrdma: Split the completion queue"),
rpcrdma_ep_post_recv() no longer uses the "ep" argument.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up. The "ia" argument is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently, each regbuf is allocated and DMA mapped at the same time.
This is done during transport creation.
When a device driver is unloaded, every DMA-mapped buffer in use by
a transport has to be unmapped, and then remapped to the new
device if the driver is loaded again. Remapping will have to be done
_after_ the connect worker has set up the new device.
But there's an ordering problem:
call_allocate, which invokes xprt_rdma_allocate which calls
rpcrdma_alloc_regbuf to allocate Send buffers, happens _before_
the connect worker can run to set up the new device.
Instead, at transport creation, allocate each buffer, but leave it
unmapped. Once the RPC carries these buffers into ->send_request, by
which time a transport connection should have been established,
check to see that the RPC's buffers have been DMA mapped. If not,
map them there.
When device driver unplug support is added, it will simply unmap all
the transport's regbufs, but it doesn't have to deallocate the
underlying memory.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The use of DMA_BIDIRECTIONAL is discouraged by DMA-API.txt.
Fortunately, xprtrdma now knows which direction I/O is going as
soon as it allocates each regbuf.
The RPC Call and Reply buffers are no longer the same regbuf. They
can each be labeled correctly now. The RPC Reply buffer is never
part of either a Send or Receive WR, but it can be part of Reply
chunk, which is mapped and registered via ->ro_map . So it is not
DMA mapped when it is allocated (DMA_NONE), to avoid a double-
mapping.
Since Receive buffers are no longer DMA_BIDIRECTIONAL and their
contents are never modified by the host CPU, DMA-API-HOWTO.txt
suggests that a DMA sync before posting each buffer should be
unnecessary. (See my_card_interrupt_handler).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RPC-over-RDMA needs to separate its RPC call and reply buffers.
o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA
Send operation using DMA_TO_DEVICE
o If the client expects a large RPC reply, it DMA maps rq_rcv_buf
as part of a Reply chunk using DMA_FROM_DEVICE
The two mappings are for data movement in opposite directions.
DMA-API.txt suggests that if these mappings share a DMA cacheline,
bad things can happen. This could occur in the final bytes of
rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers
happen to share a DMA cacheline.
On x86_64 the cacheline size is typically 8 bytes, and RPC call
messages are usually much smaller than the send buffer, so this
hasn't been a noticeable problem. But the DMA cacheline size can be
larger on other platforms.
Also, often rq_rcv_buf starts most of the way into a page, thus
an additional RDMA segment is needed to map and register the end of
that buffer. Try to avoid that scenario to reduce the cost of
registering and invalidating Reply chunks.
Instead of carrying a single regbuf that covers both rq_snd_buf and
rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for
rq_snd_buf and one regbuf for rq_rcv_buf.
Some incidental changes worth noting:
- To clear out some spaghetti, refactor xprt_rdma_allocate.
- The value stored in rg_size is the same as the value stored in
the iov.length field, so eliminate rg_size
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently there's a hidden and indirect mechanism for finding the
rpcrdma_req that goes with an rpc_rqst. It depends on getting from
the rq_buffer pointer in struct rpc_rqst to the struct
rpcrdma_regbuf that controls that buffer, and then to the struct
rpcrdma_req it goes with.
This was done back in the day to avoid the need to add a per-rqst
pointer or to alter the buf_free API when support for RPC-over-RDMA
was introduced.
I'm about to change the way regbuf's work to support larger inline
thresholds. Now is a good time to replace this indirect mechanism
with something that is more straightforward. I guess this should be
considered a clean up.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
An RPC can terminate before its reply arrives, if a credential
problem or a soft timeout occurs. After this happens, xprtrdma
reports it is out of Receive buffers.
A Receive buffer is posted before each RPC is sent, and returned to
the buffer pool when a reply is received. If no reply is received
for an RPC, that Receive buffer remains posted. But xprtrdma tries
to post another when the next RPC is sent.
If this happens a few dozen times, there are no receive buffers left
to be posted at send time. I don't see a way for a transport
connection to recover at that point, and it will spit warnings and
unnecessarily delay RPCs on occasion for its remaining lifetime.
Commit 1e465fd4ff ("xprtrdma: Replace send and receive arrays")
removed a little bit of logic to detect this case and not provide
a Receive buffer so no more buffers are posted, and then transport
operation continues correctly. We didn't understand what that logic
did, and it wasn't commented, so it was removed as part of the
overhaul to support backchannel requests.
Restore it, but be wary of the need to keep extra Receives posted
to deal with backchannel requests.
Fixes: 1e465fd4ff ("xprtrdma: Replace send and receive arrays")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Receive buffer exhaustion, if it were to actually occur, would be
catastrophic. However, when there are no reply buffers to post, that
means all of them have already been posted and are waiting for
incoming replies. By design, there can never be more RPCs in flight
than there are available receive buffers.
A receive buffer can be left posted after an RPC exits without a
received reply; say, due to a credential problem or a soft timeout.
This does not result in fewer posted receive buffers than there are
pending RPCs, and there is already logic in xprtrdma to deal
appropriately with this case.
It also looks like the "+ 2" that was removed was accidentally
accommodating the number of extra receive buffers needed for
receiving backchannel requests. That will need to be addressed by
another patch.
Fixes: 3d4cf35bd4 ("xprtrdma: Reply buffer exhaustion can be...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Instead of placing registered MWs sparsely into the rl_segments
array, place these MWs on a per-req list.
ro_unmap_{sync,safe} can then simply pull those MWs off the list
instead of walking through the array.
This change significantly reduces the size of struct rpcrdma_req
by removing nsegs and rl_mw from every array element.
As an additional clean-up, chunk co-ordinates are returned in the
"*mw" output argument so they are no longer needed in every
array element.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Frequent MR list exhaustion can impact I/O throughput, so enough MRs
are always created during transport set-up to prevent running out.
This means more MRs are created than most workloads need.
Commit 94f58c58c0 ("xprtrdma: Allow Read list and Reply chunk
simultaneously") introduced support for sending two chunk lists per
RPC, which consumes more MRs per RPC.
Instead of trying to provision more MRs, introduce a mechanism for
allocating MRs on demand. A few MRs are allocated during transport
set-up to kick things off.
This significantly reduces the average number of MRs per transport
while allowing the MR count to grow for workloads or devices that
need more MRs.
FRWR with mlx4 allocated almost 400 MRs per transport before this
patch. Now it starts with 32.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit c93c62231c ("xprtrdma: Disconnect on registration failure")
added a disconnect for some RPC marshaling failures. This is needed
only in a handful of cases, but it was triggering for simple stuff
like temporary resource shortages. Try to straighten this out.
Fix up the lower layers so they don't return -ENOMEM or other error
codes that the RPC client's FSM doesn't explicitly recognize.
Also fix up the places in the send_request path that do want a
disconnect. For example, when ib_post_send or ib_post_recv fail,
this is a sign that there is a send or receive queue resource
miscalculation. That should be rare, and is a sign of a software
bug. But xprtrdma can recover: disconnect to reset the transport and
start over.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Not having an rpcrdma_rep at call_allocate time can be a problem.
It means that send_request can't post a receive buffer to catch
the RPC's reply. Possible consequences are RPC timeouts or even
transport deadlock.
