2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-06 04:33:58 +08:00
Commit Graph

20 Commits

Author SHA1 Message Date
Ganesh Mahendran
66cdef663c mm/zsmalloc: adjust order of functions
Currently functions in zsmalloc.c does not arranged in a readable and
reasonable sequence.  With the more and more functions added, we may
meet below inconvenience.  For example:

Current functions:

    void zs_init()
    {
    }

    static void get_maxobj_per_zspage()
    {
    }

Then I want to add a func_1() which is called from zs_init(), and this
new added function func_1() will used get_maxobj_per_zspage() which is
defined below zs_init().

    void func_1()
    {
        get_maxobj_per_zspage()
    }

    void zs_init()
    {
        func_1()
    }

    static void get_maxobj_per_zspage()
    {
    }

This will cause compiling issue. So we must add a declaration:

    static void get_maxobj_per_zspage();

before func_1() if we do not put get_maxobj_per_zspage() before
func_1().

In addition, puting module_[init|exit] functions at the bottom of the
file conforms to our habit.

So, this patch ajusts function sequence as:

    /* helper functions */
    ...
    obj_location_to_handle()
    ...

    /* Some exported functions */
    ...

    zs_map_object()
    zs_unmap_object()

    zs_malloc()
    zs_free()

    zs_init()
    zs_exit()

Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-18 19:08:11 -08:00
Ganesh Mahendran
181366561a mm/zsmalloc: allocate exactly size of struct zs_pool
In zs_create_pool(), we allocate memory more then sizeof(struct zs_pool)
  ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);

This patch allocate memory of exactly needed size.

Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:50 -08:00
Ganesh Mahendran
df8b5bb998 mm/zsmalloc: avoid duplicate assignment of prev_class
In zs_create_pool(), prev_class is assigned (ZS_SIZE_CLASSES - 1) times.
And the prev_class only references to the previous size_class.  So we do
not need unnecessary assignement.

This patch assigns *prev_class* when a new size_class structure is
allocated and uses prev_class to check whether the first class has been
allocated.

[akpm@linux-foundation.org: remove now-unused ZS_SIZE_CLASSES]
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:50 -08:00
Mahendran Ganesh
40f9fb8cff mm/zsmalloc: support allocating obj with size of ZS_MAX_ALLOC_SIZE
I sent a patch [1] for unnecessary check in zsmalloc.  And Minchan Kim
found zsmalloc even does not support allocating an obj with the size of
ZS_MAX_ALLOC_SIZE in some situations.

For example:
   In system with 64KB PAGE_SIZE and 32 bit of physical addr. Then:
   ZS_MIN_ALLOC_SIZE is 32 bytes which is calculated by:
      MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
   ZS_MAX_ALLOC_SIZE is 64KB(in current code, is PAGE_SIZE)
   ZS_SIZE_CLASS_DELTA is 256 bytes
   So, ZS_SIZE_CLASSES = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) /
                          ZS_SIZE_CLASS_DELTA + 1
                       = 256

   In zs_create_pool(), the max size obj which can be allocated will be:
      ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA = 32 + 255*256 = 65312

   We can see that 65312 < 65536 (ZS_MAX_ALLOC_SIZE). So we can NOT
   allocate objs with size ZS_MAX_ALLOC_SIZE(65536) which we promise upper
   users we can do.

 [1]  http://lkml.iu.edu/hypermail/linux/kernel/1411.2/03835.html
 [2]  http://lkml.iu.edu/hypermail/linux/kernel/1411.2/04534.html

This patch fixes this issue by dynamiclly calculating zs_size_classes when
module is loaded, allocates buffer with size ZS_MAX_ALLOC_SIZE.  Then the
max obj(size is ZS_MAX_ALLOC_SIZE) can be stored in it.

[akpm@linux-foundation.org: restore ZS_SIZE_CLASSES to fix bisectability]
Signed-off-by: Mahendran Ganesh <opensource.ganesh@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:50 -08:00
Minchan Kim
af4ee5e977 zsmalloc: correct fragile [kmap|kunmap]_atomic use
The kunmap_atomic should use virtual address getting by kmap_atomic.
However, some pieces of code in zsmalloc uses modified address, not the
one got by kmap_atomic for kunmap_atomic.

It's okay for working because zsmalloc modifies the address inner
PAGE_SIZE bounday so it works with current kmap_atomic's implementation.
But it's still fragile with potential changing of kmap_atomic so let's
correct it.