Instead of allowing an RPC to proceed if an rpcrdma_rep is
not available, return NULL to force call_allocate to wait and
try again.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: ALLPHYSICAL is gone and FMR has been converted to use
scatterlists. There are no more users of these functions.
This patch shrinks the size of struct rpcrdma_req by about 3500
bytes on x86_64. There is one of these structs for each RPC credit
(128 credits per transport connection).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
No HCA or RNIC in the kernel tree requires the use of ALLPHYSICAL.
ALLPHYSICAL advertises in the clear on the network fabric an R_key
that is good for all of the client's memory. No known exploit
exists, but theoretically any user on the server can use that R_key
on the client's QP to read or update any part of the client's memory.
ALLPHYSICAL exposes the client to server bugs, including:
o base/bounds errors causing data outside the i/o buffer to be
accessed
o RDMA access after reply causing data corruption and/or integrity
fail
ALLPHYSICAL can't protect application memory regions from server
update after a local signal or soft timeout has terminated an RPC.
ALLPHYSICAL chunks are no larger than a page. Special cases to
handle small chunks and long chunk lists have been a source of
implementation complexity and bugs.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
I found that commit ead3f26e35 ("xprtrdma: Add ro_unmap_safe
memreg method"), which introduces ro_unmap_safe, never wired up the
FMR recovery worker.
The FMR and FRWR recovery work queues both do the same thing.
Instead of setting up separate individual work queues for this,
schedule a delayed worker to deal with them, since recovering MRs is
not performance-critical.
Fixes: ead3f26e35 ("xprtrdma: Add ro_unmap_safe memreg method")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up.
After "xprtrdma: Remove ro_unmap() from all registration modes",
there are no longer any sites that take rpcrdma_ia::qplock for read.
The one site that takes it for write is always single-threaded. It
is safe to remove it.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In a cluster failover scenario, it is desirable for the client to
attempt to reconnect quickly, as an alternate NFS server is already
waiting to take over for the down server. The client can't see that
a server IP address has moved to a new server until the existing
connection is gone.
For fabrics and devices where it is meaningful, set a definite upper
bound on the amount of time before it is determined that a
connection is no longer valid. This allows the RPC client to detect
connection loss in a timely matter, then perform a fresh resolution
of the server GUID in case it has changed (cluster failover).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Replace rpcrdma_flush_cqs() and rpcrdma_clean_cqs() with
the new ib_drain_qp() API.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-By: Leon Romanovsky <leonro@mellanox.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Send buffer space is shared between the RPC-over-RDMA header and
an RPC message. A large RPC-over-RDMA header means less space is
available for the associated RPC message, which then has to be
moved via an RDMA Read or Write.
As more segments are added to the chunk lists, the header increases
in size. Typical modern hardware needs only a few segments to
convey the maximum payload size, but some devices and registration
modes may need a lot of segments to convey data payload. Sometimes
so many are needed that the remaining space in the Send buffer is
not enough for the RPC message. Sending such a message usually
fails.
To ensure a transport can always make forward progress, cap the
number of RDMA segments that are allowed in chunk lists. This
prevents less-capable devices and memory registrations from
consuming a large portion of the Send buffer by reducing the
maximum data payload that can be conveyed with such devices.
For now I choose an arbitrary maximum of 8 RDMA segments. This
allows a maximum size RPC-over-RDMA header to fit nicely in the
current 1024 byte inline threshold with over 700 bytes remaining
for an inline RPC message.
The current maximum data payload of NFS READ or WRITE requests is
one megabyte. To convey that payload on a client with 4KB pages,
each chunk segment would need to handle 32 or more data pages. This
is well within the capabilities of FMR. For physical registration,
the maximum payload size on platforms with 4KB pages is reduced to
32KB.
For FRWR, a device's maximum page list depth would need to be at
least 34 to support the maximum 1MB payload. A device with a smaller
maximum page list depth means the maximum data payload is reduced
when using that device.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Calling ib_poll_cq() to sort through WCs during a completion is a
common pattern amongst RDMA consumers. Since commit 14d3a3b249
("IB: add a proper completion queue abstraction"), WC sorting can
be handled by the IB core.
By converting to this new API, xprtrdma is made a better neighbor to
other RDMA consumers, as it allows the core to schedule the delivery
of completions more fairly amongst all active consumers.
Because each ib_cqe carries a pointer to a completion method, the
core can now post its own operations on a consumer's QP, and handle
the completions itself, without changes to the consumer.
Send completions were previously handled entirely in the completion
upcall handler (ie, deferring to a process context is unneeded).
Thus IB_POLL_SOFTIRQ is a direct replacement for the current
xprtrdma send code path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Calling ib_poll_cq() to sort through WCs during a completion is a
common pattern amongst RDMA consumers. Since commit 14d3a3b249
("IB: add a proper completion queue abstraction"), WC sorting can
be handled by the IB core.
By converting to this new API, xprtrdma is made a better neighbor to
other RDMA consumers, as it allows the core to schedule the delivery
of completions more fairly amongst all active consumers.
Because each ib_cqe carries a pointer to a completion method, the
core can now post its own operations on a consumer's QP, and handle
the completions itself, without changes to the consumer.
xprtrdma's reply processing is already handled in a work queue, but
there is some initial order-dependent processing that is done in the
soft IRQ context before a work item is scheduled.
IB_POLL_SOFTIRQ is a direct replacement for the current xprtrdma
receive code path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit fe97b47cd6 ("xprtrdma: Use workqueue to process RPC/RDMA
replies") replaced the reply tasklet with a workqueue that allows
RPC replies to be processed in parallel. Thus the credit values in
RPC-over-RDMA replies can be applied in a different order than in
which the server sent them.
To fix this, revert commit eba8ff660b ("xprtrdma: Move credit
update to RPC reply handler"). Reverting is done by hand to
accommodate code changes that have occurred since then.
Fixes: fe97b47cd6 ("xprtrdma: Use workqueue to process . . .")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
- Remove usage of ib_query_device and instead store attributes in
ib_device struct
- Move iopoll out of block and into lib, rename to irqpoll, and use
in several places in the rdma stack as our new completion queue
polling library mechanism. Update the other block drivers that
already used iopoll to use the new mechanism too.
- Replace the per-entry GID table locks with a single GID table lock
- IPoIB multicast cleanup
- Cleanups to the IB MR facility
- Add support for 64bit extended IB counters
- Fix for netlink oops while parsing RDMA nl messages
- RoCEv2 support for the core IB code
- mlx4 RoCEv2 support
- mlx5 RoCEv2 support
- Cross Channel support for mlx5
- Timestamp support for mlx5
- Atomic support for mlx5
- Raw QP support for mlx5
- MAINTAINERS update for mlx4/mlx5
- Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
- Add support for remote invalidate to the iSER driver (pushed through the
RDMA tree due to dependencies, acknowledged by nab)
- Update to NFSoRDMA (pushed through the RDMA tree due to dependencies,
acknowledged by Bruce)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWoSygAAoJELgmozMOVy/dDjsP/2vbTda2MvQfkfkGEZBQdJSg
095RN0gQgCJdg78lAl8yuaK8r4VN/7uefpDtFdudH1I/Pei7X0wxN9R1UzFNG4KR
AD53lz92IVPs15328SbPR2kvNWISR9aBFQo3rlElq3Grqlp0EMn2Ou1vtu87rekF
aMllxr8Nl0uZhP+eWusOsYpJUUtwirLgRnrAyfqo2UxZh/TMIroT0TCx1KXjVcAg
dhDARiZAdu3OgSc6OsWqmH+DELEq6dFVA5F+DDBGAb8bFZqlJc7cuMHWInwNsNXT
so4bnEQ835alTbsdYtqs5DUNS8heJTAJP4Uz0ehkTh/uNCcvnKeUTw1c2P/lXI1k
7s33gMM+0FXj0swMBw0kKwAF2d9Hhus9UAN7NwjBuOyHcjGRd5q7SAnfWkvKx000
s9jVW19slb2I38gB58nhjOh8s+vXUArgxnV1+kTia1+bJSR5swvVoWRicRXdF0vh
TvLX/BjbSIU73g1TnnLNYoBTV3ybFKQ6bVdQW7fzSTDs54dsI1vvdHXi3bYZCpnL
HVwQTZRfEzkvb0AdKbcvf8p/TlaAHem3ODqtO1eHvO4if1QJBSn+SptTEeJVYYdK
n4B3l/dMoBH4JXJUmEHB9jwAvYOpv/YLAFIvdL7NFwbqGNsC3nfXFcmkVORB1W3B
KEMcM2we4bz+uyKMjEAD
=5oO7
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma updates from Doug Ledford:
"Initial roundup of 4.5 merge window patches
- Remove usage of ib_query_device and instead store attributes in
ib_device struct
- Move iopoll out of block and into lib, rename to irqpoll, and use
in several places in the rdma stack as our new completion queue
polling library mechanism. Update the other block drivers that
already used iopoll to use the new mechanism too.
- Replace the per-entry GID table locks with a single GID table lock
- IPoIB multicast cleanup
- Cleanups to the IB MR facility
- Add support for 64bit extended IB counters
- Fix for netlink oops while parsing RDMA nl messages
- RoCEv2 support for the core IB code
- mlx4 RoCEv2 support
- mlx5 RoCEv2 support
- Cross Channel support for mlx5
- Timestamp support for mlx5
- Atomic support for mlx5
- Raw QP support for mlx5
- MAINTAINERS update for mlx4/mlx5
- Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
- Add support for remote invalidate to the iSER driver (pushed
through the RDMA tree due to dependencies, acknowledged by nab)
- Update to NFSoRDMA (pushed through the RDMA tree due to
dependencies, acknowledged by Bruce)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (169 commits)
IB/mlx5: Unify CQ create flags check
IB/mlx5: Expose Raw Packet QP to user space consumers
{IB, net}/mlx5: Move the modify QP operation table to mlx5_ib
IB/mlx5: Support setting Ethernet priority for Raw Packet QPs
IB/mlx5: Add Raw Packet QP query functionality
IB/mlx5: Add create and destroy functionality for Raw Packet QP
IB/mlx5: Refactor mlx5_ib_qp to accommodate other QP types
IB/mlx5: Allocate a Transport Domain for each ucontext
net/mlx5_core: Warn on unsupported events of QP/RQ/SQ
net/mlx5_core: Add RQ and SQ event handling
net/mlx5_core: Export transport objects
IB/mlx5: Expose CQE version to user-space
IB/mlx5: Add CQE version 1 support to user QPs and SRQs
IB/mlx5: Fix data validation in mlx5_ib_alloc_ucontext
IB/sa: Fix netlink local service GFP crash
IB/srpt: Remove redundant wc array
IB/qib: Improve ipoib UD performance
IB/mlx4: Advertise RoCE v2 support
IB/mlx4: Create and use another QP1 for RoCEv2
IB/mlx4: Enable send of RoCE QP1 packets with IP/UDP headers
...
Instead, use the cached copy of the attributes present on the device.
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The root of the problem was that sends (especially unsignalled
FASTREG and LOCAL_INV Work Requests) were not properly flow-
controlled, which allowed a send queue overrun.
Now that the RPC/RDMA reply handler waits for invalidation to
complete, the send queue is properly flow-controlled. Thus this
limit is no longer necessary.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up.
rb_lock critical sections added in rpcrdma_ep_post_extra_recv()
should have first been converted to use normal spin_lock now that
the reply handler is a work queue.
The backchannel set up code should use the appropriate helper
instead of open-coding a rb_recv_bufs list add.
Problem introduced by glib patch re-ordering on my part.
Fixes: f531a5dbc4 ('xprtrdma: Pre-allocate backward rpc_rqst')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
It doesn't matter either way, but the curly braces were clearly intended
here. It causes a Smatch warning.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Highlights include:
Features:
- RDMA client backchannel from Chuck
- Support for NFSv4.2 file CLONE using the btrfs ioctl
Bugfixes + cleanups
- Move socket data receive out of the bottom halves and into a workqueue
- Refactor NFSv4 error handling so synchronous and asynchronous RPC handles
errors identically.
- Fix a panic when blocks or object layouts reads return a bad data length
- Fix nfsroot so it can handle a 1024 byte long path.
- Fix bad usage of page offset in bl_read_pagelist
- Various NFSv4 callback cleanups+fixes
- Fix GETATTR bitmap verification
- Support hexadecimal number for sunrpc debug sysctl files
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWQPMXAAoJEGcL54qWCgDy6ZUQAL32vpgyMXe7R4jcxoQxm52+
tn8FrY8aBZAqucvQsIGCrYfE01W/s8goDTQdZODn0MCcoor12BTPVYNIR42/J/no
MNnRTDF0dJ4WG+inX9G87XGG6sFN3wDaQcCaexknkQZlFNF4KthxojzR2BgjmRVI
p3WKkLSNTt6DYQQ8eDetvKoDT0AjR/KCYm89tiE8GMhKYcaZl6dTazJxwOcp2CX9
YDW6+fQbsv8qp5v2ay03e88O/DSmcNRFoxy/KUGT9OwJgdN08IN8fTt6GG38yycT
D9tb9uObBRcll4PnucouadBcykGr6jAP0z8HklE266LH1dwYLOHQoDFdgAs0QGtq
nlySiKvToj6CYXonXoPOjZF3P/lxlkj5ViZ2enBxgxrPmyWl172cUSa6NTXOMO46
kPpxw50xa1gP5kkBVwIZ6XZuzl/5YRhB3BRP3g6yuJCbAwVBJvawYU7riC+6DEB9
zygVfm21vi9juUQXJ37zXVRBTtoFhFjuSxcAYxc63o181lWYShKQ3IiRYg+zTxnq
7DOhXa0ZNGvMgJJi0tH9Es3/S6TrGhyKh5gKY/o2XUjY0hCSsCSdP6jw6Mb9Ax1s
0LzByHAikxBKPt2OFeoUgwycI2xqow4iAfuFk071iP7n0nwC804cUHSkGxW67dBZ
Ve5Skkg1CV+oWQYxGmGZ
=py1V
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.4-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
New features:
- RDMA client backchannel from Chuck
- Support for NFSv4.2 file CLONE using the btrfs ioctl
Bugfixes + cleanups:
- Move socket data receive out of the bottom halves and into a
workqueue
- Refactor NFSv4 error handling so synchronous and asynchronous RPC
handles errors identically.
- Fix a panic when blocks or object layouts reads return a bad data
length
- Fix nfsroot so it can handle a 1024 byte long path.