I got a subtle bug when I implemented a new feature of zsmalloc
(compaction) due to a link's mishandling (the link was over page
boundary).  Although it was totally my mistake, it took a while to find
the cause because an unpredictable kmapped address was unmapped causing an
almost random crash.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:50 -08:00
Sergey Senozhatsky
b1b00a5b8a zsmalloc: fix zs_init cpu notifier error handling
Mahendran Ganesh reported that zpool-enabled zsmalloc should not call
zpool_unregister_driver() from zs_init() if cpu notifier registration has
failed, because error handling is performed before we register the driver
via zpool_register_driver() call.

Factor out cpu notifier registration and unregistration code and fix
zs_init() error handling.

link: http://lkml.iu.edu//hypermail/linux/kernel/1411.1/04156.html
[akpm@linux-foundation.org: squash bogus gcc warning]
[akpm@linux-foundation.org: use __init and __exit]
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Mahendran Ganesh <opensource.ganesh@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:50 -08:00
Joonsoo Kim
9eec4cd53f zsmalloc: merge size_class to reduce fragmentation
zsmalloc has many size_classes to reduce fragmentation and they are in 16
bytes unit, for example, 16, 32, 48, etc., if PAGE_SIZE is 4096.  And,
zsmalloc has constraint that each zspage has 4 pages at maximum.

In this situation, we can see interesting aspect.  Let's think about
size_class for 1488, 1472, ..., 1376.  To prevent external fragmentation,
they uses 4 pages per zspage and so all they can contain 11 objects at
maximum.

16384 (4096 * 4) = 1488 * 11 + remains
16384 (4096 * 4) = 1472 * 11 + remains
16384 (4096 * 4) = ...
16384 (4096 * 4) = 1376 * 11 + remains

It means that they have same characteristics and classification between
them isn't needed.  If we use one size_class for them, we can reduce
fragementation and save some memory since both the 1488 and 1472 sized
classes can only fit 11 objects into 4 pages, and an object that's 1472
bytes can fit into an object that's 1488 bytes, merging these classes to
always use objects that are 1488 bytes will reduce the total number of
size classes.  And reducing the total number of size classes reduces
overall fragmentation, because a wider range of compressed pages can fit
into a single size class, leaving less unused objects in each size class.

For this purpose, this patch implement size_class merging.  If there is
size_class that have same pages_per_zspage and same number of objects per
zspage with previous size_class, we don't create new size_class.  Instead,
we use previous, same characteristic size_class.  With this way, above
example sizes (1488, 1472, ..., 1376) use just one size_class so we can
get much more memory utilization.

Below is result of my simple test.

TEST ENV: EXT4 on zram, mount with discard option WORKLOAD: untar kernel
source code, remove directory in descending order in size.  (drivers arch
fs sound include net Documentation firmware kernel tools)

Each line represents orig_data_size, compr_data_size, mem_used_total,
fragmentation overhead (mem_used - compr_data_size) and overhead ratio
(overhead to compr_data_size), respectively, after untar and remove
operation is executed.

* untar-nomerge.out

orig_size compr_size used_size overhead overhead_ratio
525.88MB 199.16MB 210.23MB  11.08MB 5.56%
288.32MB  97.43MB 105.63MB   8.20MB 8.41%
177.32MB  61.12MB  69.40MB   8.28MB 13.55%
146.47MB  47.32MB  56.10MB   8.78MB 18.55%
124.16MB  38.85MB  48.41MB   9.55MB 24.58%
103.93MB  31.68MB  40.93MB   9.25MB 29.21%
 84.34MB  22.86MB  32.72MB   9.86MB 43.13%
 66.87MB  14.83MB  23.83MB   9.00MB 60.70%
 60.67MB  11.11MB  18.60MB   7.49MB 67.48%
 55.86MB   8.83MB  16.61MB   7.77MB 88.03%
 53.32MB   8.01MB  15.32MB   7.31MB 91.24%

* untar-merge.out

orig_size compr_size used_size overhead overhead_ratio
526.23MB 199.18MB 209.81MB  10.64MB 5.34%
288.68MB  97.45MB 104.08MB   6.63MB 6.80%
177.68MB  61.14MB  66.93MB   5.79MB 9.47%
146.83MB  47.34MB  52.79MB   5.45MB 11.51%
124.52MB  38.87MB  44.30MB   5.43MB 13.96%
104.29MB  31.70MB  36.83MB   5.13MB 16.19%
 84.70MB  22.88MB  27.92MB   5.04MB 22.04%
 67.11MB  14.83MB  19.26MB   4.43MB 29.86%
 60.82MB  11.10MB  14.90MB   3.79MB 34.17%
 55.90MB   8.82MB  12.61MB   3.79MB 42.97%
 53.32MB   8.01MB  11.73MB   3.73MB 46.53%

As you can see above result, merged one has better utilization (overhead
ratio, 5th column) and uses less memory (mem_used_total, 3rd column).