- Fix bad usage of page offset in bl_read_pagelist
- Various NFSv4 callback cleanups+fixes
- Fix GETATTR bitmap verification
- Support hexadecimal number for sunrpc debug sysctl files"
* tag 'nfs-for-4.4-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (53 commits)
Sunrpc: Supports hexadecimal number for sysctl files of sunrpc debug
nfs: Fix GETATTR bitmap verification
nfs: Remove unused xdr page offsets in getacl/setacl arguments
fs/nfs: remove unnecessary new_valid_dev check
SUNRPC: fix variable type
NFS: Enable client side NFSv4.1 backchannel to use other transports
pNFS/flexfiles: Add support for FF_FLAGS_NO_IO_THRU_MDS
pNFS/flexfiles: When mirrored, retry failed reads by switching mirrors
SUNRPC: Remove the TCP-only restriction in bc_svc_process()
svcrdma: Add backward direction service for RPC/RDMA transport
xprtrdma: Handle incoming backward direction RPC calls
xprtrdma: Add support for sending backward direction RPC replies
xprtrdma: Pre-allocate Work Requests for backchannel
xprtrdma: Pre-allocate backward rpc_rqst and send/receive buffers
SUNRPC: Abstract backchannel operations
xprtrdma: Saving IRQs no longer needed for rb_lock
xprtrdma: Remove reply tasklet
xprtrdma: Use workqueue to process RPC/RDMA replies
xprtrdma: Replace send and receive arrays
xprtrdma: Refactor reply handler error handling
...
- "Checksum offload support in user space" enablement
- Misc cxgb4 fixes, add T6 support
- Misc usnic fixes
- 32 bit build warning fixes
- Misc ocrdma fixes
- Multicast loopback prevention extension
- Extend the GID cache to store and return attributes of GIDs
- Misc iSER updates
- iSER clustering update
- Network NameSpace support for rdma CM
- Work Request cleanup series
- New Memory Registration API
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWPO5UAAoJELgmozMOVy/dSCQP/iX2ImMZOS3VkOYKhLR3dSv8
4vTEiYIoAT1JEXiPpiabuuACwotcZcMRk9kZ0dcWmBoFusTzKJmoDOkgAYd95XqY
EsAyjqtzUGNNMjH5u5W+kdbaFdH9Ktq7IJvspRlJuvzC47Srax+qBxX01jrAkDgh
4PoA3hEa2KkvkDjY2Mhvk9EWd/uflO9Ky6o0D8jUQkWtEvKBRyDjQLk30oW6wHX9
pTWqww3dD0EXTrR+PDA88v2saKH1kZFU1Nt2eU8Bw+zlJM8hcX6U7PfRX0g3HT/J
o+7ejTdLPWFDH35gJOU+KE519f1JbwfRjPJCqbOC9IttBB7iHSbhcpQLpWv4JV1x
agdBeDA3TGQj3dHb2SkYMlWXCBp7q8UCbVGvvirTFzGSGU73sc6hhP+vCKvPQIlE
Ah5tUqD7Y3mOBjvuDeIzKMLXILd5d3cH+m7Laytrf5e7fJPmBRZyOkcMh0QVElyl
mKo+PFjghgeTFb405J7SDDw/vThVyN9HyIt7AGEzObaajzOOk9R1hkQr46XVy9TK
yi58fl85yQ2n6TWV6NRnvkQoMy/N2HAEuXk/7HtO0PabV5w3Lo0zvXB9SnVrrVEm
58FWRBYCWorVSdSacuDnPm0iz45WSRIb9G9sBlhEC93eXRq2rSBoy4RvyLeliHFH
hllyhNNolI6FJ64j07Xm
=bBIY
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma updates from Doug Ledford:
"This is my initial round of 4.4 merge window patches. There are a few
other things I wish to get in for 4.4 that aren't in this pull, as
this represents what has gone through merge/build/run testing and not
what is the last few items for which testing is not yet complete.
- "Checksum offload support in user space" enablement
- Misc cxgb4 fixes, add T6 support
- Misc usnic fixes
- 32 bit build warning fixes
- Misc ocrdma fixes
- Multicast loopback prevention extension
- Extend the GID cache to store and return attributes of GIDs
- Misc iSER updates
- iSER clustering update
- Network NameSpace support for rdma CM
- Work Request cleanup series
- New Memory Registration API"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (76 commits)
IB/core, cma: Make __attribute_const__ declarations sparse-friendly
IB/core: Remove old fast registration API
IB/ipath: Remove fast registration from the code
IB/hfi1: Remove fast registration from the code
RDMA/nes: Remove old FRWR API
IB/qib: Remove old FRWR API
iw_cxgb4: Remove old FRWR API
RDMA/cxgb3: Remove old FRWR API
RDMA/ocrdma: Remove old FRWR API
IB/mlx4: Remove old FRWR API support
IB/mlx5: Remove old FRWR API support
IB/srp: Dont allocate a page vector when using fast_reg
IB/srp: Remove srp_finish_mapping
IB/srp: Convert to new registration API
IB/srp: Split srp_map_sg
RDS/IW: Convert to new memory registration API
svcrdma: Port to new memory registration API
xprtrdma: Port to new memory registration API
iser-target: Port to new memory registration API
IB/iser: Port to new fast registration API
...
Pre-allocate extra send and receive Work Requests needed to handle
backchannel receives and sends.
The transport doesn't know how many extra WRs to pre-allocate until
the xprt_setup_backchannel() call, but that's long after the WRs are
allocated during forechannel setup.
So, use a fixed value for now.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma's backward direction send and receive buffers are the same
size as the forechannel's inline threshold, and must be pre-
registered.
The consumer has no control over which receive buffer the adapter
chooses to catch an incoming backwards-direction call. Any receive
buffer can be used for either a forward reply or a backward call.
Thus both types of RPC message must all be the same size.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Now that RPC replies are processed in a workqueue, there's no need
to disable IRQs when managing send and receive buffers. This saves
noticeable overhead per RPC.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The reply tasklet is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The reply tasklet is fast, but it's single threaded. After reply
traffic saturates a single CPU, there's no more reply processing
capacity.
Replace the tasklet with a workqueue to spread reply handling across
all CPUs. This also moves RPC/RDMA reply handling out of the soft
IRQ context and into a context that allows sleeps.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The rb_send_bufs and rb_recv_bufs arrays are used to implement a
pair of stacks for keeping track of free rpcrdma_req and rpcrdma_rep
structs. Replace those arrays with free lists.
To allow more than 512 RPCs in-flight at once, each of these arrays
would be larger than a page (assuming 8-byte addresses and 4KB
pages). Allowing up to 64K in-flight RPCs (as TCP now does), each
buffer array would have to be 128 pages. That's an order-6
allocation. (Not that we're going there.)
A list is easier to expand dynamically. Instead of allocating a
larger array of pointers and copying the existing pointers to the
new array, simply append more buffers to each list.
This also makes it simpler to manage receive buffers that might
catch backwards-direction calls, or to post receive buffers in
bulk to amortize the overhead of ib_post_recv.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The error cases in rpcrdma_reply_handler() almost never
execute. Ensure the compiler places them out of the hot path.
No behavior change expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 8301a2c047 ("xprtrdma: Limit work done by completion
handler") was supposed to prevent xprtrdma's upcall handlers from
starving other softIRQ work by letting them return to the provider
before all CQEs have been polled.
The logic assumes the provider will call the upcall handler again
immediately if the CQ is re-armed while there are still queued CQEs.
This assumption is invalid. The IBTA spec says that after a CQ is
armed, the hardware must interrupt only when a new CQE is inserted.
xprtrdma can't rely on the provider calling again, even though some
providers do.
Therefore, leaving CQEs on queue makes sense only when there is
another mechanism that ensures all remaining CQEs are consumed in a
timely fashion. xprtrdma does not have such a mechanism. If a CQE
remains queued, the transport can wait forever to send the next RPC.
Finally, move the wcs array back onto the stack to ensure that the
poll array is always local to the CPU where the completion upcall is
running.
Fixes: 8301a2c047 ("xprtrdma: Limit work done by completion ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
ib_req_notify_cq(IB_CQ_REPORT_MISSED_EVENTS) returns a positive
value if WCs were added to a CQ after the last completion upcall
but before the CQ has been re-armed.
Commit 7f23f6f6e3 ("xprtrmda: Reduce lock contention in
completion handlers") assumed that when ib_req_notify_cq() returned
a positive RC, the CQ had also been successfully re-armed, making
it safe to return control to the provider without losing any
completion signals. That is an invalid assumption.
Change both completion handlers to continue polling while
ib_req_notify_cq() returns a positive value.
Fixes: 7f23f6f6e3 ("xprtrmda: Reduce lock contention in ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Add support for network namespaces in the ib_cma module. This is
accomplished by:
1. Adding network namespace parameter for rdma_create_id. This parameter is
used to populate the network namespace field in rdma_id_private.
rdma_create_id keeps a reference on the network namespace.
2. Using the network namespace from the rdma_id instead of init_net inside
of ib_cma, when listening on an ID and when looking for an ID for an
incoming request.
3. Decrementing the reference count for the appropriate network namespace
when calling rdma_destroy_id.
In order to preserve the current behavior init_net is passed when calling
from other modules.
Signed-off-by: Guy Shapiro <guysh@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Signed-off-by: Yotam Kenneth <yotamke@mellanox.com>
Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
- Work around connection namespace lookup bug related to RoCE
- Change usnic license to Dual GPL/BSD (was intended to be that way
all along, but wasn't clear, permission from contributors was
chased down)
- Fix an issue between NFSoRDMA and mlx5 that could cause an oops
- Fix leak of sendonly multicast groups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWHoT/AAoJELgmozMOVy/deK4QALETCToLcR5RRDR+QleFUvby
FnP91Pu9zGOoiuP25FT5Ny0YAmTHd1KiDQBQHRe/NrYDCH2M/q8jFJSWZLwGrG6q
8GYc1ieozGQMZvId3ZJnqUJUTEyJu9QtpiFFZJYJHriP6OShP1GiHJ/XTN9dvJ/u
xcmViAYYIjjScjaY1MuYpxKITFwfZE0HtdvK7zzq+F9cpfmC//Zc0Po4V4o4Y9V3
14WgbWZyhehmECKwN95hIY1pLySadgcCxoeUDHclQ3efKLar4tEC3SOM2QZsnNRc
qlCHEZYeB5TRo0dF/2CYUMLfUHkMjnUpW2BiVDbQfmPio7lGUjh2SBAQjI5i1dEQ
Wg69JH1TV7BYfRiwe7n49P/BJ2vIhCR2UjQrHjilZ/h6DPSfKy29hVSvOzb5xLeJ
mwl/KSKxlfT2Z1SZy0yMlJfCm8tjPwf6WhOVwkFRAhYHD3Yf31EMVzD7gTtW2MXO
n5S80k5ccJlXniPWjaqerhjOZHmwHViBmHNlN4zlDCRZeT9IuKDj5mi31f7HC4gx
WqJtSjRxydpbGPKROHI4vrmfARPAKNrKhj8BiqxO5Cja+TiS2QeXXr+fbRwETrLS
TjXWNfS3Boy564AJ8Gfug2wfBcHwY+31Uv2a6nrMmKi+wwVexF/ENOb/x9WHZrVo
VqQVI2lUBH2LsmzadD9c
=usb1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma updates from Doug Ledford:
"We have four batched up patches for the current rc kernel.
Two of them are small fixes that are obvious.
One of them is larger than I would like for a late stage rc pull, but
we found an issue in the namespace lookup code related to RoCE and
this works around the issue for now (we allow a lookup with a
namespace to succeed on RoCE since RoCE namespaces aren't implemented
yet). This will go away in 4.4 when we put in support for namespaces
in RoCE devices.
The last one is large in terms of lines, but is all legal and no
functional changes. Cisco needed to update their files to be more
specific about their license. They had intended the files to be dual
licensed as GPL/BSD all along, and specified that in their module
license tag, but their file headers were not up to par. They
contacted all of the contributors to get agreement and then submitted
a patch to update the license headers in the files.
Summary:
- Work around connection namespace lookup bug related to RoCE
- Change usnic license to Dual GPL/BSD (was intended to be that way
all along, but wasn't clear, permission from contributors was
chased down)
- Fix an issue between NFSoRDMA and mlx5 that could cause an oops
- Fix leak of sendonly multicast groups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma:
IB/ipoib: For sendonly join free the multicast group on leave
IB/cma: Accept connection without a valid netdev on RoCE
xprtrdma: Don't require LOCAL_DMA_LKEY support for fastreg
usnic: add missing clauses to BSD license
There is no need to require LOCAL_DMA_LKEY support as the
PD allocation makes sure that there is a local_dma_lkey. Also
correctly set a return value in error path.
This caused a NULL pointer dereference in mlx5 which removed
the support for LOCAL_DMA_LKEY.
Fixes: bb6c96d728 ("xprtrdma: Replace global lkey with lkey local to PD")
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Otherwise a FRMR completion can cause a touch-after-free crash.
In xprt_rdma_destroy(), call rpcrdma_buffer_destroy() only after calling
rpcrdma_ep_destroy().
In rpcrdma_ep_destroy(), disconnect the cm_id first which should flush the
qp, then drain the cqs, then destroy the qp, and finally destroy the cqs.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The core API has changed so that devices that do not have a global
DMA lkey automatically create an mr, per-PD, and make that lkey
available. The global DMA lkey interface is going away in favor of
the per-PD DMA lkey.