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: <juno.choi@lge.com>
Cc: "seungho1.park" <seungho1.park@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Dan Streetman
5538c56237 zsmalloc: simplify init_zspage free obj linking
Change zsmalloc init_zspage() logic to iterate through each object on each
of its pages, checking the offset to verify the object is on the current
page before linking it into the zspage.

The current zsmalloc init_zspage free object linking code has logic that
relies on there only being one page per zspage when PAGE_SIZE is a
multiple of class->size.  It calculates the number of objects for the
current page, and iterates through all of them plus one, to account for
the assumed partial object at the end of the page.  While this currently
works, the logic can be simplified to just link the object at each
successive offset until the offset is larger than PAGE_SIZE, which does
not rely on PAGE_SIZE being a multiple of class->size.

Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:26:03 -04:00
Wang Sheng-Hui
6dd9737e31 mm/zsmalloc.c: correct comment for fullness group computation
The letter 'f' in "n <= N/f" stands for fullness_threshold_frac, not
1/fullness_threshold_frac.

Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:26:03 -04:00
Minchan Kim
722cdc1723 zsmalloc: change return value unit of zs_get_total_size_bytes
zs_get_total_size_bytes returns a amount of memory zsmalloc consumed with
*byte unit* but zsmalloc operates *page unit* rather than byte unit so
let's change the API so benefit we could get is that reduce unnecessary
overhead (ie, change page unit with byte unit) in zsmalloc.

Since return type is pages, "zs_get_total_pages" is better than
"zs_get_total_size_bytes".

Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: <juno.choi@lge.com>
Cc: <seungho1.park@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: David Horner <ds2horner@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:26:02 -04:00
Minchan Kim
13de8933c9 zsmalloc: move pages_allocated to zs_pool
Currently, zram has no feature to limit memory so theoretically zram can
deplete system memory.  Users have asked for a limit several times as even
without exhaustion zram makes it hard to control memory usage of the
platform.  This patchset adds the feature.

Patch 1 makes zs_get_total_size_bytes faster because it would be used
frequently in later patches for the new feature.

Patch 2 changes zs_get_total_size_bytes's return unit from bytes to page
so that zsmalloc doesn't need unnecessary operation(ie, << PAGE_SHIFT).

Patch 3 adds new feature.  I added the feature into zram layer, not
zsmalloc because limiation is zram's requirement, not zsmalloc so any
other user using zsmalloc(ie, zpool) shouldn't affected by unnecessary
branch of zsmalloc.  In future, if every users of zsmalloc want the
feature, then, we could move the feature from client side to zsmalloc
easily but vice versa would be painful.

Patch 4 adds news facility to report maximum memory usage of zram so that
this avoids user polling frequently via /sys/block/zram0/ mem_used_total
and ensures transient max are not missed.

This patch (of 4):

pages_allocated has counted in size_class structure and when user of
zsmalloc want to see total_size_bytes, it should gather all of count from
each size_class to report the sum.

It's not bad if user don't see the value often but if user start to see
the value frequently, it would be not a good deal for performance pov.

This patch moves the count from size_class to zs_pool so it could reduce
memory footprint (from [255 * 8byte] to [sizeof(atomic_long_t)]).

Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: <juno.choi@lge.com>
Cc: <seungho1.park@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Reviewed-by: David Horner <ds2horner@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:26:02 -04:00
Kees Cook
137f8cff50 mm/zpool: use prefixed module loading
To avoid potential format string expansion via module parameters, do not
use the zpool type directly in request_module() without a format string.
Additionally, to avoid arbitrary modules being loaded via zpool API
(e.g.  via the zswap_zpool_type module parameter) add a "zpool-" prefix
to the requested module, as well as module aliases for the existing
zpool types (zbud and zsmalloc).

Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-29 16:28:16 -07:00
Dan Streetman
c795779df2 mm/zpool: zbud/zsmalloc implement zpool
Update zbud and zsmalloc to implement the zpool api.