The per-PD DMA lkey is always available. Convert xprtrdma to use the
device's per-PD DMA lkey for regbufs, no matter which memory
registration scheme is in use.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Cc: linux-nfs <linux-nfs@vger.kernel.org>
Acked-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
- Create drivers/staging/rdma
- Move amso1100 driver to staging/rdma and schedule for deletion
- Move ipath driver to staging/rdma and schedule for deletion
- Add hfi1 driver to staging/rdma and set TODO for move to regular tree
- Initial support for namespaces to be used on RDMA devices
- Add RoCE GID table handling to the RDMA core caching code
- Infrastructure to support handling of devices with differing
read and write scatter gather capabilities
- Various iSER updates
- Kill off unsafe usage of global mr registrations
- Update SRP driver
- Misc. mlx4 driver updates
- Support for the mr_alloc verb
- Support for a netlink interface between kernel and user space cache
daemon to speed path record queries and route resolution
- Ininitial support for safe hot removal of verbs devices
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV7v8wAAoJELgmozMOVy/d2dcP/3PXnGFPgFGJODKE6VCZtTvj
nooNXRKXjxv470UT5DiAX7SNcBxzzS7Zl/Lj+831H9iNXUyzuH31KtBOAZ3W03vZ
yXwCB2caOStSldTRSUUvPe2aIFPnyNmSpC4i6XcJLJMCFijKmxin5pAo8qE44BQU
yjhT+wC9P6LL5wZXsn/nFIMLjOFfu0WBFHNp3gs5j59paxlx5VeIAZk16aQZH135
m7YCyicwrS8iyWQl2bEXRMon2vlCHlX2RHmOJ4f/P5I0quNcGF2+d8Yxa+K1VyC5
zcb3OBezz+wZtvh16yhsDfSPqHWirljwID2VzOgRSzTJWvQjju8VkwHtkq6bYoBW
egIxGCHcGWsD0R5iBXLYr/tB+BmjbDObSm0AsR4+JvSShkeVA1IpeoO+19162ixE
n6CQnk2jCee8KXeIN4PoIKsjRSbIECM0JliWPLoIpuTuEhhpajftlSLgL5hf1dzp
HrSy6fXmmoRj7wlTa7DnYIC3X+ffwckB8/t1zMAm2sKnIFUTjtQXF7upNiiyWk4L
/T1QEzJ2bLQckQ9yY4v528SvBQwA4Dy1amIQB7SU8+2S//bYdUvhysWPkdKC4oOT
WlqS5PFDCI31MvNbbM3rUbMAD8eBAR8ACw9ZpGI/Rffm5FEX5W3LoxA8gfEBRuqt
30ZYFuW8evTL+YQcaV65
=EHLg
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull inifiniband/rdma updates from Doug Ledford:
"This is a fairly sizeable set of changes. I've put them through a
decent amount of testing prior to sending the pull request due to
that.
There are still a few fixups that I know are coming, but I wanted to
go ahead and get the big, sizable chunk into your hands sooner rather
than waiting for those last few fixups.
Of note is the fact that this creates what is intended to be a
temporary area in the drivers/staging tree specifically for some
cleanups and additions that are coming for the RDMA stack. We
deprecated two drivers (ipath and amso1100) and are waiting to hear
back if we can deprecate another one (ehca). We also put Intel's new
hfi1 driver into this area because it needs to be refactored and a
transfer library created out of the factored out code, and then it and
the qib driver and the soft-roce driver should all be modified to use
that library.
I expect drivers/staging/rdma to be around for three or four kernel
releases and then to go away as all of the work is completed and final
deletions of deprecated drivers are done.
Summary of changes for 4.3:
- Create drivers/staging/rdma
- Move amso1100 driver to staging/rdma and schedule for deletion
- Move ipath driver to staging/rdma and schedule for deletion
- Add hfi1 driver to staging/rdma and set TODO for move to regular
tree
- Initial support for namespaces to be used on RDMA devices
- Add RoCE GID table handling to the RDMA core caching code
- Infrastructure to support handling of devices with differing read
and write scatter gather capabilities
- Various iSER updates
- Kill off unsafe usage of global mr registrations
- Update SRP driver
- Misc mlx4 driver updates
- Support for the mr_alloc verb
- Support for a netlink interface between kernel and user space cache
daemon to speed path record queries and route resolution
- Ininitial support for safe hot removal of verbs devices"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (136 commits)
IB/ipoib: Suppress warning for send only join failures
IB/ipoib: Clean up send-only multicast joins
IB/srp: Fix possible protection fault
IB/core: Move SM class defines from ib_mad.h to ib_smi.h
IB/core: Remove unnecessary defines from ib_mad.h
IB/hfi1: Add PSM2 user space header to header_install
IB/hfi1: Add CSRs for CONFIG_SDMA_VERBOSITY
mlx5: Fix incorrect wc pkey_index assignment for GSI messages
IB/mlx5: avoid destroying a NULL mr in reg_user_mr error flow
IB/uverbs: reject invalid or unknown opcodes
IB/cxgb4: Fix if statement in pick_local_ip6adddrs
IB/sa: Fix rdma netlink message flags
IB/ucma: HW Device hot-removal support
IB/mlx4_ib: Disassociate support
IB/uverbs: Enable device removal when there are active user space applications
IB/uverbs: Explicitly pass ib_dev to uverbs commands
IB/uverbs: Fix race between ib_uverbs_open and remove_one
IB/uverbs: Fix reference counting usage of event files
IB/core: Make ib_dealloc_pd return void
IB/srp: Create an insecure all physical rkey only if needed
...
The majority of callers never check the return value, and even if they
did, they can't do anything about a failure.
All possible failure cases represent a bug in the caller, so just
WARN_ON inside the function instead.
This fixes a few random errors:
net/rd/iw.c infinite loops while it fails. (racing with EBUSY?)
This also lays the ground work to get rid of error return from the
drivers. Most drivers do not error, the few that do are broken since
it cannot be handled.
Since uverbs can legitimately make use of EBUSY, open code the
check.
Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
This is a rework of the following patch sent almost a year back:
http://www.mail-archive.com/linux-rdma%40vger.kernel.org/msg20730.html
In presence of active mount if someone tries to rmmod vendor-driver, the
command remains stuck forever waiting for destruction of all rdma-cm-id.
in worst case client can crash during shutdown with active mounts.
The existing code assumes that ia->ri_id->device cannot change during
the lifetime of a transport. xprtrdma do not have support for
DEVICE_REMOVAL event either. Lifting that assumption and adding support
for DEVICE_REMOVAL event is a long chain of work, and is in plan.
The community decided that preventing the hang right now is more
important than waiting for architectural changes.
Thus, this patch introduces a temporary workaround to acquire HCA driver
module reference count during the mount of a nfs-rdma mount point.
Signed-off-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@dev.mellanox.co.il>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RDMA_MSGP type calls insert a zero pad in the middle of the RPC
message to align the RPC request's data payload to the server's
alignment preferences. A server can then "page flip" the payload
into place to avoid a data copy in certain circumstances. However:
1. The client has to have a priori knowledge of the server's
preferred alignment
2. Requests eligible for RDMA_MSGP are requests that are small
enough to have been sent inline, and convey a data payload
at the _end_ of the RPC message
Today 1. is done with a sysctl, and is a global setting that is
copied during mount. Linux does not support CCP to query the
server's preferences (RFC 5666, Section 6).
A small-ish NFSv3 WRITE might use RDMA_MSGP, but no NFSv4
compound fits bullet 2.
Thus the Linux client currently leaves RDMA_MSGP disabled. The
Linux server handles RDMA_MSGP, but does not use any special
page flipping, so it confers no benefit.
Clean up the marshaling code by removing the logic that constructs
RDMA_MSGP type calls. This also reduces the maximum send iovec size
from four to just two elements.
/proc/sys/sunrpc/rdma_inline_write_padding is a kernel API, and
thus is left in place.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Untangle the end of rpcrdma_ia_open() by moving DMA MR set-up, which
is different for each registration method, to the .ro_open functions.
This is refactoring only. No behavior change is expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
All HCA providers have an ib_get_dma_mr() verb. Thus
rpcrdma_ia_open() will either grab the device's local_dma_key if one
is available, or it will call ib_get_dma_mr(). If ib_get_dma_mr()
fails, rpcrdma_ia_open() fails and no transport is created.