[fengguang.wu@intel.com: make functions static]
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Tested-by: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Weijie Yang <weijie.yang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:23 -07:00
Dan Streetman
af8d417a04 mm/zpool: implement common zpool api to zbud/zsmalloc
Add zpool api.

zpool provides an interface for memory storage, typically of compressed
memory.  Users can select what backend to use; currently the only
implementations are zbud, a low density implementation with up to two
compressed pages per storage page, and zsmalloc, a higher density
implementation with multiple compressed pages per storage page.

Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Tested-by: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Weijie Yang <weijie.yang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:23 -07:00
WANG Chao
f6f8ed4735 mm/vmalloc.c: clean up map_vm_area third argument
Currently map_vm_area() takes (struct page *** pages) as third argument,
and after mapping, it moves (*pages) to point to (*pages +
nr_mappped_pages).

It looks like this kind of increment is useless to its caller these
days.  The callers don't care about the increments and actually they're
trying to avoid this by passing another copy to map_vm_area().

The caller can always guarantee all the pages can be mapped into vm_area
as specified in first argument and the caller only cares about whether
map_vm_area() fails or not.

This patch cleans up the pointer movement in map_vm_area() and updates
its callers accordingly.

Signed-off-by: WANG Chao <chaowang@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:19 -07:00
Weijie Yang
7eb52512a9 zsmalloc: fixup trivial zs size classes value in comments
According to calculation, ZS_SIZE_CLASSES value is 255 on systems with 4K
page size, not 254.  The old value may forget count the ZS_MIN_ALLOC_SIZE
in.

This patch fixes this trivial issue in the comments.

Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:13 -07:00
Christoph Lameter
7c8e0181e6 mm: replace __get_cpu_var uses with this_cpu_ptr
Replace places where __get_cpu_var() is used for an address calculation
with this_cpu_ptr().

Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
Srivatsa S. Bhat
f0e71fcd0f zsmalloc: Fix CPU hotplug callback registration
Subsystems that want to register CPU hotplug callbacks, as well as perform
initialization for the CPUs that are already online, often do it as shown
below:

	get_online_cpus();

	for_each_online_cpu(cpu)
		init_cpu(cpu);

	register_cpu_notifier(&foobar_cpu_notifier);

	put_online_cpus();

This is wrong, since it is prone to ABBA deadlocks involving the
cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently
with CPU hotplug operations).

Instead, the correct and race-free way of performing the callback
registration is:

	cpu_notifier_register_begin();

	for_each_online_cpu(cpu)
		init_cpu(cpu);

	/* Note the use of the double underscored version of the API */
	__register_cpu_notifier(&foobar_cpu_notifier);

	cpu_notifier_register_done();

Fix the zsmalloc code by using this latter form of callback registration.

Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-03-20 13:43:45 +01:00
Minchan Kim
31fc00bb78 zsmalloc: add copyright
Add my copyright to the zsmalloc source code which I maintain.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30 16:56:55 -08:00
Minchan Kim
bcf1647d08 zsmalloc: move it under mm
This patch moves zsmalloc under mm directory.

Before that, description will explain why we have needed custom
allocator.

Zsmalloc is a new slab-based memory allocator for storing compressed
pages.  It is designed for low fragmentation and high allocation success
rate on large object, but <= PAGE_SIZE allocations.

zsmalloc differs from the kernel slab allocator in two primary ways to
achieve these design goals.

zsmalloc never requires high order page allocations to back slabs, or
"size classes" in zsmalloc terms.  Instead it allows multiple
single-order pages to be stitched together into a "zspage" which backs
the slab.  This allows for higher allocation success rate under memory
pressure.

Also, zsmalloc allows objects to span page boundaries within the zspage.
This allows for lower fragmentation than could be had with the kernel
slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE.  With the
kernel slab allocator, if a page compresses to 60% of it original size,
the memory savings gained through compression is lost in fragmentation
because another object of the same size can't be stored in the leftover
space.

This ability to span pages results in zsmalloc allocations not being
directly addressable by the user.  The user is given an
non-dereferencable handle in response to an allocation request.  That
handle must be mapped, using zs_map_object(), which returns a pointer to
the mapped region that can be used.  The mapping is necessary since the
object data may reside in two different noncontigious pages.

The zsmalloc fulfills the allocation needs for zram perfectly

[sjenning@linux.vnet.ibm.com: borrow Seth's quote]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30 16:56:55 -08:00