Therefore execution never reaches the ib_reg_phys_mr() call site in
rpcrdma_register_internal(), so it can be removed.
The remaining logic in rpcrdma_{de}register_internal() is folded
into rpcrdma_{alloc,free}_regbuf().
This is clean up only. No behavior change is expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-By: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
PHYSICAL memory registration uses a single rkey for all of the
client's memory, thus is insecure. It is still useful in some cases
for testing.
Retain the ability to select PHYSICAL memory registration capability
via /proc/sys/sunrpc/rdma_memreg_strategy, but don't fall back to it
if the HCA does not support FRWR or FMR.
This means amso1100 no longer works out of the box with NFS/RDMA.
When using amso1100 HCAs, set the memreg_strategy sysctl to 6 before
performing NFS/RDMA mounts.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in some
circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVlWQgAAoJEGcL54qWCgDyXtcP/2Y3HJ9xu5qU3Bo/jzCAw4E1
jPPMSFAz4kqy/LGoslyc1cNDEiKGzJYWU8TtCGI3KAyNxb6n3pT1mEE1tvIsSdis
D8bpV13M452PPpZYrBawIf4+OuohXmuYHpFiVNSpLbH3Uo7dthvFFnbqCGaGlnqY
rXYZHAnx637OGBcJsT4AXCUz12ILvxMYRnqwW6Xn+j9JmwR1coQX3v8W8e7SMf6i
J+zOny7Uetjrg1U9C9uQB6ZvIoxUMo9QOVmtGCwsBl8lM3fLmzaQfcUf9fm76pMT
yTrKJs4jBLvVf00bRHFDv9EHWCy97oqCkeQEw1EY2lnxp/lmM5SiI4zQqjbf0QTW
5VQScT1MK6xwHoUbuI/sYdXXR8KGDVT1xCFFHUNcg69CvgqdgWslPQY7xLJMvUJZ
vBWfWDd8ppdCw2ZVX4ae/bnhfc+/mVh4wRPF7tgVAjT0pobBV9xMOeMkF4mo76Wa
pvo/nTRMt68hpESVSvq9dYEMVhy5haqFhPrSbyAGOpT4SE2V3RCCZQfhu15TMKdW
BdvItG+mdAVPbIHqhx7vRdAudcOEZKyxbFA+l3E5FyCAXLV7XS3M8CEl3P1w7gmm
Ccr8DW9abKFJf1RAKdX3stexIoJLGTwciSMR5smsbup/xNcx/fRgx2f1w31JMPxb
kG3Izfk25w9uGSsbR39D
=AREr
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in
some circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles"
* tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (87 commits)
nfs: Remove invalid tk_pid from debug message
nfs: Remove invalid NFS_ATTR_FATTR_V4_REFERRAL checking in nfs4_get_rootfh
nfs: Drop bad comment in nfs41_walk_client_list()
nfs: Remove unneeded micro checking of CONFIG_PROC_FS
nfs: Don't setting FILE_CREATED flags always
nfs: Use remove_proc_subtree() instead remove_proc_entry()
nfs: Remove unused argument in nfs_server_set_fsinfo()
nfs: Fix a memory leak when meeting an unsupported state protect
nfs: take extra reference to fl->fl_file when running a LOCKU operation
NFSv4: When returning a delegation, don't reclaim an incompatible open mode.
NFSv4.2: LAYOUTSTATS is optional to implement
NFSv4.2: Fix up a decoding error in layoutstats
pNFS/flexfiles: Fix the reset of struct pgio_header when resending
pNFS/flexfiles: Turn off layoutcommit for servers that don't need it
pnfs/flexfiles: protect ktime manipulation with mirror lock
nfs: provide pnfs_report_layoutstat when NFS42 is disabled
nfs: verify open flags before allowing open
nfs: always update creds in mirror, even when we have an already connected ds
nfs: fix potential credential leak in ff_layout_update_mirror_cred
pnfs/flexfiles: report layoutstat regularly
...
Currently, ib_create_cq uses cqe and comp_vecotr instead
of the extendible ib_cq_init_attr struct.
Earlier patches already changed the vendors to work with
ib_cq_init_attr. This patch changes the consumers too.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
/proc/lock_stat showed contention between rpcrdma_buffer_get/put
and the MR allocation functions during I/O intensive workloads.
Now that MRs are no longer allocated in rpcrdma_buffer_get(),
there's no reason the rb_mws list has to be managed using the
same lock as the send/receive buffers. Split that lock. The
new lock does not need to disable interrupts because buffer
get/put is never called in an interrupt context.
struct rpcrdma_buffer is re-arranged to ensure rb_mwlock and rb_mws
are always in a different cacheline than rb_lock and the buffer
pointers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
An RPC can exit at any time. When it does so, xprt_rdma_free() is
called, and it calls ->op_unmap().
If ->ro_reset() is running due to a transport disconnect, the two
methods can race while processing the same rpcrdma_mw. The results
are unpredictable.
Because of this, in previous patches I've altered ->ro_map() to
handle MR reset. ->ro_reset() is no longer needed and can be
removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Acquiring 64 MRs in rpcrdma_buffer_get() while holding the buffer
pool lock is expensive, and unnecessary because most modern adapters
can transfer 100s of KBs of payload using just a single MR.
Instead, acquire MRs one-at-a-time as chunks are registered, and
return them to rb_mws immediately during deregistration.
Note: commit 539431a437 ("xprtrdma: Don't invalidate FRMRs if
registration fails") is reverted: There is now a valid case where
registration can fail (with -ENOMEM) but the QP is still in RTS.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Acquiring 64 FMRs in rpcrdma_buffer_get() while holding the buffer
pool lock is expensive, and unnecessary because FMR mode can
transfer up to a 1MB payload using just a single ib_fmr.
Instead, acquire ib_fmrs one-at-a-time as chunks are registered, and
return them to rb_mws immediately during deregistration.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
We eventually want to handle allocating MWs one at a time, as
needed, instead of grabbing 64 and throwing them at each RPC in the
pipeline.
Add a helper for grabbing an MW off rb_mws, and a helper for
returning an MW to rb_mws. These will be used in a subsequent patch.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The connect worker can replace ri_id, but prevents ri_id->device
from changing during the lifetime of a transport instance. The old
ID is kept around until a new ID is created and the ->device is
confirmed to be the same.
Cache a copy of ri_id->device in rpcrdma_ia and in rpcrdma_rep.
The cached copy can be used safely in code that does not serialize
with the connect worker.
Other code can use it to save an extra address generation (one
pointer dereference instead of two).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
A posted rpcrdma_rep never has rr_func set to anything but
rpcrdma_reply_handler.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Instead of carrying a pointer to the buffer pool and
the rpc_xprt, carry a pointer to the controlling rpcrdma_xprt.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
WARN during transport destruction if ib_dealloc_pd() fails. This is
a sign that xprtrdma orphaned one or more RDMA API objects at some
point, which can pin lower layer kernel modules and cause shutdown
to hang.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
These functions are called in a loop for each page transferred via
RDMA READ or WRITE. Extract loop invariants and inline them to
reduce CPU overhead.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Allow each memory registration mode to plug in a callout that handles
the completion of a memory registration operation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The open op determines the size of various transport data structures
based on device capabilities and memory registration mode.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Memory Region objects associated with a transport instance are
destroyed before the instance is shutdown and destroyed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
This method is invoked when a transport instance is about to be
reconnected. Each Memory Region object is reset to its initial
state.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
This method is used when setting up a new transport instance to
create a pool of Memory Region objects that will be used to register
memory during operation.
Memory Regions are not needed for "physical" registration, since
->prepare and ->release are no-ops for that mode.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There is very little common processing among the different external
memory deregistration functions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There is very little common processing among the different external
memory registration functions. Have rpcrdma_create_chunks() call
the registration method directly. This removes a stack frame and a
switch statement from the external registration path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The max_payload computation is generalized to ensure that the
payload maximum is the lesser of RPC_MAX_DATA_SEGS and the number of
data segments that can be transmitted in an inline buffer.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Instead of employing switch() statements, let's use the typical
Linux kernel idiom for handling behavioral variation: virtual
functions.
Start by defining a vector of operations for each supported memory
registration mode, and by adding a source file for each mode.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If a provider advertizes a zero max_fast_reg_page_list_len, FRWR
depth detection loops forever. Instead of just failing the mount,
try other memory registration modes.
Fixes: 0fc6c4e7bb ("xprtrdma: mind the device's max fast . . .")
Reported-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The RPC/RDMA transport's FRWR registration logic registers whole
pages. This means areas in the first and last pages that are not
involved in the RDMA I/O are needlessly exposed to the server.
Buffered I/O is typically page-aligned, so not a problem there. But
for direct I/O, which can be byte-aligned, and for reply chunks,
which are nearly always smaller than a page, the transport could
expose memory outside the I/O buffer.
FRWR allows byte-aligned memory registration, so let's use it as
it was intended.
Reported-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <Devesh.Sharma@Emulex.Com>
Tested-by: Meghana Cheripady <Meghana.Cheripady@Emulex.Com>
Tested-by: Veeresh U. Kokatnur <veereshuk@chelsio.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
rpcrdma_{de}register_internal() are used only in verbs.c now.
MAX_RPCRDMAHDR is no longer used and can be removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Use the new rpcrdma_alloc_regbuf() API to shrink the amount of
contiguous memory needed for a buffer pool by moving the zero
pad buffer into a regbuf.
This is for consistency with the other uses of internally
registered memory.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The rr_base field is currently the buffer where RPC replies land.
An RPC/RDMA reply header lands in this buffer. In some cases an RPC
reply header also lands in this buffer, just after the RPC/RDMA
header.
The inline threshold is an agreed-on size limit for RDMA SEND
operations that pass from server and client. The sum of the
RPC/RDMA reply header size and the RPC reply header size must be
less than this threshold.
The largest RDMA RECV that the client should have to handle is the
size of the inline threshold. The receive buffer should thus be the
size of the inline threshold, and not related to RPCRDMA_MAX_SEGS.
RPC replies received via RDMA WRITE (long replies) are caught in
rq_rcv_buf, which is the second half of the RPC send buffer. Ie,
such replies are not involved in any way with rr_base.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The rl_base field is currently the buffer where each RPC/RDMA call
header is built.
The inline threshold is an agreed-on size limit to for RDMA SEND
operations that pass between client and server. The sum of the
RPC/RDMA header size and the RPC header size must be less than or
equal to this threshold.
Increasing the r/wsize maximum will require MAX_SEGS to grow
significantly, but the inline threshold size won't change (both
sides agree on it). The server's inline threshold doesn't change.
Since an RPC/RDMA header can never be larger than the inline
threshold, make all RPC/RDMA header buffers the size of the
inline threshold.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Because internal memory registration is an expensive and synchronous
operation, xprtrdma pre-registers send and receive buffers at mount
time, and then re-uses them for each RPC.
A "hardway" allocation is a memory allocation and registration that
replaces a send buffer during the processing of an RPC. Hardway must
be done if the RPC send buffer is too small to accommodate an RPC's
call and reply headers.
For xprtrdma, each RPC send buffer is currently part of struct
rpcrdma_req so that xprt_rdma_free(), which is passed nothing but
the address of an RPC send buffer, can find its matching struct
rpcrdma_req and rpcrdma_rep quickly via container_of / offsetof.
That means that hardway currently has to replace a whole rpcrmda_req
when it replaces an RPC send buffer. This is often a fairly hefty
chunk of contiguous memory due to the size of the rl_segments array
and the fact that both the send and receive buffers are part of
struct rpcrdma_req.
Some obscure re-use of fields in rpcrdma_req is done so that
xprt_rdma_free() can detect replaced rpcrdma_req structs, and
restore the original.
This commit breaks apart the RPC send buffer and struct rpcrdma_req
so that increasing the size of the rl_segments array does not change
the alignment of each RPC send buffer. (Increasing rl_segments is
needed to bump up the maximum r/wsize for NFS/RDMA).
This change opens up some interesting possibilities for improving
the design of xprt_rdma_allocate().
xprt_rdma_allocate() is now the one place where RPC send buffers
are allocated or re-allocated, and they are now always left in place
by xprt_rdma_free().
A large re-allocation that includes both the rl_segments array and
the RPC send buffer is no longer needed. Send buffer re-allocation
becomes quite rare. Good send buffer alignment is guaranteed no
matter what the size of the rl_segments array is.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There are several spots that allocate a buffer via kmalloc (usually
contiguously with another data structure) and then register that
buffer internally. I'd like to split the buffers out of these data
structures to allow the data structures to scale.
Start by adding functions that can kmalloc and register a buffer,
and can manage/preserve the buffer's associated ib_sge and ib_mr
fields.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Move the details of how to create and destroy rpcrdma_req and
rpcrdma_rep structures into helper functions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: There is one call site for rpcrdma_buffer_create(). All of
the arguments there are fields of an rpcrdma_xprt.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Reduce stack footprint of the connection upcall handler function.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Device attributes are large, and are used in more than one place.
Stash a copy in dynamically allocated memory.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If ib_query_qp() fails or the memory registration mode isn't
supported, don't leak the PD. An orphaned IB/core resource will
cause IB module removal to hang.
Fixes: bd7ed1d133 ("RPC/RDMA: check selected memory registration ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The rep_func field always refers to rpcrdma_conn_func().
rep_func should have been removed by commit b45ccfd25d ("xprtrdma:
Remove MEMWINDOWS registration modes").
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Reduce work in the receive CQ handler, which can be run at hardware
interrupt level, by moving the RPC/RDMA credit update logic to the
RPC reply handler.
This has some additional benefits: More header sanity checking is
done before trusting the incoming credit value, and the receive CQ
handler no longer touches the RPC/RDMA header (the CPU stalls while
waiting for the header contents to be brought into the cache).
This further extends work begun by commit e7ce710a88 ("xprtrdma:
Avoid deadlock when credit window is reset").
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Since commit 0ac531c183 ("xprtrdma: Remove REGISTER
memory registration mode"), the rl_mr pointer is no longer used
anywhere.
After removal, there's only a single member of the mr_chunk union,
so mr_chunk can be removed as well, in favor of a single pointer
field.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: This field is not used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Make it easier to grep the system log for specific error conditions.
The wc.opcode field is not included because opcode numbers are
sparse, and because wc.opcode is not necessarily valid when
completion reports an error.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>